evsel.c 12.3 KB
Newer Older
1 2 3 4 5 6 7 8 9
/*
 * Copyright (C) 2011, Red Hat Inc, Arnaldo Carvalho de Melo <acme@redhat.com>
 *
 * Parts came from builtin-{top,stat,record}.c, see those files for further
 * copyright notes.
 *
 * Released under the GPL v2. (and only v2, not any later version)
 */

10 11
#include <byteswap.h>
#include "asm/bug.h"
12
#include "evsel.h"
13
#include "evlist.h"
14
#include "util.h"
15
#include "cpumap.h"
16
#include "thread_map.h"
17

18
#define FD(e, x, y) (*(int *)xyarray__entry(e->fd, x, y))
19
#define GROUP_FD(group_fd, cpu) (*(int *)xyarray__entry(group_fd, cpu, 0))
20

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
int __perf_evsel__sample_size(u64 sample_type)
{
	u64 mask = sample_type & PERF_SAMPLE_MASK;
	int size = 0;
	int i;

	for (i = 0; i < 64; i++) {
		if (mask & (1ULL << i))
			size++;
	}

	size *= sizeof(u64);

	return size;
}

37 38 39 40 41 42 43 44 45 46
static void hists__init(struct hists *hists)
{
	memset(hists, 0, sizeof(*hists));
	hists->entries_in_array[0] = hists->entries_in_array[1] = RB_ROOT;
	hists->entries_in = &hists->entries_in_array[0];
	hists->entries_collapsed = RB_ROOT;
	hists->entries = RB_ROOT;
	pthread_mutex_init(&hists->lock, NULL);
}

47 48 49 50 51 52
void perf_evsel__init(struct perf_evsel *evsel,
		      struct perf_event_attr *attr, int idx)
{
	evsel->idx	   = idx;
	evsel->attr	   = *attr;
	INIT_LIST_HEAD(&evsel->node);
53
	hists__init(&evsel->hists);
54 55
}

56
struct perf_evsel *perf_evsel__new(struct perf_event_attr *attr, int idx)
57 58 59
{
	struct perf_evsel *evsel = zalloc(sizeof(*evsel));

60 61
	if (evsel != NULL)
		perf_evsel__init(evsel, attr, idx);
62 63 64 65

	return evsel;
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
void perf_evsel__config(struct perf_evsel *evsel, struct perf_record_opts *opts)
{
	struct perf_event_attr *attr = &evsel->attr;
	int track = !evsel->idx; /* only the first counter needs these */

	attr->sample_id_all = opts->sample_id_all_avail ? 1 : 0;
	attr->inherit	    = !opts->no_inherit;
	attr->read_format   = PERF_FORMAT_TOTAL_TIME_ENABLED |
			      PERF_FORMAT_TOTAL_TIME_RUNNING |
			      PERF_FORMAT_ID;

	attr->sample_type  |= PERF_SAMPLE_IP | PERF_SAMPLE_TID;

	/*
	 * We default some events to a 1 default interval. But keep
	 * it a weak assumption overridable by the user.
	 */
	if (!attr->sample_period || (opts->user_freq != UINT_MAX &&
				     opts->user_interval != ULLONG_MAX)) {
		if (opts->freq) {
			attr->sample_type	|= PERF_SAMPLE_PERIOD;
			attr->freq		= 1;
			attr->sample_freq	= opts->freq;
		} else {
			attr->sample_period = opts->default_interval;
		}
	}

	if (opts->no_samples)
		attr->sample_freq = 0;

	if (opts->inherit_stat)
		attr->inherit_stat = 1;

	if (opts->sample_address) {
		attr->sample_type	|= PERF_SAMPLE_ADDR;
		attr->mmap_data = track;
	}

	if (opts->call_graph)
		attr->sample_type	|= PERF_SAMPLE_CALLCHAIN;

	if (opts->system_wide)
		attr->sample_type	|= PERF_SAMPLE_CPU;

	if (opts->sample_id_all_avail &&
	    (opts->sample_time || opts->system_wide ||
	     !opts->no_inherit || opts->cpu_list))
		attr->sample_type	|= PERF_SAMPLE_TIME;

	if (opts->raw_samples) {
		attr->sample_type	|= PERF_SAMPLE_TIME;
		attr->sample_type	|= PERF_SAMPLE_RAW;
		attr->sample_type	|= PERF_SAMPLE_CPU;
	}

	if (opts->no_delay) {
		attr->watermark = 0;
		attr->wakeup_events = 1;
	}

	attr->mmap = track;
	attr->comm = track;

	if (opts->target_pid == -1 && opts->target_tid == -1 && !opts->system_wide) {
		attr->disabled = 1;
		attr->enable_on_exec = 1;
	}
}

136 137
int perf_evsel__alloc_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
138
	int cpu, thread;
139
	evsel->fd = xyarray__new(ncpus, nthreads, sizeof(int));
140 141 142 143 144 145 146 147 148

	if (evsel->fd) {
		for (cpu = 0; cpu < ncpus; cpu++) {
			for (thread = 0; thread < nthreads; thread++) {
				FD(evsel, cpu, thread) = -1;
			}
		}
	}

149 150 151
	return evsel->fd != NULL ? 0 : -ENOMEM;
}

152 153
int perf_evsel__alloc_id(struct perf_evsel *evsel, int ncpus, int nthreads)
{
154 155 156 157 158 159 160 161 162 163 164 165
	evsel->sample_id = xyarray__new(ncpus, nthreads, sizeof(struct perf_sample_id));
	if (evsel->sample_id == NULL)
		return -ENOMEM;

	evsel->id = zalloc(ncpus * nthreads * sizeof(u64));
	if (evsel->id == NULL) {
		xyarray__delete(evsel->sample_id);
		evsel->sample_id = NULL;
		return -ENOMEM;
	}

	return 0;
166 167
}

168 169 170 171 172 173 174
int perf_evsel__alloc_counts(struct perf_evsel *evsel, int ncpus)
{
	evsel->counts = zalloc((sizeof(*evsel->counts) +
				(ncpus * sizeof(struct perf_counts_values))));
	return evsel->counts != NULL ? 0 : -ENOMEM;
}

175 176 177 178 179 180
void perf_evsel__free_fd(struct perf_evsel *evsel)
{
	xyarray__delete(evsel->fd);
	evsel->fd = NULL;
}

181 182
void perf_evsel__free_id(struct perf_evsel *evsel)
{
183 184 185
	xyarray__delete(evsel->sample_id);
	evsel->sample_id = NULL;
	free(evsel->id);
186 187 188
	evsel->id = NULL;
}

189 190 191 192 193 194 195 196 197 198 199
void perf_evsel__close_fd(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	int cpu, thread;

	for (cpu = 0; cpu < ncpus; cpu++)
		for (thread = 0; thread < nthreads; ++thread) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
}

200
void perf_evsel__exit(struct perf_evsel *evsel)
201 202 203
{
	assert(list_empty(&evsel->node));
	xyarray__delete(evsel->fd);
204 205
	xyarray__delete(evsel->sample_id);
	free(evsel->id);
206 207 208 209 210
}

void perf_evsel__delete(struct perf_evsel *evsel)
{
	perf_evsel__exit(evsel);
211
	close_cgroup(evsel->cgrp);
212
	free(evsel->name);
213 214
	free(evsel);
}
215 216 217 218 219 220 221 222 223 224

int __perf_evsel__read_on_cpu(struct perf_evsel *evsel,
			      int cpu, int thread, bool scale)
{
	struct perf_counts_values count;
	size_t nv = scale ? 3 : 1;

	if (FD(evsel, cpu, thread) < 0)
		return -EINVAL;

225 226 227
	if (evsel->counts == NULL && perf_evsel__alloc_counts(evsel, cpu + 1) < 0)
		return -ENOMEM;

228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
	if (readn(FD(evsel, cpu, thread), &count, nv * sizeof(u64)) < 0)
		return -errno;

	if (scale) {
		if (count.run == 0)
			count.val = 0;
		else if (count.run < count.ena)
			count.val = (u64)((double)count.val * count.ena / count.run + 0.5);
	} else
		count.ena = count.run = 0;

	evsel->counts->cpu[cpu] = count;
	return 0;
}

int __perf_evsel__read(struct perf_evsel *evsel,
		       int ncpus, int nthreads, bool scale)
{
	size_t nv = scale ? 3 : 1;
	int cpu, thread;
	struct perf_counts_values *aggr = &evsel->counts->aggr, count;

250
	aggr->val = aggr->ena = aggr->run = 0;
251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285

	for (cpu = 0; cpu < ncpus; cpu++) {
		for (thread = 0; thread < nthreads; thread++) {
			if (FD(evsel, cpu, thread) < 0)
				continue;

			if (readn(FD(evsel, cpu, thread),
				  &count, nv * sizeof(u64)) < 0)
				return -errno;

			aggr->val += count.val;
			if (scale) {
				aggr->ena += count.ena;
				aggr->run += count.run;
			}
		}
	}

	evsel->counts->scaled = 0;
	if (scale) {
		if (aggr->run == 0) {
			evsel->counts->scaled = -1;
			aggr->val = 0;
			return 0;
		}

		if (aggr->run < aggr->ena) {
			evsel->counts->scaled = 1;
			aggr->val = (u64)((double)aggr->val * aggr->ena / aggr->run + 0.5);
		}
	} else
		aggr->ena = aggr->run = 0;

	return 0;
}
286

287
static int __perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
288 289
			      struct thread_map *threads, bool group,
			      struct xyarray *group_fds)
290
{
291
	int cpu, thread;
292
	unsigned long flags = 0;
293
	int pid = -1, err;
294

295 296
	if (evsel->fd == NULL &&
	    perf_evsel__alloc_fd(evsel, cpus->nr, threads->nr) < 0)
297
		return -ENOMEM;
298

299 300 301 302 303
	if (evsel->cgrp) {
		flags = PERF_FLAG_PID_CGROUP;
		pid = evsel->cgrp->fd;
	}

304
	for (cpu = 0; cpu < cpus->nr; cpu++) {
305
		int group_fd = group_fds ? GROUP_FD(group_fds, cpu) : -1;
306

307
		for (thread = 0; thread < threads->nr; thread++) {
308 309 310 311

			if (!evsel->cgrp)
				pid = threads->map[thread];

312
			FD(evsel, cpu, thread) = sys_perf_event_open(&evsel->attr,
313
								     pid,
314
								     cpus->map[cpu],
315
								     group_fd, flags);
316 317
			if (FD(evsel, cpu, thread) < 0) {
				err = -errno;
318
				goto out_close;
319
			}
320 321 322

			if (group && group_fd == -1)
				group_fd = FD(evsel, cpu, thread);
323
		}
324 325 326 327 328
	}

	return 0;

out_close:
329 330 331 332 333 334 335
	do {
		while (--thread >= 0) {
			close(FD(evsel, cpu, thread));
			FD(evsel, cpu, thread) = -1;
		}
		thread = threads->nr;
	} while (--cpu >= 0);
336 337 338 339 340 341 342 343 344 345 346
	return err;
}

void perf_evsel__close(struct perf_evsel *evsel, int ncpus, int nthreads)
{
	if (evsel->fd == NULL)
		return;

	perf_evsel__close_fd(evsel, ncpus, nthreads);
	perf_evsel__free_fd(evsel);
	evsel->fd = NULL;
347 348
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364
static struct {
	struct cpu_map map;
	int cpus[1];
} empty_cpu_map = {
	.map.nr	= 1,
	.cpus	= { -1, },
};

static struct {
	struct thread_map map;
	int threads[1];
} empty_thread_map = {
	.map.nr	 = 1,
	.threads = { -1, },
};

365
int perf_evsel__open(struct perf_evsel *evsel, struct cpu_map *cpus,
366 367
		     struct thread_map *threads, bool group,
		     struct xyarray *group_fd)
368
{
369 370 371
	if (cpus == NULL) {
		/* Work around old compiler warnings about strict aliasing */
		cpus = &empty_cpu_map.map;
372 373
	}

374 375
	if (threads == NULL)
		threads = &empty_thread_map.map;
376

377
	return __perf_evsel__open(evsel, cpus, threads, group, group_fd);
378 379
}

380
int perf_evsel__open_per_cpu(struct perf_evsel *evsel,
381 382
			     struct cpu_map *cpus, bool group,
			     struct xyarray *group_fd)
383
{
384 385
	return __perf_evsel__open(evsel, cpus, &empty_thread_map.map, group,
				  group_fd);
386
}
387

388
int perf_evsel__open_per_thread(struct perf_evsel *evsel,
389 390
				struct thread_map *threads, bool group,
				struct xyarray *group_fd)
391
{
392 393
	return __perf_evsel__open(evsel, &empty_cpu_map.map, threads, group,
				  group_fd);
394
}
395

396 397
static int perf_event__parse_id_sample(const union perf_event *event, u64 type,
				       struct perf_sample *sample)
398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433
{
	const u64 *array = event->sample.array;

	array += ((event->header.size -
		   sizeof(event->header)) / sizeof(u64)) - 1;

	if (type & PERF_SAMPLE_CPU) {
		u32 *p = (u32 *)array;
		sample->cpu = *p;
		array--;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		sample->stream_id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_ID) {
		sample->id = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TIME) {
		sample->time = *array;
		array--;
	}

	if (type & PERF_SAMPLE_TID) {
		u32 *p = (u32 *)array;
		sample->pid = p[0];
		sample->tid = p[1];
	}

	return 0;
}

434 435 436 437 438 439 440 441 442 443 444
static bool sample_overlap(const union perf_event *event,
			   const void *offset, u64 size)
{
	const void *base = event;

	if (offset + size > base + event->header.size)
		return true;

	return false;
}

445
int perf_event__parse_sample(const union perf_event *event, u64 type,
446
			     int sample_size, bool sample_id_all,
447
			     struct perf_sample *data, bool swapped)
448 449 450
{
	const u64 *array;

451 452 453 454 455 456 457 458 459 460
	/*
	 * used for cross-endian analysis. See git commit 65014ab3
	 * for why this goofiness is needed.
	 */
	union {
		u64 val64;
		u32 val32[2];
	} u;


461 462 463 464 465 466
	data->cpu = data->pid = data->tid = -1;
	data->stream_id = data->id = data->time = -1ULL;

	if (event->header.type != PERF_RECORD_SAMPLE) {
		if (!sample_id_all)
			return 0;
467
		return perf_event__parse_id_sample(event, type, data);
468 469 470 471
	}

	array = event->sample.array;

472 473 474
	if (sample_size + sizeof(event->header) > event->header.size)
		return -EFAULT;

475 476 477 478 479 480
	if (type & PERF_SAMPLE_IP) {
		data->ip = event->ip.ip;
		array++;
	}

	if (type & PERF_SAMPLE_TID) {
481 482 483 484 485 486 487 488 489 490
		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}

		data->pid = u.val32[0];
		data->tid = u.val32[1];
491 492 493 494 495 496 497 498
		array++;
	}

	if (type & PERF_SAMPLE_TIME) {
		data->time = *array;
		array++;
	}

499
	data->addr = 0;
500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
	if (type & PERF_SAMPLE_ADDR) {
		data->addr = *array;
		array++;
	}

	data->id = -1ULL;
	if (type & PERF_SAMPLE_ID) {
		data->id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_STREAM_ID) {
		data->stream_id = *array;
		array++;
	}

	if (type & PERF_SAMPLE_CPU) {
517 518 519 520 521 522 523 524 525

		u.val64 = *array;
		if (swapped) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
		}

		data->cpu = u.val32[0];
526 527 528 529 530 531 532 533 534 535 536 537 538 539
		array++;
	}

	if (type & PERF_SAMPLE_PERIOD) {
		data->period = *array;
		array++;
	}

	if (type & PERF_SAMPLE_READ) {
		fprintf(stderr, "PERF_SAMPLE_READ is unsuported for now\n");
		return -1;
	}

	if (type & PERF_SAMPLE_CALLCHAIN) {
540 541 542
		if (sample_overlap(event, array, sizeof(data->callchain->nr)))
			return -EFAULT;

543
		data->callchain = (struct ip_callchain *)array;
544 545 546 547

		if (sample_overlap(event, array, data->callchain->nr))
			return -EFAULT;

548 549 550 551
		array += 1 + data->callchain->nr;
	}

	if (type & PERF_SAMPLE_RAW) {
552 553
		const u64 *pdata;

554 555 556 557 558 559 560 561
		u.val64 = *array;
		if (WARN_ONCE(swapped,
			      "Endianness of raw data not corrected!\n")) {
			/* undo swap of u64, then swap on individual u32s */
			u.val64 = bswap_64(u.val64);
			u.val32[0] = bswap_32(u.val32[0]);
			u.val32[1] = bswap_32(u.val32[1]);
		}
562 563 564 565

		if (sample_overlap(event, array, sizeof(u32)))
			return -EFAULT;

566
		data->raw_size = u.val32[0];
567
		pdata = (void *) array + sizeof(u32);
568

569
		if (sample_overlap(event, pdata, data->raw_size))
570 571
			return -EFAULT;

572
		data->raw_data = (void *) pdata;
573 574 575 576
	}

	return 0;
}