scheduler.c 15 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
/*
 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Zhi Wang <zhi.a.wang@intel.com>
 *
 * Contributors:
 *    Ping Gao <ping.a.gao@intel.com>
 *    Tina Zhang <tina.zhang@intel.com>
 *    Chanbin Du <changbin.du@intel.com>
 *    Min He <min.he@intel.com>
 *    Bing Niu <bing.niu@intel.com>
 *    Zhenyu Wang <zhenyuw@linux.intel.com>
 *
 */

#include <linux/kthread.h>

38 39 40
#include "i915_drv.h"
#include "gvt.h"

41 42 43
#define RING_CTX_OFF(x) \
	offsetof(struct execlist_ring_context, x)

44 45
static void set_context_pdp_root_pointer(
		struct execlist_ring_context *ring_context,
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
		u32 pdp[8])
{
	struct execlist_mmio_pair *pdp_pair = &ring_context->pdp3_UDW;
	int i;

	for (i = 0; i < 8; i++)
		pdp_pair[i].val = pdp[7 - i];
}

static int populate_shadow_context(struct intel_vgpu_workload *workload)
{
	struct intel_vgpu *vgpu = workload->vgpu;
	struct intel_gvt *gvt = vgpu->gvt;
	int ring_id = workload->ring_id;
	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
	struct drm_i915_gem_object *ctx_obj =
		shadow_ctx->engine[ring_id].state->obj;
	struct execlist_ring_context *shadow_ring_context;
	struct page *page;
	void *dst;
	unsigned long context_gpa, context_page_num;
	int i;

	gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
			workload->ctx_desc.lrca);

	context_page_num = intel_lr_context_size(
73
			gvt->dev_priv->engine[ring_id]);
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91

	context_page_num = context_page_num >> PAGE_SHIFT;

	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
		context_page_num = 19;

	i = 2;

	while (i < context_page_num) {
		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
				(u32)((workload->ctx_desc.lrca + i) <<
				GTT_PAGE_SHIFT));
		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
			gvt_err("Invalid guest context descriptor\n");
			return -EINVAL;
		}

		page = i915_gem_object_get_page(ctx_obj, LRC_PPHWSP_PN + i);
92
		dst = kmap(page);
93 94
		intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
				GTT_PAGE_SIZE);
95
		kunmap(page);
96 97 98 99
		i++;
	}

	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
100
	shadow_ring_context = kmap(page);
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125

#define COPY_REG(name) \
	intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
		+ RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)

	COPY_REG(ctx_ctrl);
	COPY_REG(ctx_timestamp);

	if (ring_id == RCS) {
		COPY_REG(bb_per_ctx_ptr);
		COPY_REG(rcs_indirect_ctx);
		COPY_REG(rcs_indirect_ctx_offset);
	}
#undef COPY_REG

	set_context_pdp_root_pointer(shadow_ring_context,
				     workload->shadow_mm->shadow_page_table);

	intel_gvt_hypervisor_read_gpa(vgpu,
			workload->ring_context_gpa +
			sizeof(*shadow_ring_context),
			(void *)shadow_ring_context +
			sizeof(*shadow_ring_context),
			GTT_PAGE_SIZE - sizeof(*shadow_ring_context));

126
	kunmap(page);
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
	return 0;
}

static int shadow_context_status_change(struct notifier_block *nb,
		unsigned long action, void *data)
{
	struct intel_vgpu *vgpu = container_of(nb,
			struct intel_vgpu, shadow_ctx_notifier_block);
	struct drm_i915_gem_request *req =
		(struct drm_i915_gem_request *)data;
	struct intel_gvt_workload_scheduler *scheduler =
		&vgpu->gvt->scheduler;
	struct intel_vgpu_workload *workload =
		scheduler->current_workload[req->engine->id];

142 143 144
	if (unlikely(!workload))
		return NOTIFY_OK;

145 146
	switch (action) {
	case INTEL_CONTEXT_SCHEDULE_IN:
147 148
		intel_gvt_load_render_mmio(workload->vgpu,
					   workload->ring_id);
149 150 151
		atomic_set(&workload->shadow_ctx_active, 1);
		break;
	case INTEL_CONTEXT_SCHEDULE_OUT:
152 153
		intel_gvt_restore_render_mmio(workload->vgpu,
					      workload->ring_id);
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
		atomic_set(&workload->shadow_ctx_active, 0);
		break;
	default:
		WARN_ON(1);
		return NOTIFY_OK;
	}
	wake_up(&workload->shadow_ctx_status_wq);
	return NOTIFY_OK;
}

static int dispatch_workload(struct intel_vgpu_workload *workload)
{
	int ring_id = workload->ring_id;
	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
	struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
169
	struct drm_i915_gem_request *rq;
170 171 172 173 174
	int ret;

	gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
		ring_id, workload);

175 176
	shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
	shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
177 178
				    GEN8_CTX_ADDRESSING_MODE_SHIFT;

179 180
	mutex_lock(&dev_priv->drm.struct_mutex);

181 182
	rq = i915_gem_request_alloc(dev_priv->engine[ring_id], shadow_ctx);
	if (IS_ERR(rq)) {
183
		gvt_err("fail to allocate gem request\n");
184 185
		ret = PTR_ERR(rq);
		goto out;
186 187
	}

188 189 190
	gvt_dbg_sched("ring id %d get i915 gem request %p\n", ring_id, rq);

	workload->req = i915_gem_request_get(rq);
191

192 193
	ret = intel_gvt_scan_and_shadow_workload(workload);
	if (ret)
194
		goto out;
195 196 197

	ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
	if (ret)
198
		goto out;
199

200 201
	ret = populate_shadow_context(workload);
	if (ret)
202
		goto out;
203 204 205 206

	if (workload->prepare) {
		ret = workload->prepare(workload);
		if (ret)
207
			goto out;
208 209 210 211 212
	}

	gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
			ring_id, workload->req);

213
	ret = 0;
214
	workload->dispatched = true;
215 216 217
out:
	if (ret)
		workload->status = ret;
218

219 220
	if (!IS_ERR_OR_NULL(rq))
		i915_add_request_no_flush(rq);
221
	mutex_unlock(&dev_priv->drm.struct_mutex);
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
	return ret;
}

static struct intel_vgpu_workload *pick_next_workload(
		struct intel_gvt *gvt, int ring_id)
{
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	struct intel_vgpu_workload *workload = NULL;

	mutex_lock(&gvt->lock);

	/*
	 * no current vgpu / will be scheduled out / no workload
	 * bail out
	 */
	if (!scheduler->current_vgpu) {
		gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
		goto out;
	}

	if (scheduler->need_reschedule) {
		gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
		goto out;
	}

	if (list_empty(workload_q_head(scheduler->current_vgpu, ring_id))) {
		gvt_dbg_sched("ring id %d stop - no available workload\n",
				ring_id);
		goto out;
	}

	/*
	 * still have current workload, maybe the workload disptacher
	 * fail to submit it for some reason, resubmit it.
	 */
	if (scheduler->current_workload[ring_id]) {
		workload = scheduler->current_workload[ring_id];
		gvt_dbg_sched("ring id %d still have current workload %p\n",
				ring_id, workload);
		goto out;
	}

	/*
	 * pick a workload as current workload
	 * once current workload is set, schedule policy routines
	 * will wait the current workload is finished when trying to
	 * schedule out a vgpu.
	 */
	scheduler->current_workload[ring_id] = container_of(
			workload_q_head(scheduler->current_vgpu, ring_id)->next,
			struct intel_vgpu_workload, list);

	workload = scheduler->current_workload[ring_id];

	gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);

	atomic_inc(&workload->vgpu->running_workload_num);
out:
	mutex_unlock(&gvt->lock);
	return workload;
}

static void update_guest_context(struct intel_vgpu_workload *workload)
{
	struct intel_vgpu *vgpu = workload->vgpu;
	struct intel_gvt *gvt = vgpu->gvt;
	int ring_id = workload->ring_id;
	struct i915_gem_context *shadow_ctx = workload->vgpu->shadow_ctx;
	struct drm_i915_gem_object *ctx_obj =
		shadow_ctx->engine[ring_id].state->obj;
	struct execlist_ring_context *shadow_ring_context;
	struct page *page;
	void *src;
	unsigned long context_gpa, context_page_num;
	int i;

	gvt_dbg_sched("ring id %d workload lrca %x\n", ring_id,
			workload->ctx_desc.lrca);

	context_page_num = intel_lr_context_size(
302
			gvt->dev_priv->engine[ring_id]);
303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320

	context_page_num = context_page_num >> PAGE_SHIFT;

	if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS)
		context_page_num = 19;

	i = 2;

	while (i < context_page_num) {
		context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
				(u32)((workload->ctx_desc.lrca + i) <<
					GTT_PAGE_SHIFT));
		if (context_gpa == INTEL_GVT_INVALID_ADDR) {
			gvt_err("invalid guest context descriptor\n");
			return;
		}

		page = i915_gem_object_get_page(ctx_obj, LRC_PPHWSP_PN + i);
321
		src = kmap(page);
322 323
		intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
				GTT_PAGE_SIZE);
324
		kunmap(page);
325 326 327 328 329 330 331
		i++;
	}

	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
		RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);

	page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
332
	shadow_ring_context = kmap(page);
333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349

#define COPY_REG(name) \
	intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
		RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)

	COPY_REG(ctx_ctrl);
	COPY_REG(ctx_timestamp);

#undef COPY_REG

	intel_gvt_hypervisor_write_gpa(vgpu,
			workload->ring_context_gpa +
			sizeof(*shadow_ring_context),
			(void *)shadow_ring_context +
			sizeof(*shadow_ring_context),
			GTT_PAGE_SIZE - sizeof(*shadow_ring_context));

350
	kunmap(page);
351 352 353 354 355 356
}

static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
{
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	struct intel_vgpu_workload *workload;
357
	struct intel_vgpu *vgpu;
358
	int event;
359 360 361 362

	mutex_lock(&gvt->lock);

	workload = scheduler->current_workload[ring_id];
363
	vgpu = workload->vgpu;
364

365
	if (!workload->status && !vgpu->resetting) {
366 367 368 369
		wait_event(workload->shadow_ctx_status_wq,
			   !atomic_read(&workload->shadow_ctx_active));

		update_guest_context(workload);
370 371 372

		for_each_set_bit(event, workload->pending_events,
				 INTEL_GVT_EVENT_MAX)
373
			intel_vgpu_trigger_virtual_event(vgpu, event);
374 375 376 377 378 379 380 381 382 383
	}

	gvt_dbg_sched("ring id %d complete workload %p status %d\n",
			ring_id, workload, workload->status);

	scheduler->current_workload[ring_id] = NULL;

	list_del_init(&workload->list);
	workload->complete(workload);

384
	atomic_dec(&vgpu->running_workload_num);
385 386 387 388 389 390 391 392 393
	wake_up(&scheduler->workload_complete_wq);
	mutex_unlock(&gvt->lock);
}

struct workload_thread_param {
	struct intel_gvt *gvt;
	int ring_id;
};

394 395
static DEFINE_MUTEX(scheduler_mutex);

396 397 398 399 400 401 402
static int workload_thread(void *priv)
{
	struct workload_thread_param *p = (struct workload_thread_param *)priv;
	struct intel_gvt *gvt = p->gvt;
	int ring_id = p->ring_id;
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	struct intel_vgpu_workload *workload = NULL;
403
	long lret;
404 405
	int ret;
	bool need_force_wake = IS_SKYLAKE(gvt->dev_priv);
406
	DEFINE_WAIT_FUNC(wait, woken_wake_function);
407 408 409 410 411 412

	kfree(p);

	gvt_dbg_core("workload thread for ring %d started\n", ring_id);

	while (!kthread_should_stop()) {
413 414 415 416 417 418 419 420 421 422 423
		add_wait_queue(&scheduler->waitq[ring_id], &wait);
		do {
			workload = pick_next_workload(gvt, ring_id);
			if (workload)
				break;
			wait_woken(&wait, TASK_INTERRUPTIBLE,
				   MAX_SCHEDULE_TIMEOUT);
		} while (!kthread_should_stop());
		remove_wait_queue(&scheduler->waitq[ring_id], &wait);

		if (!workload)
424 425
			break;

426 427
		mutex_lock(&scheduler_mutex);

428 429 430 431 432 433 434 435 436 437 438 439 440
		gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
				workload->ring_id, workload,
				workload->vgpu->id);

		intel_runtime_pm_get(gvt->dev_priv);

		gvt_dbg_sched("ring id %d will dispatch workload %p\n",
				workload->ring_id, workload);

		if (need_force_wake)
			intel_uncore_forcewake_get(gvt->dev_priv,
					FORCEWAKE_ALL);

441
		mutex_lock(&gvt->lock);
442
		ret = dispatch_workload(workload);
443
		mutex_unlock(&gvt->lock);
444

445 446 447 448 449 450 451 452
		if (ret) {
			gvt_err("fail to dispatch workload, skip\n");
			goto complete;
		}

		gvt_dbg_sched("ring id %d wait workload %p\n",
				workload->ring_id, workload);

453 454 455 456
		lret = i915_wait_request(workload->req,
					 0, MAX_SCHEDULE_TIMEOUT);
		if (lret < 0) {
			workload->status = lret;
457
			gvt_err("fail to wait workload, skip\n");
458 459
		} else {
			workload->status = 0;
460
		}
461 462

complete:
463
		gvt_dbg_sched("will complete workload %p, status: %d\n",
464 465
				workload, workload->status);

466 467
		if (workload->req)
			i915_gem_request_put(fetch_and_zero(&workload->req));
468

469 470
		complete_current_workload(gvt, ring_id);

471 472 473 474 475
		if (need_force_wake)
			intel_uncore_forcewake_put(gvt->dev_priv,
					FORCEWAKE_ALL);

		intel_runtime_pm_put(gvt->dev_priv);
476 477 478

		mutex_unlock(&scheduler_mutex);

479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522
	}
	return 0;
}

void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
{
	struct intel_gvt *gvt = vgpu->gvt;
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;

	if (atomic_read(&vgpu->running_workload_num)) {
		gvt_dbg_sched("wait vgpu idle\n");

		wait_event(scheduler->workload_complete_wq,
				!atomic_read(&vgpu->running_workload_num));
	}
}

void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	int i;

	gvt_dbg_core("clean workload scheduler\n");

	for (i = 0; i < I915_NUM_ENGINES; i++) {
		if (scheduler->thread[i]) {
			kthread_stop(scheduler->thread[i]);
			scheduler->thread[i] = NULL;
		}
	}
}

int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	struct workload_thread_param *param = NULL;
	int ret;
	int i;

	gvt_dbg_core("init workload scheduler\n");

	init_waitqueue_head(&scheduler->workload_complete_wq);

	for (i = 0; i < I915_NUM_ENGINES; i++) {
523 524 525 526
		/* check ring mask at init time */
		if (!HAS_ENGINE(gvt->dev_priv, i))
			continue;

527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558
		init_waitqueue_head(&scheduler->waitq[i]);

		param = kzalloc(sizeof(*param), GFP_KERNEL);
		if (!param) {
			ret = -ENOMEM;
			goto err;
		}

		param->gvt = gvt;
		param->ring_id = i;

		scheduler->thread[i] = kthread_run(workload_thread, param,
			"gvt workload %d", i);
		if (IS_ERR(scheduler->thread[i])) {
			gvt_err("fail to create workload thread\n");
			ret = PTR_ERR(scheduler->thread[i]);
			goto err;
		}
	}
	return 0;
err:
	intel_gvt_clean_workload_scheduler(gvt);
	kfree(param);
	param = NULL;
	return ret;
}

void intel_vgpu_clean_gvt_context(struct intel_vgpu *vgpu)
{
	atomic_notifier_chain_unregister(&vgpu->shadow_ctx->status_notifier,
			&vgpu->shadow_ctx_notifier_block);

559
	i915_gem_context_put_unlocked(vgpu->shadow_ctx);
560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
}

int intel_vgpu_init_gvt_context(struct intel_vgpu *vgpu)
{
	atomic_set(&vgpu->running_workload_num, 0);

	vgpu->shadow_ctx = i915_gem_context_create_gvt(
			&vgpu->gvt->dev_priv->drm);
	if (IS_ERR(vgpu->shadow_ctx))
		return PTR_ERR(vgpu->shadow_ctx);

	vgpu->shadow_ctx->engine[RCS].initialised = true;

	vgpu->shadow_ctx_notifier_block.notifier_call =
		shadow_context_status_change;

	atomic_notifier_chain_register(&vgpu->shadow_ctx->status_notifier,
				       &vgpu->shadow_ctx_notifier_block);
	return 0;
}