cls_flow.c 16.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
/*
 * net/sched/cls_flow.c		Generic flow classifier
 *
 * Copyright (c) 2007, 2008 Patrick McHardy <kaber@trash.net>
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 */

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/list.h>
#include <linux/jhash.h>
#include <linux/random.h>
#include <linux/pkt_cls.h>
#include <linux/skbuff.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/ipv6.h>
22
#include <linux/if_vlan.h>
23
#include <linux/slab.h>
24
#include <linux/module.h>
25 26 27 28

#include <net/pkt_cls.h>
#include <net/ip.h>
#include <net/route.h>
29 30
#include <net/flow_keys.h>

31 32 33 34 35 36
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
#include <net/netfilter/nf_conntrack.h>
#endif

struct flow_head {
	struct list_head	filters;
37
	struct rcu_head		rcu;
38 39 40 41 42 43
};

struct flow_filter {
	struct list_head	list;
	struct tcf_exts		exts;
	struct tcf_ematch_tree	ematches;
44
	struct tcf_proto	*tp;
45 46
	struct timer_list	perturb_timer;
	u32			perturb_period;
47 48 49 50 51 52 53 54 55 56 57
	u32			handle;

	u32			nkeys;
	u32			keymask;
	u32			mode;
	u32			mask;
	u32			xor;
	u32			rshift;
	u32			addend;
	u32			divisor;
	u32			baseclass;
58
	u32			hashrnd;
59
	struct rcu_head		rcu;
60 61 62 63 64 65 66 67 68
};

static inline u32 addr_fold(void *addr)
{
	unsigned long a = (unsigned long)addr;

	return (a & 0xFFFFFFFF) ^ (BITS_PER_LONG > 32 ? a >> 32 : 0);
}

69
static u32 flow_get_src(const struct sk_buff *skb, const struct flow_keys *flow)
70
{
71 72
	if (flow->src)
		return ntohl(flow->src);
73
	return addr_fold(skb->sk);
74 75
}

76
static u32 flow_get_dst(const struct sk_buff *skb, const struct flow_keys *flow)
77
{
78 79
	if (flow->dst)
		return ntohl(flow->dst);
80
	return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
81 82
}

83
static u32 flow_get_proto(const struct sk_buff *skb, const struct flow_keys *flow)
84
{
85
	return flow->ip_proto;
86 87
}

88
static u32 flow_get_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
89
{
90 91
	if (flow->ports)
		return ntohs(flow->port16[0]);
92

93 94 95
	return addr_fold(skb->sk);
}

96
static u32 flow_get_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
97
{
98 99
	if (flow->ports)
		return ntohs(flow->port16[1]);
100

101
	return addr_fold(skb_dst(skb)) ^ (__force u16)skb->protocol;
102 103 104 105
}

static u32 flow_get_iif(const struct sk_buff *skb)
{
106
	return skb->skb_iif;
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131
}

static u32 flow_get_priority(const struct sk_buff *skb)
{
	return skb->priority;
}

static u32 flow_get_mark(const struct sk_buff *skb)
{
	return skb->mark;
}

static u32 flow_get_nfct(const struct sk_buff *skb)
{
#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
	return addr_fold(skb->nfct);
#else
	return 0;
#endif
}

#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
#define CTTUPLE(skb, member)						\
({									\
	enum ip_conntrack_info ctinfo;					\
132
	const struct nf_conn *ct = nf_ct_get(skb, &ctinfo);		\
133 134 135 136 137 138 139 140 141 142 143 144
	if (ct == NULL)							\
		goto fallback;						\
	ct->tuplehash[CTINFO2DIR(ctinfo)].tuple.member;			\
})
#else
#define CTTUPLE(skb, member)						\
({									\
	goto fallback;							\
	0;								\
})
#endif

145
static u32 flow_get_nfct_src(const struct sk_buff *skb, const struct flow_keys *flow)
146 147
{
	switch (skb->protocol) {
148
	case htons(ETH_P_IP):
149
		return ntohl(CTTUPLE(skb, src.u3.ip));
150
	case htons(ETH_P_IPV6):
151 152 153
		return ntohl(CTTUPLE(skb, src.u3.ip6[3]));
	}
fallback:
154
	return flow_get_src(skb, flow);
155 156
}

157
static u32 flow_get_nfct_dst(const struct sk_buff *skb, const struct flow_keys *flow)
158 159
{
	switch (skb->protocol) {
160
	case htons(ETH_P_IP):
161
		return ntohl(CTTUPLE(skb, dst.u3.ip));
162
	case htons(ETH_P_IPV6):
163 164 165
		return ntohl(CTTUPLE(skb, dst.u3.ip6[3]));
	}
fallback:
166
	return flow_get_dst(skb, flow);
167 168
}

169
static u32 flow_get_nfct_proto_src(const struct sk_buff *skb, const struct flow_keys *flow)
170 171 172
{
	return ntohs(CTTUPLE(skb, src.u.all));
fallback:
173
	return flow_get_proto_src(skb, flow);
174 175
}

176
static u32 flow_get_nfct_proto_dst(const struct sk_buff *skb, const struct flow_keys *flow)
177 178 179
{
	return ntohs(CTTUPLE(skb, dst.u.all));
fallback:
180
	return flow_get_proto_dst(skb, flow);
181 182 183 184
}

static u32 flow_get_rtclassid(const struct sk_buff *skb)
{
185
#ifdef CONFIG_IP_ROUTE_CLASSID
Eric Dumazet's avatar
Eric Dumazet committed
186 187
	if (skb_dst(skb))
		return skb_dst(skb)->tclassid;
188 189 190 191 192 193
#endif
	return 0;
}

static u32 flow_get_skuid(const struct sk_buff *skb)
{
194 195 196 197
	if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
		kuid_t skuid = skb->sk->sk_socket->file->f_cred->fsuid;
		return from_kuid(&init_user_ns, skuid);
	}
198 199 200 201 202
	return 0;
}

static u32 flow_get_skgid(const struct sk_buff *skb)
{
203 204 205 206
	if (skb->sk && skb->sk->sk_socket && skb->sk->sk_socket->file) {
		kgid_t skgid = skb->sk->sk_socket->file->f_cred->fsgid;
		return from_kgid(&init_user_ns, skgid);
	}
207 208 209
	return 0;
}

210 211 212 213 214 215 216 217 218
static u32 flow_get_vlan_tag(const struct sk_buff *skb)
{
	u16 uninitialized_var(tag);

	if (vlan_get_tag(skb, &tag) < 0)
		return 0;
	return tag & VLAN_VID_MASK;
}

219 220
static u32 flow_get_rxhash(struct sk_buff *skb)
{
221
	return skb_get_hash(skb);
222 223
}

224
static u32 flow_key_get(struct sk_buff *skb, int key, struct flow_keys *flow)
225 226 227
{
	switch (key) {
	case FLOW_KEY_SRC:
228
		return flow_get_src(skb, flow);
229
	case FLOW_KEY_DST:
230
		return flow_get_dst(skb, flow);
231
	case FLOW_KEY_PROTO:
232
		return flow_get_proto(skb, flow);
233
	case FLOW_KEY_PROTO_SRC:
234
		return flow_get_proto_src(skb, flow);
235
	case FLOW_KEY_PROTO_DST:
236
		return flow_get_proto_dst(skb, flow);
237 238 239 240 241 242 243 244 245
	case FLOW_KEY_IIF:
		return flow_get_iif(skb);
	case FLOW_KEY_PRIORITY:
		return flow_get_priority(skb);
	case FLOW_KEY_MARK:
		return flow_get_mark(skb);
	case FLOW_KEY_NFCT:
		return flow_get_nfct(skb);
	case FLOW_KEY_NFCT_SRC:
246
		return flow_get_nfct_src(skb, flow);
247
	case FLOW_KEY_NFCT_DST:
248
		return flow_get_nfct_dst(skb, flow);
249
	case FLOW_KEY_NFCT_PROTO_SRC:
250
		return flow_get_nfct_proto_src(skb, flow);
251
	case FLOW_KEY_NFCT_PROTO_DST:
252
		return flow_get_nfct_proto_dst(skb, flow);
253 254 255 256 257 258
	case FLOW_KEY_RTCLASSID:
		return flow_get_rtclassid(skb);
	case FLOW_KEY_SKUID:
		return flow_get_skuid(skb);
	case FLOW_KEY_SKGID:
		return flow_get_skgid(skb);
259 260
	case FLOW_KEY_VLAN_TAG:
		return flow_get_vlan_tag(skb);
261 262
	case FLOW_KEY_RXHASH:
		return flow_get_rxhash(skb);
263 264 265 266 267 268
	default:
		WARN_ON(1);
		return 0;
	}
}

269 270 271 272 273 274 275 276 277 278
#define FLOW_KEYS_NEEDED ((1 << FLOW_KEY_SRC) | 		\
			  (1 << FLOW_KEY_DST) |			\
			  (1 << FLOW_KEY_PROTO) |		\
			  (1 << FLOW_KEY_PROTO_SRC) |		\
			  (1 << FLOW_KEY_PROTO_DST) | 		\
			  (1 << FLOW_KEY_NFCT_SRC) |		\
			  (1 << FLOW_KEY_NFCT_DST) |		\
			  (1 << FLOW_KEY_NFCT_PROTO_SRC) |	\
			  (1 << FLOW_KEY_NFCT_PROTO_DST))

279
static int flow_classify(struct sk_buff *skb, const struct tcf_proto *tp,
280 281
			 struct tcf_result *res)
{
282
	struct flow_head *head = rcu_dereference_bh(tp->root);
283 284 285 286 287 288
	struct flow_filter *f;
	u32 keymask;
	u32 classid;
	unsigned int n, key;
	int r;

289
	list_for_each_entry_rcu(f, &head->filters, list) {
290
		u32 keys[FLOW_KEY_MAX + 1];
291
		struct flow_keys flow_keys;
292 293 294 295 296

		if (!tcf_em_tree_match(skb, &f->ematches, NULL))
			continue;

		keymask = f->keymask;
297 298
		if (keymask & FLOW_KEYS_NEEDED)
			skb_flow_dissect(skb, &flow_keys);
299 300 301 302

		for (n = 0; n < f->nkeys; n++) {
			key = ffs(keymask) - 1;
			keymask &= ~(1 << key);
303
			keys[n] = flow_key_get(skb, key, &flow_keys);
304 305 306
		}

		if (f->mode == FLOW_MODE_HASH)
307
			classid = jhash2(keys, f->nkeys, f->hashrnd);
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
		else {
			classid = keys[0];
			classid = (classid & f->mask) ^ f->xor;
			classid = (classid >> f->rshift) + f->addend;
		}

		if (f->divisor)
			classid %= f->divisor;

		res->class   = 0;
		res->classid = TC_H_MAKE(f->baseclass, f->baseclass + classid);

		r = tcf_exts_exec(skb, &f->exts, res);
		if (r < 0)
			continue;
		return r;
	}
	return -1;
}

328 329 330 331 332 333 334 335 336
static void flow_perturbation(unsigned long arg)
{
	struct flow_filter *f = (struct flow_filter *)arg;

	get_random_bytes(&f->hashrnd, 4);
	if (f->perturb_period)
		mod_timer(&f->perturb_timer, jiffies + f->perturb_period);
}

337 338 339 340 341 342 343 344 345 346 347 348
static const struct nla_policy flow_policy[TCA_FLOW_MAX + 1] = {
	[TCA_FLOW_KEYS]		= { .type = NLA_U32 },
	[TCA_FLOW_MODE]		= { .type = NLA_U32 },
	[TCA_FLOW_BASECLASS]	= { .type = NLA_U32 },
	[TCA_FLOW_RSHIFT]	= { .type = NLA_U32 },
	[TCA_FLOW_ADDEND]	= { .type = NLA_U32 },
	[TCA_FLOW_MASK]		= { .type = NLA_U32 },
	[TCA_FLOW_XOR]		= { .type = NLA_U32 },
	[TCA_FLOW_DIVISOR]	= { .type = NLA_U32 },
	[TCA_FLOW_ACT]		= { .type = NLA_NESTED },
	[TCA_FLOW_POLICE]	= { .type = NLA_NESTED },
	[TCA_FLOW_EMATCHES]	= { .type = NLA_NESTED },
349
	[TCA_FLOW_PERTURB]	= { .type = NLA_U32 },
350 351
};

352 353 354 355 356
static void flow_destroy_filter(struct rcu_head *head)
{
	struct flow_filter *f = container_of(head, struct flow_filter, rcu);

	del_timer_sync(&f->perturb_timer);
357
	tcf_exts_destroy(&f->exts);
358
	tcf_em_tree_destroy(&f->ematches);
359 360 361
	kfree(f);
}

362
static int flow_change(struct net *net, struct sk_buff *in_skb,
363
		       struct tcf_proto *tp, unsigned long base,
364
		       u32 handle, struct nlattr **tca,
365
		       unsigned long *arg, bool ovr)
366
{
367 368
	struct flow_head *head = rtnl_dereference(tp->root);
	struct flow_filter *fold, *fnew;
369 370 371 372 373
	struct nlattr *opt = tca[TCA_OPTIONS];
	struct nlattr *tb[TCA_FLOW_MAX + 1];
	struct tcf_exts e;
	struct tcf_ematch_tree t;
	unsigned int nkeys = 0;
374
	unsigned int perturb_period = 0;
375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398
	u32 baseclass = 0;
	u32 keymask = 0;
	u32 mode;
	int err;

	if (opt == NULL)
		return -EINVAL;

	err = nla_parse_nested(tb, TCA_FLOW_MAX, opt, flow_policy);
	if (err < 0)
		return err;

	if (tb[TCA_FLOW_BASECLASS]) {
		baseclass = nla_get_u32(tb[TCA_FLOW_BASECLASS]);
		if (TC_H_MIN(baseclass) == 0)
			return -EINVAL;
	}

	if (tb[TCA_FLOW_KEYS]) {
		keymask = nla_get_u32(tb[TCA_FLOW_KEYS]);

		nkeys = hweight32(keymask);
		if (nkeys == 0)
			return -EINVAL;
399 400 401

		if (fls(keymask) - 1 > FLOW_KEY_MAX)
			return -EOPNOTSUPP;
402 403

		if ((keymask & (FLOW_KEY_SKUID|FLOW_KEY_SKGID)) &&
404
		    sk_user_ns(NETLINK_CB(in_skb).sk) != &init_user_ns)
405
			return -EOPNOTSUPP;
406 407
	}

408
	tcf_exts_init(&e, TCA_FLOW_ACT, TCA_FLOW_POLICE);
409
	err = tcf_exts_validate(net, tp, tb, tca[TCA_RATE], &e, ovr);
410 411 412 413 414 415 416
	if (err < 0)
		return err;

	err = tcf_em_tree_validate(tp, tb[TCA_FLOW_EMATCHES], &t);
	if (err < 0)
		goto err1;

417 418 419 420 421 422 423
	err = -ENOBUFS;
	fnew = kzalloc(sizeof(*fnew), GFP_KERNEL);
	if (!fnew)
		goto err2;

	fold = (struct flow_filter *)*arg;
	if (fold) {
424
		err = -EINVAL;
425
		if (fold->handle != handle && handle)
426 427
			goto err2;

428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445
		/* Copy fold into fnew */
		fnew->handle = fold->handle;
		fnew->keymask = fold->keymask;
		fnew->tp = fold->tp;

		fnew->handle = fold->handle;
		fnew->nkeys = fold->nkeys;
		fnew->keymask = fold->keymask;
		fnew->mode = fold->mode;
		fnew->mask = fold->mask;
		fnew->xor = fold->xor;
		fnew->rshift = fold->rshift;
		fnew->addend = fold->addend;
		fnew->divisor = fold->divisor;
		fnew->baseclass = fold->baseclass;
		fnew->hashrnd = fold->hashrnd;

		mode = fold->mode;
446 447 448 449
		if (tb[TCA_FLOW_MODE])
			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
		if (mode != FLOW_MODE_HASH && nkeys > 1)
			goto err2;
450 451

		if (mode == FLOW_MODE_HASH)
452
			perturb_period = fold->perturb_period;
453 454 455 456 457
		if (tb[TCA_FLOW_PERTURB]) {
			if (mode != FLOW_MODE_HASH)
				goto err2;
			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
		}
458 459 460 461 462 463 464 465 466 467 468 469 470
	} else {
		err = -EINVAL;
		if (!handle)
			goto err2;
		if (!tb[TCA_FLOW_KEYS])
			goto err2;

		mode = FLOW_MODE_MAP;
		if (tb[TCA_FLOW_MODE])
			mode = nla_get_u32(tb[TCA_FLOW_MODE]);
		if (mode != FLOW_MODE_HASH && nkeys > 1)
			goto err2;

471 472 473 474 475 476
		if (tb[TCA_FLOW_PERTURB]) {
			if (mode != FLOW_MODE_HASH)
				goto err2;
			perturb_period = nla_get_u32(tb[TCA_FLOW_PERTURB]) * HZ;
		}

477 478 479 480 481
		if (TC_H_MAJ(baseclass) == 0)
			baseclass = TC_H_MAKE(tp->q->handle, baseclass);
		if (TC_H_MIN(baseclass) == 0)
			baseclass = TC_H_MAKE(baseclass, 1);

482 483 484 485 486
		fnew->handle = handle;
		fnew->mask  = ~0U;
		fnew->tp = tp;
		get_random_bytes(&fnew->hashrnd, 4);
		tcf_exts_init(&fnew->exts, TCA_FLOW_ACT, TCA_FLOW_POLICE);
487 488
	}

489 490 491
	fnew->perturb_timer.function = flow_perturbation;
	fnew->perturb_timer.data = (unsigned long)fnew;
	init_timer_deferrable(&fnew->perturb_timer);
492

493 494
	tcf_exts_change(tp, &fnew->exts, &e);
	tcf_em_tree_change(tp, &fnew->ematches, &t);
495

496 497
	netif_keep_dst(qdisc_dev(tp->q));

498
	if (tb[TCA_FLOW_KEYS]) {
499 500
		fnew->keymask = keymask;
		fnew->nkeys   = nkeys;
501 502
	}

503
	fnew->mode = mode;
504 505

	if (tb[TCA_FLOW_MASK])
506
		fnew->mask = nla_get_u32(tb[TCA_FLOW_MASK]);
507
	if (tb[TCA_FLOW_XOR])
508
		fnew->xor = nla_get_u32(tb[TCA_FLOW_XOR]);
509
	if (tb[TCA_FLOW_RSHIFT])
510
		fnew->rshift = nla_get_u32(tb[TCA_FLOW_RSHIFT]);
511
	if (tb[TCA_FLOW_ADDEND])
512
		fnew->addend = nla_get_u32(tb[TCA_FLOW_ADDEND]);
513 514

	if (tb[TCA_FLOW_DIVISOR])
515
		fnew->divisor = nla_get_u32(tb[TCA_FLOW_DIVISOR]);
516
	if (baseclass)
517
		fnew->baseclass = baseclass;
518

519
	fnew->perturb_period = perturb_period;
520
	if (perturb_period)
521
		mod_timer(&fnew->perturb_timer, jiffies + perturb_period);
522

523
	if (*arg == 0)
524 525 526
		list_add_tail_rcu(&fnew->list, &head->filters);
	else
		list_replace_rcu(&fnew->list, &fold->list);
527

528
	*arg = (unsigned long)fnew;
529

530 531
	if (fold)
		call_rcu(&fold->rcu, flow_destroy_filter);
532 533 534
	return 0;

err2:
535
	tcf_em_tree_destroy(&t);
536
	kfree(fnew);
537
err1:
538
	tcf_exts_destroy(&e);
539 540 541 542 543 544 545
	return err;
}

static int flow_delete(struct tcf_proto *tp, unsigned long arg)
{
	struct flow_filter *f = (struct flow_filter *)arg;

546 547
	list_del_rcu(&f->list);
	call_rcu(&f->rcu, flow_destroy_filter);
548 549 550 551 552 553 554 555 556 557 558
	return 0;
}

static int flow_init(struct tcf_proto *tp)
{
	struct flow_head *head;

	head = kzalloc(sizeof(*head), GFP_KERNEL);
	if (head == NULL)
		return -ENOBUFS;
	INIT_LIST_HEAD(&head->filters);
559
	rcu_assign_pointer(tp->root, head);
560 561 562 563 564
	return 0;
}

static void flow_destroy(struct tcf_proto *tp)
{
565
	struct flow_head *head = rtnl_dereference(tp->root);
566 567 568
	struct flow_filter *f, *next;

	list_for_each_entry_safe(f, next, &head->filters, list) {
569 570
		list_del_rcu(&f->list);
		call_rcu(&f->rcu, flow_destroy_filter);
571
	}
572 573
	RCU_INIT_POINTER(tp->root, NULL);
	kfree_rcu(head, rcu);
574 575 576 577
}

static unsigned long flow_get(struct tcf_proto *tp, u32 handle)
{
578
	struct flow_head *head = rtnl_dereference(tp->root);
579 580
	struct flow_filter *f;

581
	list_for_each_entry(f, &head->filters, list)
582 583 584 585 586 587 588 589 590
		if (f->handle == handle)
			return (unsigned long)f;
	return 0;
}

static void flow_put(struct tcf_proto *tp, unsigned long f)
{
}

591
static int flow_dump(struct net *net, struct tcf_proto *tp, unsigned long fh,
592 593 594 595 596 597 598 599 600 601 602 603 604 605
		     struct sk_buff *skb, struct tcmsg *t)
{
	struct flow_filter *f = (struct flow_filter *)fh;
	struct nlattr *nest;

	if (f == NULL)
		return skb->len;

	t->tcm_handle = f->handle;

	nest = nla_nest_start(skb, TCA_OPTIONS);
	if (nest == NULL)
		goto nla_put_failure;

606 607 608
	if (nla_put_u32(skb, TCA_FLOW_KEYS, f->keymask) ||
	    nla_put_u32(skb, TCA_FLOW_MODE, f->mode))
		goto nla_put_failure;
609 610

	if (f->mask != ~0 || f->xor != 0) {
611 612 613
		if (nla_put_u32(skb, TCA_FLOW_MASK, f->mask) ||
		    nla_put_u32(skb, TCA_FLOW_XOR, f->xor))
			goto nla_put_failure;
614
	}
615 616 617 618 619 620
	if (f->rshift &&
	    nla_put_u32(skb, TCA_FLOW_RSHIFT, f->rshift))
		goto nla_put_failure;
	if (f->addend &&
	    nla_put_u32(skb, TCA_FLOW_ADDEND, f->addend))
		goto nla_put_failure;
621

622 623 624 625 626 627
	if (f->divisor &&
	    nla_put_u32(skb, TCA_FLOW_DIVISOR, f->divisor))
		goto nla_put_failure;
	if (f->baseclass &&
	    nla_put_u32(skb, TCA_FLOW_BASECLASS, f->baseclass))
		goto nla_put_failure;
628

629 630 631
	if (f->perturb_period &&
	    nla_put_u32(skb, TCA_FLOW_PERTURB, f->perturb_period / HZ))
		goto nla_put_failure;
632

633
	if (tcf_exts_dump(skb, &f->exts) < 0)
634
		goto nla_put_failure;
635
#ifdef CONFIG_NET_EMATCH
636 637 638
	if (f->ematches.hdr.nmatches &&
	    tcf_em_tree_dump(skb, &f->ematches, TCA_FLOW_EMATCHES) < 0)
		goto nla_put_failure;
639
#endif
640 641
	nla_nest_end(skb, nest);

642
	if (tcf_exts_dump_stats(skb, &f->exts) < 0)
643 644 645 646 647 648 649 650 651 652 653
		goto nla_put_failure;

	return skb->len;

nla_put_failure:
	nlmsg_trim(skb, nest);
	return -1;
}

static void flow_walk(struct tcf_proto *tp, struct tcf_walker *arg)
{
654
	struct flow_head *head = rtnl_dereference(tp->root);
655 656
	struct flow_filter *f;

657
	list_for_each_entry(f, &head->filters, list) {
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698
		if (arg->count < arg->skip)
			goto skip;
		if (arg->fn(tp, (unsigned long)f, arg) < 0) {
			arg->stop = 1;
			break;
		}
skip:
		arg->count++;
	}
}

static struct tcf_proto_ops cls_flow_ops __read_mostly = {
	.kind		= "flow",
	.classify	= flow_classify,
	.init		= flow_init,
	.destroy	= flow_destroy,
	.change		= flow_change,
	.delete		= flow_delete,
	.get		= flow_get,
	.put		= flow_put,
	.dump		= flow_dump,
	.walk		= flow_walk,
	.owner		= THIS_MODULE,
};

static int __init cls_flow_init(void)
{
	return register_tcf_proto_ops(&cls_flow_ops);
}

static void __exit cls_flow_exit(void)
{
	unregister_tcf_proto_ops(&cls_flow_ops);
}

module_init(cls_flow_init);
module_exit(cls_flow_exit);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Patrick McHardy <kaber@trash.net>");
MODULE_DESCRIPTION("TC flow classifier");