file.c 35.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/*
 * SPU file system -- file contents
 *
 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
 *
 * Author: Arnd Bergmann <arndb@de.ibm.com>
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2, or (at your option)
 * any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

23 24
#undef DEBUG

25 26 27
#include <linux/fs.h>
#include <linux/ioctl.h>
#include <linux/module.h>
28
#include <linux/pagemap.h>
29
#include <linux/poll.h>
30
#include <linux/ptrace.h>
31 32 33 34 35 36 37 38

#include <asm/io.h>
#include <asm/semaphore.h>
#include <asm/spu.h>
#include <asm/uaccess.h>

#include "spufs.h"

39 40
#define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)

41

42 43 44 45
static int
spufs_mem_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
46 47 48 49
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->local_store = inode->i_mapping;
50 51 52 53 54 55 56
	return 0;
}

static ssize_t
spufs_mem_read(struct file *file, char __user *buffer,
				size_t size, loff_t *pos)
{
57 58
	struct spu_context *ctx = file->private_data;
	char *local_store;
59 60
	int ret;

61
	spu_acquire(ctx);
62

63 64
	local_store = ctx->ops->get_ls(ctx);
	ret = simple_read_from_buffer(buffer, size, pos, local_store, LS_SIZE);
65

66
	spu_release(ctx);
67 68 69 70 71 72 73 74
	return ret;
}

static ssize_t
spufs_mem_write(struct file *file, const char __user *buffer,
					size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
75 76
	char *local_store;
	int ret;
77 78 79 80 81

	size = min_t(ssize_t, LS_SIZE - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;
82 83 84 85 86 87 88 89 90

	spu_acquire(ctx);

	local_store = ctx->ops->get_ls(ctx);
	ret = copy_from_user(local_store + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
91 92
}

93 94 95 96 97 98 99 100 101 102 103 104
static struct page *
spufs_mem_mmap_nopage(struct vm_area_struct *vma,
		      unsigned long address, int *type)
{
	struct page *page = NOPAGE_SIGBUS;

	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	offset += vma->vm_pgoff << PAGE_SHIFT;

	spu_acquire(ctx);

105 106 107
	if (ctx->state == SPU_STATE_SAVED) {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
					& ~(_PAGE_NO_CACHE | _PAGE_GUARDED));
108
		page = vmalloc_to_page(ctx->csa.lscsa->ls + offset);
109 110 111
	} else {
		vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
					| _PAGE_NO_CACHE | _PAGE_GUARDED);
112 113
		page = pfn_to_page((ctx->spu->local_store_phys + offset)
				   >> PAGE_SHIFT);
114
	}
115 116 117 118 119
	spu_release(ctx);

	if (type)
		*type = VM_FAULT_MINOR;

120
	page_cache_get(page);
121 122 123 124 125 126 127
	return page;
}

static struct vm_operations_struct spufs_mem_mmap_vmops = {
	.nopage = spufs_mem_mmap_nopage,
};

128 129 130
static int
spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
{
131 132
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;
133

134 135 136 137 138
	/* FIXME: */
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE);

	vma->vm_ops = &spufs_mem_mmap_vmops;
139 140 141 142 143 144 145
	return 0;
}

static struct file_operations spufs_mem_fops = {
	.open	 = spufs_mem_open,
	.read    = spufs_mem_read,
	.write   = spufs_mem_write,
146
	.llseek  = generic_file_llseek,
147
	.mmap    = spufs_mem_mmap,
148 149
};

150 151
static struct page *spufs_ps_nopage(struct vm_area_struct *vma,
				    unsigned long address,
152 153
				    int *type, unsigned long ps_offs,
				    unsigned long ps_size)
154 155 156 157 158 159 160 161 162
{
	struct page *page = NOPAGE_SIGBUS;
	int fault_type = VM_FAULT_SIGBUS;
	struct spu_context *ctx = vma->vm_file->private_data;
	unsigned long offset = address - vma->vm_start;
	unsigned long area;
	int ret;

	offset += vma->vm_pgoff << PAGE_SHIFT;
163
	if (offset >= ps_size)
164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
		goto out;

	ret = spu_acquire_runnable(ctx);
	if (ret)
		goto out;

	area = ctx->spu->problem_phys + ps_offs;
	page = pfn_to_page((area + offset) >> PAGE_SHIFT);
	fault_type = VM_FAULT_MINOR;
	page_cache_get(page);

	spu_release(ctx);

      out:
	if (type)
		*type = fault_type;

	return page;
}

184
#if SPUFS_MMAP_4K
185 186 187
static struct page *spufs_cntl_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
188
	return spufs_ps_nopage(vma, address, type, 0x4000, 0x1000);
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
}

static struct vm_operations_struct spufs_cntl_mmap_vmops = {
	.nopage = spufs_cntl_mmap_nopage,
};

/*
 * mmap support for problem state control area [0x4000 - 0x4fff].
 */
static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
205
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
206 207 208 209

	vma->vm_ops = &spufs_cntl_mmap_vmops;
	return 0;
}
210 211 212
#else /* SPUFS_MMAP_4K */
#define spufs_cntl_mmap NULL
#endif /* !SPUFS_MMAP_4K */
213

214
static u64 spufs_cntl_get(void *data)
215
{
216 217
	struct spu_context *ctx = data;
	u64 val;
218

219 220 221 222 223
	spu_acquire(ctx);
	val = ctx->ops->status_read(ctx);
	spu_release(ctx);

	return val;
224 225
}

226
static void spufs_cntl_set(void *data, u64 val)
227
{
228 229 230 231 232
	struct spu_context *ctx = data;

	spu_acquire(ctx);
	ctx->ops->runcntl_write(ctx, val);
	spu_release(ctx);
233 234
}

235
static int spufs_cntl_open(struct inode *inode, struct file *file)
236
{
237 238 239 240 241 242 243 244
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->cntl = inode->i_mapping;
	return simple_attr_open(inode, file, spufs_cntl_get,
					spufs_cntl_set, "0x%08lx");
245 246 247 248
}

static struct file_operations spufs_cntl_fops = {
	.open = spufs_cntl_open,
249
	.release = simple_attr_close,
250 251
	.read = simple_attr_read,
	.write = simple_attr_write,
252 253 254
	.mmap = spufs_cntl_mmap,
};

255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
static int
spufs_regs_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;
	return 0;
}

static ssize_t
spufs_regs_read(struct file *file, char __user *buffer,
		size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	spu_acquire_saved(ctx);

	ret = simple_read_from_buffer(buffer, size, pos,
				      lscsa->gprs, sizeof lscsa->gprs);

	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_regs_write(struct file *file, const char __user *buffer,
		 size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user(lscsa->gprs + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

static struct file_operations spufs_regs_fops = {
	.open	 = spufs_regs_open,
	.read    = spufs_regs_read,
	.write   = spufs_regs_write,
306 307 308
	.llseek  = generic_file_llseek,
};

309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354
static ssize_t
spufs_fpcr_read(struct file *file, char __user * buffer,
		size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	spu_acquire_saved(ctx);

	ret = simple_read_from_buffer(buffer, size, pos,
				      &lscsa->fpcr, sizeof(lscsa->fpcr));

	spu_release(ctx);
	return ret;
}

static ssize_t
spufs_fpcr_write(struct file *file, const char __user * buffer,
		 size_t size, loff_t * pos)
{
	struct spu_context *ctx = file->private_data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	int ret;

	size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
	if (size <= 0)
		return -EFBIG;
	*pos += size;

	spu_acquire_saved(ctx);

	ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
			     buffer, size) ? -EFAULT : size;

	spu_release(ctx);
	return ret;
}

static struct file_operations spufs_fpcr_fops = {
	.open = spufs_regs_open,
	.read = spufs_fpcr_read,
	.write = spufs_fpcr_write,
	.llseek = generic_file_llseek,
};

355 356 357 358 359 360 361 362 363
/* generic open function for all pipe-like files */
static int spufs_pipe_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	file->private_data = i->i_ctx;

	return nonseekable_open(inode, file);
}

364 365 366 367 368 369 370 371
/*
 * Read as many bytes from the mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 */
372 373 374
static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
375
	struct spu_context *ctx = file->private_data;
376 377
	u32 mbox_data, __user *udata;
	ssize_t count;
378 379 380 381

	if (len < 4)
		return -EINVAL;

382 383 384 385 386
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

387
	spu_acquire(ctx);
388
	for (count = 0; (count + 4) <= len; count += 4, udata++) {
389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
		int ret;
		ret = ctx->ops->mbox_read(ctx, &mbox_data);
		if (ret == 0)
			break;

		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(mbox_data, udata);
		if (ret) {
			if (!count)
				count = -EFAULT;
			break;
		}
	}
406
	spu_release(ctx);
407

408 409
	if (!count)
		count = -EAGAIN;
410

411
	return count;
412 413 414 415 416 417 418 419 420 421
}

static struct file_operations spufs_mbox_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_read,
};

static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
422
	struct spu_context *ctx = file->private_data;
423 424 425 426 427
	u32 mbox_stat;

	if (len < 4)
		return -EINVAL;

428 429 430 431 432
	spu_acquire(ctx);

	mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;

	spu_release(ctx);
433 434 435 436 437 438 439 440 441 442 443 444 445

	if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_mbox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_mbox_stat_read,
};

/* low-level ibox access function */
446
size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
447
{
448 449
	return ctx->ops->ibox_read(ctx, data);
}
450

451 452 453
static int spufs_ibox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
454

455
	return fasync_helper(fd, file, on, &ctx->ibox_fasync);
456 457
}

458 459
/* interrupt-level ibox callback function. */
void spufs_ibox_callback(struct spu *spu)
460
{
461 462 463 464
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->ibox_wq);
	kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
465 466
}

467 468 469 470 471 472 473 474 475 476 477 478
/*
 * Read as many bytes from the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - no more data available in the mailbox
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * any data is available, but return when we have been able to
 * read something.
 */
479 480 481
static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
482
	struct spu_context *ctx = file->private_data;
483 484
	u32 ibox_data, __user *udata;
	ssize_t count;
485 486 487 488

	if (len < 4)
		return -EINVAL;

489 490 491 492 493
	if (!access_ok(VERIFY_WRITE, buf, len))
		return -EFAULT;

	udata = (void __user *)buf;

494
	spu_acquire(ctx);
495

496 497
	/* wait only for the first element */
	count = 0;
498
	if (file->f_flags & O_NONBLOCK) {
499
		if (!spu_ibox_read(ctx, &ibox_data))
500
			count = -EAGAIN;
501
	} else {
502
		count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
503
	}
504 505
	if (count)
		goto out;
506

507 508 509 510
	/* if we can't write at all, return -EFAULT */
	count = __put_user(ibox_data, udata);
	if (count)
		goto out;
511

512 513 514 515 516 517 518 519 520 521 522 523 524 525
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = ctx->ops->ibox_read(ctx, &ibox_data);
		if (ret == 0)
			break;
		/*
		 * at the end of the mapped area, we can fault
		 * but still need to return the data we have
		 * read successfully so far.
		 */
		ret = __put_user(ibox_data, udata);
		if (ret)
			break;
	}
526

527 528
out:
	spu_release(ctx);
529

530
	return count;
531 532 533 534
}

static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
{
535
	struct spu_context *ctx = file->private_data;
536 537
	unsigned int mask;

538
	poll_wait(file, &ctx->ibox_wq, wait);
539

540 541 542
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
	spu_release(ctx);
543 544 545 546 547 548 549 550 551 552 553 554 555 556

	return mask;
}

static struct file_operations spufs_ibox_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_read,
	.poll	= spufs_ibox_poll,
	.fasync	= spufs_ibox_fasync,
};

static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
557
	struct spu_context *ctx = file->private_data;
558 559 560 561 562
	u32 ibox_stat;

	if (len < 4)
		return -EINVAL;

563 564 565
	spu_acquire(ctx);
	ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
	spu_release(ctx);
566 567 568 569 570 571 572 573 574 575 576 577 578

	if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_ibox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_ibox_stat_read,
};

/* low-level mailbox write */
579
size_t spu_wbox_write(struct spu_context *ctx, u32 data)
580
{
581 582
	return ctx->ops->wbox_write(ctx, data);
}
583

584 585 586 587
static int spufs_wbox_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;
	int ret;
588

589
	ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
590 591 592 593

	return ret;
}

594 595
/* interrupt-level wbox callback function. */
void spufs_wbox_callback(struct spu *spu)
596
{
597 598 599 600
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->wbox_wq);
	kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
601 602
}

603 604 605 606 607 608 609 610 611 612 613 614
/*
 * Write as many bytes to the interrupt mailbox as possible, until
 * one of the conditions becomes true:
 *
 * - the mailbox is full
 * - end of the user provided buffer
 * - end of the mapped area
 *
 * If the file is opened without O_NONBLOCK, we wait here until
 * space is availabyl, but return when we have been able to
 * write something.
 */
615 616 617
static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
618
	struct spu_context *ctx = file->private_data;
619 620
	u32 wbox_data, __user *udata;
	ssize_t count;
621 622 623 624

	if (len < 4)
		return -EINVAL;

625 626 627 628 629
	udata = (void __user *)buf;
	if (!access_ok(VERIFY_READ, buf, len))
		return -EFAULT;

	if (__get_user(wbox_data, udata))
630 631
		return -EFAULT;

632 633
	spu_acquire(ctx);

634 635 636 637 638
	/*
	 * make sure we can at least write one element, by waiting
	 * in case of !O_NONBLOCK
	 */
	count = 0;
639
	if (file->f_flags & O_NONBLOCK) {
640
		if (!spu_wbox_write(ctx, wbox_data))
641
			count = -EAGAIN;
642
	} else {
643
		count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
644 645
	}

646 647
	if (count)
		goto out;
648

649 650 651 652 653 654 655 656 657 658 659 660 661 662 663
	/* write aѕ much as possible */
	for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
		int ret;
		ret = __get_user(wbox_data, udata);
		if (ret)
			break;

		ret = spu_wbox_write(ctx, wbox_data);
		if (ret == 0)
			break;
	}

out:
	spu_release(ctx);
	return count;
664 665 666 667
}

static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
{
668
	struct spu_context *ctx = file->private_data;
669 670
	unsigned int mask;

671
	poll_wait(file, &ctx->wbox_wq, wait);
672

673 674 675
	spu_acquire(ctx);
	mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
	spu_release(ctx);
676 677 678 679 680 681 682 683 684 685 686 687 688 689

	return mask;
}

static struct file_operations spufs_wbox_fops = {
	.open	= spufs_pipe_open,
	.write	= spufs_wbox_write,
	.poll	= spufs_wbox_poll,
	.fasync	= spufs_wbox_fasync,
};

static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
690
	struct spu_context *ctx = file->private_data;
691 692 693 694 695
	u32 wbox_stat;

	if (len < 4)
		return -EINVAL;

696 697 698
	spu_acquire(ctx);
	wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
	spu_release(ctx);
699 700 701 702 703 704 705 706 707 708 709 710

	if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
		return -EFAULT;

	return 4;
}

static struct file_operations spufs_wbox_stat_fops = {
	.open	= spufs_pipe_open,
	.read	= spufs_wbox_stat_read,
};

711 712 713 714 715 716 717 718 719 720
static int spufs_signal1_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->signal1 = inode->i_mapping;
	return nonseekable_open(inode, file);
}

721 722 723
static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
724
	struct spu_context *ctx = file->private_data;
725 726 727 728 729
	u32 data;

	if (len < 4)
		return -EINVAL;

730 731 732 733
	spu_acquire(ctx);
	data = ctx->ops->signal1_read(ctx);
	spu_release(ctx);

734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

	return 4;
}

static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

754 755 756
	spu_acquire(ctx);
	ctx->ops->signal1_write(ctx, data);
	spu_release(ctx);
757 758 759 760

	return 4;
}

761 762 763
static struct page *spufs_signal1_mmap_nopage(struct vm_area_struct *vma,
					      unsigned long address, int *type)
{
764 765 766 767 768 769 770 771 772 773
#if PAGE_SIZE == 0x1000
	return spufs_ps_nopage(vma, address, type, 0x14000, 0x1000);
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
	return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
#else
#error unsupported page size
#endif
774 775 776 777 778 779 780 781 782 783 784 785 786
}

static struct vm_operations_struct spufs_signal1_mmap_vmops = {
	.nopage = spufs_signal1_mmap_nopage,
};

static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
787
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
788 789 790 791 792

	vma->vm_ops = &spufs_signal1_mmap_vmops;
	return 0;
}

793
static struct file_operations spufs_signal1_fops = {
794
	.open = spufs_signal1_open,
795 796
	.read = spufs_signal1_read,
	.write = spufs_signal1_write,
797
	.mmap = spufs_signal1_mmap,
798 799
};

800 801 802 803 804 805 806 807 808 809
static int spufs_signal2_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;
	file->private_data = ctx;
	file->f_mapping = inode->i_mapping;
	ctx->signal2 = inode->i_mapping;
	return nonseekable_open(inode, file);
}

810 811 812 813 814 815 816 817 818 819 820
static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

821 822 823 824
	spu_acquire(ctx);
	data = ctx->ops->signal2_read(ctx);
	spu_release(ctx);

825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844
	if (copy_to_user(buf, &data, 4))
		return -EFAULT;

	return 4;
}

static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
			size_t len, loff_t *pos)
{
	struct spu_context *ctx;
	u32 data;

	ctx = file->private_data;

	if (len < 4)
		return -EINVAL;

	if (copy_from_user(&data, buf, 4))
		return -EFAULT;

845 846 847
	spu_acquire(ctx);
	ctx->ops->signal2_write(ctx, data);
	spu_release(ctx);
848 849 850 851

	return 4;
}

852
#if SPUFS_MMAP_4K
853 854 855
static struct page *spufs_signal2_mmap_nopage(struct vm_area_struct *vma,
					      unsigned long address, int *type)
{
856 857 858 859 860 861 862 863 864 865
#if PAGE_SIZE == 0x1000
	return spufs_ps_nopage(vma, address, type, 0x1c000, 0x1000);
#elif PAGE_SIZE == 0x10000
	/* For 64k pages, both signal1 and signal2 can be used to mmap the whole
	 * signal 1 and 2 area
	 */
	return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
#else
#error unsupported page size
#endif
866 867 868 869 870 871 872 873 874 875 876 877 878 879
}

static struct vm_operations_struct spufs_signal2_mmap_vmops = {
	.nopage = spufs_signal2_mmap_nopage,
};

static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	/* FIXME: */
	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
880
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
881 882 883 884

	vma->vm_ops = &spufs_signal2_mmap_vmops;
	return 0;
}
885 886 887
#else /* SPUFS_MMAP_4K */
#define spufs_signal2_mmap NULL
#endif /* !SPUFS_MMAP_4K */
888

889
static struct file_operations spufs_signal2_fops = {
890
	.open = spufs_signal2_open,
891 892
	.read = spufs_signal2_read,
	.write = spufs_signal2_write,
893
	.mmap = spufs_signal2_mmap,
894 895 896 897 898 899
};

static void spufs_signal1_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

900 901 902
	spu_acquire(ctx);
	ctx->ops->signal1_type_set(ctx, val);
	spu_release(ctx);
903 904 905 906 907
}

static u64 spufs_signal1_type_get(void *data)
{
	struct spu_context *ctx = data;
908 909 910 911 912 913 914
	u64 ret;

	spu_acquire(ctx);
	ret = ctx->ops->signal1_type_get(ctx);
	spu_release(ctx);

	return ret;
915 916 917 918 919 920 921 922
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
					spufs_signal1_type_set, "%llu");

static void spufs_signal2_type_set(void *data, u64 val)
{
	struct spu_context *ctx = data;

923 924 925
	spu_acquire(ctx);
	ctx->ops->signal2_type_set(ctx, val);
	spu_release(ctx);
926 927 928 929 930
}

static u64 spufs_signal2_type_get(void *data)
{
	struct spu_context *ctx = data;
931 932 933 934 935 936 937
	u64 ret;

	spu_acquire(ctx);
	ret = ctx->ops->signal2_type_get(ctx);
	spu_release(ctx);

	return ret;
938 939 940 941
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
					spufs_signal2_type_set, "%llu");

942
#if SPUFS_MMAP_4K
943 944 945
static struct page *spufs_mss_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
946
	return spufs_ps_nopage(vma, address, type, 0x0000, 0x1000);
947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962
}

static struct vm_operations_struct spufs_mss_mmap_vmops = {
	.nopage = spufs_mss_mmap_nopage,
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
963
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
964 965 966 967

	vma->vm_ops = &spufs_mss_mmap_vmops;
	return 0;
}
968 969 970
#else /* SPUFS_MMAP_4K */
#define spufs_mss_mmap NULL
#endif /* !SPUFS_MMAP_4K */
971 972 973 974 975 976 977 978 979 980 981 982

static int spufs_mss_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);

	file->private_data = i->i_ctx;
	return nonseekable_open(inode, file);
}

static struct file_operations spufs_mss_fops = {
	.open	 = spufs_mss_open,
	.mmap	 = spufs_mss_mmap,
983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021
};

static struct page *spufs_psmap_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
	return spufs_ps_nopage(vma, address, type, 0x0000, 0x20000);
}

static struct vm_operations_struct spufs_psmap_mmap_vmops = {
	.nopage = spufs_psmap_mmap_nopage,
};

/*
 * mmap support for full problem state area [0x00000 - 0x1ffff].
 */
static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);

	vma->vm_ops = &spufs_psmap_mmap_vmops;
	return 0;
}

static int spufs_psmap_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);

	file->private_data = i->i_ctx;
	return nonseekable_open(inode, file);
}

static struct file_operations spufs_psmap_fops = {
	.open	 = spufs_psmap_open,
	.mmap	 = spufs_psmap_mmap,
1022 1023 1024
};


1025
#if SPUFS_MMAP_4K
1026 1027 1028
static struct page *spufs_mfc_mmap_nopage(struct vm_area_struct *vma,
					   unsigned long address, int *type)
{
1029
	return spufs_ps_nopage(vma, address, type, 0x3000, 0x1000);
1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
}

static struct vm_operations_struct spufs_mfc_mmap_vmops = {
	.nopage = spufs_mfc_mmap_nopage,
};

/*
 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
 */
static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
{
	if (!(vma->vm_flags & VM_SHARED))
		return -EINVAL;

	vma->vm_flags |= VM_RESERVED;
	vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1046
				     | _PAGE_NO_CACHE | _PAGE_GUARDED);
1047 1048 1049 1050

	vma->vm_ops = &spufs_mfc_mmap_vmops;
	return 0;
}
1051 1052 1053
#else /* SPUFS_MMAP_4K */
#define spufs_mfc_mmap NULL
#endif /* !SPUFS_MMAP_4K */
1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298

static int spufs_mfc_open(struct inode *inode, struct file *file)
{
	struct spufs_inode_info *i = SPUFS_I(inode);
	struct spu_context *ctx = i->i_ctx;

	/* we don't want to deal with DMA into other processes */
	if (ctx->owner != current->mm)
		return -EINVAL;

	if (atomic_read(&inode->i_count) != 1)
		return -EBUSY;

	file->private_data = ctx;
	return nonseekable_open(inode, file);
}

/* interrupt-level mfc callback function. */
void spufs_mfc_callback(struct spu *spu)
{
	struct spu_context *ctx = spu->ctx;

	wake_up_all(&ctx->mfc_wq);

	pr_debug("%s %s\n", __FUNCTION__, spu->name);
	if (ctx->mfc_fasync) {
		u32 free_elements, tagstatus;
		unsigned int mask;

		/* no need for spu_acquire in interrupt context */
		free_elements = ctx->ops->get_mfc_free_elements(ctx);
		tagstatus = ctx->ops->read_mfc_tagstatus(ctx);

		mask = 0;
		if (free_elements & 0xffff)
			mask |= POLLOUT;
		if (tagstatus & ctx->tagwait)
			mask |= POLLIN;

		kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
	}
}

static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
{
	/* See if there is one tag group is complete */
	/* FIXME we need locking around tagwait */
	*status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
	ctx->tagwait &= ~*status;
	if (*status)
		return 1;

	/* enable interrupt waiting for any tag group,
	   may silently fail if interrupts are already enabled */
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
	return 0;
}

static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret = -EINVAL;
	u32 status;

	if (size != 4)
		goto out;

	spu_acquire(ctx);
	if (file->f_flags & O_NONBLOCK) {
		status = ctx->ops->read_mfc_tagstatus(ctx);
		if (!(status & ctx->tagwait))
			ret = -EAGAIN;
		else
			ctx->tagwait &= ~status;
	} else {
		ret = spufs_wait(ctx->mfc_wq,
			   spufs_read_mfc_tagstatus(ctx, &status));
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ret = 4;
	if (copy_to_user(buffer, &status, 4))
		ret = -EFAULT;

out:
	return ret;
}

static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
{
	pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
		 cmd->ea, cmd->size, cmd->tag, cmd->cmd);

	switch (cmd->cmd) {
	case MFC_PUT_CMD:
	case MFC_PUTF_CMD:
	case MFC_PUTB_CMD:
	case MFC_GET_CMD:
	case MFC_GETF_CMD:
	case MFC_GETB_CMD:
		break;
	default:
		pr_debug("invalid DMA opcode %x\n", cmd->cmd);
		return -EIO;
	}

	if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
		pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
				cmd->ea, cmd->lsa);
		return -EIO;
	}

	switch (cmd->size & 0xf) {
	case 1:
		break;
	case 2:
		if (cmd->lsa & 1)
			goto error;
		break;
	case 4:
		if (cmd->lsa & 3)
			goto error;
		break;
	case 8:
		if (cmd->lsa & 7)
			goto error;
		break;
	case 0:
		if (cmd->lsa & 15)
			goto error;
		break;
	error:
	default:
		pr_debug("invalid DMA alignment %x for size %x\n",
			cmd->lsa & 0xf, cmd->size);
		return -EIO;
	}

	if (cmd->size > 16 * 1024) {
		pr_debug("invalid DMA size %x\n", cmd->size);
		return -EIO;
	}

	if (cmd->tag & 0xfff0) {
		/* we reserve the higher tag numbers for kernel use */
		pr_debug("invalid DMA tag\n");
		return -EIO;
	}

	if (cmd->class) {
		/* not supported in this version */
		pr_debug("invalid DMA class\n");
		return -EIO;
	}

	return 0;
}

static int spu_send_mfc_command(struct spu_context *ctx,
				struct mfc_dma_command cmd,
				int *error)
{
	*error = ctx->ops->send_mfc_command(ctx, &cmd);
	if (*error == -EAGAIN) {
		/* wait for any tag group to complete
		   so we have space for the new command */
		ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
		/* try again, because the queue might be
		   empty again */
		*error = ctx->ops->send_mfc_command(ctx, &cmd);
		if (*error == -EAGAIN)
			return 0;
	}
	return 1;
}

static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
			size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	struct mfc_dma_command cmd;
	int ret = -EINVAL;

	if (size != sizeof cmd)
		goto out;

	ret = -EFAULT;
	if (copy_from_user(&cmd, buffer, sizeof cmd))
		goto out;

	ret = spufs_check_valid_dma(&cmd);
	if (ret)
		goto out;

	spu_acquire_runnable(ctx);
	if (file->f_flags & O_NONBLOCK) {
		ret = ctx->ops->send_mfc_command(ctx, &cmd);
	} else {
		int status;
		ret = spufs_wait(ctx->mfc_wq,
				 spu_send_mfc_command(ctx, cmd, &status));
		if (status)
			ret = status;
	}
	spu_release(ctx);

	if (ret)
		goto out;

	ctx->tagwait |= 1 << cmd.tag;

out:
	return ret;
}

static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
{
	struct spu_context *ctx = file->private_data;
	u32 free_elements, tagstatus;
	unsigned int mask;

	spu_acquire(ctx);
	ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
	free_elements = ctx->ops->get_mfc_free_elements(ctx);
	tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
	spu_release(ctx);

	poll_wait(file, &ctx->mfc_wq, wait);

	mask = 0;
	if (free_elements & 0xffff)
		mask |= POLLOUT | POLLWRNORM;
	if (tagstatus & ctx->tagwait)
		mask |= POLLIN | POLLRDNORM;

	pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
		free_elements, tagstatus, ctx->tagwait);

	return mask;
}

1299
static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324
{
	struct spu_context *ctx = file->private_data;
	int ret;

	spu_acquire(ctx);
#if 0
/* this currently hangs */
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
	if (ret)
		goto out;
	ret = spufs_wait(ctx->mfc_wq,
			 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
out:
#else
	ret = 0;
#endif
	spu_release(ctx);

	return ret;
}

static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
			   int datasync)
{
1325
	return spufs_mfc_flush(file, NULL);
1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342
}

static int spufs_mfc_fasync(int fd, struct file *file, int on)
{
	struct spu_context *ctx = file->private_data;

	return fasync_helper(fd, file, on, &ctx->mfc_fasync);
}

static struct file_operations spufs_mfc_fops = {
	.open	 = spufs_mfc_open,
	.read	 = spufs_mfc_read,
	.write	 = spufs_mfc_write,
	.poll	 = spufs_mfc_poll,
	.flush	 = spufs_mfc_flush,
	.fsync	 = spufs_mfc_fsync,
	.fasync	 = spufs_mfc_fasync,
1343
	.mmap	 = spufs_mfc_mmap,
1344 1345
};

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376

static int spufs_recycle_open(struct inode *inode, struct file *file)
{
	file->private_data = SPUFS_I(inode)->i_ctx;
	return nonseekable_open(inode, file);
}

static ssize_t spufs_recycle_write(struct file *file,
		const char __user *buffer, size_t size, loff_t *pos)
{
	struct spu_context *ctx = file->private_data;
	int ret;

	if (!(ctx->flags & SPU_CREATE_ISOLATE))
		return -EINVAL;

	if (size < 1)
		return -EINVAL;

	ret = spu_recycle_isolated(ctx);

	if (ret)
		return ret;
	return size;
}

static struct file_operations spufs_recycle_fops = {
	.open	 = spufs_recycle_open,
	.write	 = spufs_recycle_write,
};

1377 1378 1379
static void spufs_npc_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
1380 1381 1382
	spu_acquire(ctx);
	ctx->ops->npc_write(ctx, val);
	spu_release(ctx);
1383 1384 1385 1386 1387 1388
}

static u64 spufs_npc_get(void *data)
{
	struct spu_context *ctx = data;
	u64 ret;
1389 1390 1391
	spu_acquire(ctx);
	ret = ctx->ops->npc_read(ctx);
	spu_release(ctx);
1392 1393
	return ret;
}
1394 1395
DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
			"0x%llx\n")
1396

1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416
static void spufs_decr_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_decr_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->decr.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1417
			"0x%llx\n")
1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438

static void spufs_decr_status_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->decr_status.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_decr_status_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->decr_status.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1439
			spufs_decr_status_set, "0x%llx\n")
1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460

static void spufs_spu_tag_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->tag_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_spu_tag_mask_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->tag_mask.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_spu_tag_mask_ops, spufs_spu_tag_mask_get,
1461
			spufs_spu_tag_mask_set, "0x%llx\n")
1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482

static void spufs_event_mask_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->event_mask.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_event_mask_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->event_mask.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1483
			spufs_event_mask_set, "0x%llx\n")
1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504

static void spufs_srr0_set(void *data, u64 val)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	spu_acquire_saved(ctx);
	lscsa->srr0.slot[0] = (u32) val;
	spu_release(ctx);
}

static u64 spufs_srr0_get(void *data)
{
	struct spu_context *ctx = data;
	struct spu_lscsa *lscsa = ctx->csa.lscsa;
	u64 ret;
	spu_acquire_saved(ctx);
	ret = lscsa->srr0.slot[0];
	spu_release(ctx);
	return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1505
			"0x%llx\n")
1506

1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520
static u64 spufs_id_get(void *data)
{
	struct spu_context *ctx = data;
	u64 num;

	spu_acquire(ctx);
	if (ctx->state == SPU_STATE_RUNNABLE)
		num = ctx->spu->number;
	else
		num = (unsigned int)-1;
	spu_release(ctx);

	return num;
}
1521
DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1522

1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537
static u64 spufs_object_id_get(void *data)
{
	struct spu_context *ctx = data;
	return ctx->object_id;
}

static void spufs_object_id_set(void *data, u64 id)
{
	struct spu_context *ctx = data;
	ctx->object_id = id;
}

DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
		spufs_object_id_set, "0x%llx\n");

1538 1539
struct tree_descr spufs_dir_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
1540
	{ "regs", &spufs_regs_fops,  0666, },
1541 1542 1543 1544 1545 1546 1547 1548 1549 1550
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
1551
	{ "mss", &spufs_mss_fops, 0666, },
1552
	{ "mfc", &spufs_mfc_fops, 0666, },
1553
	{ "cntl", &spufs_cntl_fops,  0666, },
1554
	{ "npc", &spufs_npc_ops, 0666, },
1555 1556 1557 1558 1559 1560
	{ "fpcr", &spufs_fpcr_fops, 0666, },
	{ "decr", &spufs_decr_ops, 0666, },
	{ "decr_status", &spufs_decr_status_ops, 0666, },
	{ "spu_tag_mask", &spufs_spu_tag_mask_ops, 0666, },
	{ "event_mask", &spufs_event_mask_ops, 0666, },
	{ "srr0", &spufs_srr0_ops, 0666, },
1561
	{ "psmap", &spufs_psmap_fops, 0666, },
1562 1563
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1564 1565
	{},
};
1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585

struct tree_descr spufs_dir_nosched_contents[] = {
	{ "mem",  &spufs_mem_fops,  0666, },
	{ "mbox", &spufs_mbox_fops, 0444, },
	{ "ibox", &spufs_ibox_fops, 0444, },
	{ "wbox", &spufs_wbox_fops, 0222, },
	{ "mbox_stat", &spufs_mbox_stat_fops, 0444, },
	{ "ibox_stat", &spufs_ibox_stat_fops, 0444, },
	{ "wbox_stat", &spufs_wbox_stat_fops, 0444, },
	{ "signal1", &spufs_signal1_fops, 0666, },
	{ "signal2", &spufs_signal2_fops, 0666, },
	{ "signal1_type", &spufs_signal1_type, 0666, },
	{ "signal2_type", &spufs_signal2_type, 0666, },
	{ "mss", &spufs_mss_fops, 0666, },
	{ "mfc", &spufs_mfc_fops, 0666, },
	{ "cntl", &spufs_cntl_fops,  0666, },
	{ "npc", &spufs_npc_ops, 0666, },
	{ "psmap", &spufs_psmap_fops, 0666, },
	{ "phys-id", &spufs_id_ops, 0666, },
	{ "object-id", &spufs_object_id_ops, 0666, },
1586
	{ "recycle", &spufs_recycle_fops, 0222, },
1587 1588
	{},
};