core.c 41 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0-only
2
#include <linux/perf_event.h>
3
#include <linux/jump_label.h>
4
#include <linux/export.h>
5 6 7
#include <linux/types.h>
#include <linux/init.h>
#include <linux/slab.h>
8
#include <linux/delay.h>
9
#include <linux/jiffies.h>
10
#include <asm/apicdef.h>
11
#include <asm/apic.h>
12
#include <asm/nmi.h>
13

14
#include "../perf_event.h"
15

16 17
static DEFINE_PER_CPU(unsigned long, perf_nmi_tstamp);
static unsigned long perf_nmi_window;
18

19 20 21 22
/* AMD Event 0xFFF: Merge.  Used with Large Increment per Cycle events */
#define AMD_MERGE_EVENT ((0xFULL << 32) | 0xFFULL)
#define AMD_MERGE_EVENT_ENABLE (AMD_MERGE_EVENT | ARCH_PERFMON_EVENTSEL_ENABLE)

23 24 25
/* PMC Enable and Overflow bits for PerfCntrGlobal* registers */
static u64 amd_pmu_global_cntr_mask __read_mostly;

26
static __initconst const u64 amd_hw_cache_event_ids
27 28 29 30 31 32 33
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] =
{
 [ C(L1D) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
34
		[ C(RESULT_MISS)   ] = 0x0141, /* Data Cache Misses          */
35 36
	},
	[ C(OP_WRITE) ] = {
37
		[ C(RESULT_ACCESS) ] = 0,
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x0267, /* Data Prefetcher :attempts  */
		[ C(RESULT_MISS)   ] = 0x0167, /* Data Prefetcher :cancelled */
	},
 },
 [ C(L1I ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction cache fetches  */
		[ C(RESULT_MISS)   ] = 0x0081, /* Instruction cache misses   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0x014B, /* Prefetch Instructions :Load */
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(LL  ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x037D, /* Requests to L2 Cache :IC+DC */
		[ C(RESULT_MISS)   ] = 0x037E, /* L2 Cache Misses : IC+DC     */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0x017F, /* L2 Fill/Writeback           */
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(DTLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0040, /* Data Cache Accesses        */
76
		[ C(RESULT_MISS)   ] = 0x0746, /* L1_DTLB_AND_L2_DLTB_MISS.ALL */
77 78 79 80 81 82 83 84 85 86 87 88 89
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = 0,
		[ C(RESULT_MISS)   ] = 0,
	},
 },
 [ C(ITLB) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x0080, /* Instruction fecthes        */
90
		[ C(RESULT_MISS)   ] = 0x0385, /* L1_ITLB_AND_L2_ITLB_MISS.ALL */
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
 [ C(BPU ) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0x00c2, /* Retired Branch Instr.      */
		[ C(RESULT_MISS)   ] = 0x00c3, /* Retired Mispredicted BI    */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
115 116 117 118 119 120 121 122 123 124 125 126 127 128
 [ C(NODE) ] = {
	[ C(OP_READ) ] = {
		[ C(RESULT_ACCESS) ] = 0xb8e9, /* CPU Request to Memory, l+r */
		[ C(RESULT_MISS)   ] = 0x98e9, /* CPU Request to Memory, r   */
	},
	[ C(OP_WRITE) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
	[ C(OP_PREFETCH) ] = {
		[ C(RESULT_ACCESS) ] = -1,
		[ C(RESULT_MISS)   ] = -1,
	},
 },
129 130
};

131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
static __initconst const u64 amd_hw_cache_event_ids_f17h
				[PERF_COUNT_HW_CACHE_MAX]
				[PERF_COUNT_HW_CACHE_OP_MAX]
				[PERF_COUNT_HW_CACHE_RESULT_MAX] = {
[C(L1D)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0040, /* Data Cache Accesses */
		[C(RESULT_MISS)]   = 0xc860, /* L2$ access from DC Miss */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0xff5a, /* h/w prefetch DC Fills */
		[C(RESULT_MISS)]   = 0,
	},
},
[C(L1I)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0080, /* Instruction cache fetches  */
		[C(RESULT_MISS)]   = 0x0081, /* Instruction cache misses   */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(LL)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(DTLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0xff45, /* All L2 DTLB accesses */
		[C(RESULT_MISS)]   = 0xf045, /* L2 DTLB misses (PT walks) */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
},
[C(ITLB)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x0084, /* L1 ITLB misses, L2 ITLB hits */
		[C(RESULT_MISS)]   = 0xff85, /* L1 ITLB misses, L2 misses */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
[C(BPU)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0x00c2, /* Retired Branch Instr.      */
		[C(RESULT_MISS)]   = 0x00c3, /* Retired Mispredicted BI    */
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
[C(NODE)] = {
	[C(OP_READ)] = {
		[C(RESULT_ACCESS)] = 0,
		[C(RESULT_MISS)]   = 0,
	},
	[C(OP_WRITE)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
	[C(OP_PREFETCH)] = {
		[C(RESULT_ACCESS)] = -1,
		[C(RESULT_MISS)]   = -1,
	},
},
};

235
/*
236
 * AMD Performance Monitor K7 and later, up to and including Family 16h:
237
 */
238
static const u64 amd_perfmon_event_map[PERF_COUNT_HW_MAX] =
239
{
240 241 242 243 244 245 246 247 248 249 250 251 252
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0x077d,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x077e,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00d0, /* "Decoder empty" event */
	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x00d1, /* "Dispatch stalls" event */
};

/*
 * AMD Performance Monitor Family 17h and later:
 */
253
static const u64 amd_zen1_perfmon_event_map[PERF_COUNT_HW_MAX] =
254 255 256 257
{
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
258
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
259 260 261 262
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x0287,
	[PERF_COUNT_HW_STALLED_CYCLES_BACKEND]	= 0x0187,
263 264
};

265 266 267 268 269 270 271 272 273 274 275
static const u64 amd_zen2_perfmon_event_map[PERF_COUNT_HW_MAX] =
{
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00a9,
};

276 277 278 279 280 281 282 283 284 285 286 287
static const u64 amd_zen4_perfmon_event_map[PERF_COUNT_HW_MAX] =
{
	[PERF_COUNT_HW_CPU_CYCLES]		= 0x0076,
	[PERF_COUNT_HW_INSTRUCTIONS]		= 0x00c0,
	[PERF_COUNT_HW_CACHE_REFERENCES]	= 0xff60,
	[PERF_COUNT_HW_CACHE_MISSES]		= 0x0964,
	[PERF_COUNT_HW_BRANCH_INSTRUCTIONS]	= 0x00c2,
	[PERF_COUNT_HW_BRANCH_MISSES]		= 0x00c3,
	[PERF_COUNT_HW_STALLED_CYCLES_FRONTEND]	= 0x00a9,
	[PERF_COUNT_HW_REF_CPU_CYCLES]		= 0x100000120,
};

288 289
static u64 amd_pmu_event_map(int hw_event)
{
290 291 292
	if (cpu_feature_enabled(X86_FEATURE_ZEN4) || boot_cpu_data.x86 >= 0x1a)
		return amd_zen4_perfmon_event_map[hw_event];

293 294 295 296 297
	if (cpu_feature_enabled(X86_FEATURE_ZEN2) || boot_cpu_data.x86 >= 0x19)
		return amd_zen2_perfmon_event_map[hw_event];

	if (cpu_feature_enabled(X86_FEATURE_ZEN1))
		return amd_zen1_perfmon_event_map[hw_event];
298

299 300 301
	return amd_perfmon_event_map[hw_event];
}

302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
/*
 * Previously calculated offsets
 */
static unsigned int event_offsets[X86_PMC_IDX_MAX] __read_mostly;
static unsigned int count_offsets[X86_PMC_IDX_MAX] __read_mostly;

/*
 * Legacy CPUs:
 *   4 counters starting at 0xc0010000 each offset by 1
 *
 * CPUs with core performance counter extensions:
 *   6 counters starting at 0xc0010200 each offset by 2
 */
static inline int amd_pmu_addr_offset(int index, bool eventsel)
{
317
	int offset;
318 319 320 321 322 323 324 325 326 327 328 329

	if (!index)
		return index;

	if (eventsel)
		offset = event_offsets[index];
	else
		offset = count_offsets[index];

	if (offset)
		return offset;

330
	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
331 332 333 334 335 336 337 338 339 340 341 342
		offset = index;
	else
		offset = index << 1;

	if (eventsel)
		event_offsets[index] = offset;
	else
		count_offsets[index] = offset;

	return offset;
}

343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
/*
 * AMD64 events are detected based on their event codes.
 */
static inline unsigned int amd_get_event_code(struct hw_perf_event *hwc)
{
	return ((hwc->config >> 24) & 0x0f00) | (hwc->config & 0x00ff);
}

static inline bool amd_is_pair_event_code(struct hw_perf_event *hwc)
{
	if (!(x86_pmu.flags & PMU_FL_PAIR))
		return false;

	switch (amd_get_event_code(hwc)) {
	case 0x003:	return true;	/* Retired SSE/AVX FLOPs */
	default:	return false;
	}
}

362 363
DEFINE_STATIC_CALL_RET0(amd_pmu_branch_hw_config, *x86_pmu.hw_config);

364 365
static int amd_core_hw_config(struct perf_event *event)
{
366 367 368 369 370 371 372 373 374
	if (event->attr.exclude_host && event->attr.exclude_guest)
		/*
		 * When HO == GO == 1 the hardware treats that as GO == HO == 0
		 * and will count in both modes. We don't want to count in that
		 * case so we emulate no-counting by setting US = OS = 0.
		 */
		event->hw.config &= ~(ARCH_PERFMON_EVENTSEL_USR |
				      ARCH_PERFMON_EVENTSEL_OS);
	else if (event->attr.exclude_host)
375
		event->hw.config |= AMD64_EVENTSEL_GUESTONLY;
376
	else if (event->attr.exclude_guest)
377
		event->hw.config |= AMD64_EVENTSEL_HOSTONLY;
378

379 380 381
	if ((x86_pmu.flags & PMU_FL_PAIR) && amd_is_pair_event_code(&event->hw))
		event->hw.flags |= PERF_X86_EVENT_PAIR;

382
	if (has_branch_stack(event))
383
		return static_call(amd_pmu_branch_hw_config)(event);
384

385
	return 0;
386
}
387

388 389 390 391 392
static inline int amd_is_nb_event(struct hw_perf_event *hwc)
{
	return (hwc->config & 0xe0) == 0xe0;
}

393 394 395 396 397 398 399
static inline int amd_has_nb(struct cpu_hw_events *cpuc)
{
	struct amd_nb *nb = cpuc->amd_nb;

	return nb && nb->nb_id != -1;
}

400 401 402 403 404 405
static int amd_pmu_hw_config(struct perf_event *event)
{
	int ret;

	/* pass precise event sampling to ibs: */
	if (event->attr.precise_ip && get_ibs_caps())
406
		return forward_event_to_ibs(event);
407

408
	if (has_branch_stack(event) && !x86_pmu.lbr_nr)
409 410 411 412 413 414 415 416 417 418 419 420
		return -EOPNOTSUPP;

	ret = x86_pmu_hw_config(event);
	if (ret)
		return ret;

	if (event->attr.type == PERF_TYPE_RAW)
		event->hw.config |= event->attr.config & AMD64_RAW_EVENT_MASK;

	return amd_core_hw_config(event);
}

421 422
static void __amd_put_nb_event_constraints(struct cpu_hw_events *cpuc,
					   struct perf_event *event)
423 424 425 426 427 428 429 430 431 432 433 434
{
	struct amd_nb *nb = cpuc->amd_nb;
	int i;

	/*
	 * need to scan whole list because event may not have
	 * been assigned during scheduling
	 *
	 * no race condition possible because event can only
	 * be removed on one CPU at a time AND PMU is disabled
	 * when we come here
	 */
435
	for (i = 0; i < x86_pmu.num_counters; i++) {
436
		if (cmpxchg(nb->owners + i, event, NULL) == event)
437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472
			break;
	}
}

 /*
  * AMD64 NorthBridge events need special treatment because
  * counter access needs to be synchronized across all cores
  * of a package. Refer to BKDG section 3.12
  *
  * NB events are events measuring L3 cache, Hypertransport
  * traffic. They are identified by an event code >= 0xe00.
  * They measure events on the NorthBride which is shared
  * by all cores on a package. NB events are counted on a
  * shared set of counters. When a NB event is programmed
  * in a counter, the data actually comes from a shared
  * counter. Thus, access to those counters needs to be
  * synchronized.
  *
  * We implement the synchronization such that no two cores
  * can be measuring NB events using the same counters. Thus,
  * we maintain a per-NB allocation table. The available slot
  * is propagated using the event_constraint structure.
  *
  * We provide only one choice for each NB event based on
  * the fact that only NB events have restrictions. Consequently,
  * if a counter is available, there is a guarantee the NB event
  * will be assigned to it. If no slot is available, an empty
  * constraint is returned and scheduling will eventually fail
  * for this event.
  *
  * Note that all cores attached the same NB compete for the same
  * counters to host NB events, this is why we use atomic ops. Some
  * multi-chip CPUs may have more than one NB.
  *
  * Given that resources are allocated (cmpxchg), they must be
  * eventually freed for others to use. This is accomplished by
473
  * calling __amd_put_nb_event_constraints()
474 475 476 477
  *
  * Non NB events are not impacted by this restriction.
  */
static struct event_constraint *
478 479
__amd_get_nb_event_constraints(struct cpu_hw_events *cpuc, struct perf_event *event,
			       struct event_constraint *c)
480 481 482
{
	struct hw_perf_event *hwc = &event->hw;
	struct amd_nb *nb = cpuc->amd_nb;
483 484
	struct perf_event *old;
	int idx, new = -1;
485

486 487 488 489 490 491
	if (!c)
		c = &unconstrained;

	if (cpuc->is_fake)
		return c;

492 493 494 495 496 497 498 499 500 501
	/*
	 * detect if already present, if so reuse
	 *
	 * cannot merge with actual allocation
	 * because of possible holes
	 *
	 * event can already be present yet not assigned (in hwc->idx)
	 * because of successive calls to x86_schedule_events() from
	 * hw_perf_group_sched_in() without hw_perf_enable()
	 */
502
	for_each_set_bit(idx, c->idxmsk, x86_pmu.num_counters) {
503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
		if (new == -1 || hwc->idx == idx)
			/* assign free slot, prefer hwc->idx */
			old = cmpxchg(nb->owners + idx, NULL, event);
		else if (nb->owners[idx] == event)
			/* event already present */
			old = event;
		else
			continue;

		if (old && old != event)
			continue;

		/* reassign to this slot */
		if (new != -1)
			cmpxchg(nb->owners + new, event, NULL);
		new = idx;
519 520

		/* already present, reuse */
521
		if (old == event)
522
			break;
523 524 525 526 527 528
	}

	if (new == -1)
		return &emptyconstraint;

	return &nb->event_constraints[new];
529 530
}

531
static struct amd_nb *amd_alloc_nb(int cpu)
532 533 534 535
{
	struct amd_nb *nb;
	int i;

536
	nb = kzalloc_node(sizeof(struct amd_nb), GFP_KERNEL, cpu_to_node(cpu));
537 538 539
	if (!nb)
		return NULL;

540
	nb->nb_id = -1;
541 542 543 544

	/*
	 * initialize all possible NB constraints
	 */
545
	for (i = 0; i < x86_pmu.num_counters; i++) {
546
		__set_bit(i, nb->event_constraints[i].idxmsk);
547 548 549 550 551
		nb->event_constraints[i].weight = 1;
	}
	return nb;
}

552 553 554
typedef void (amd_pmu_branch_reset_t)(void);
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_reset, amd_pmu_branch_reset_t);

555 556
static void amd_pmu_cpu_reset(int cpu)
{
557 558 559
	if (x86_pmu.lbr_nr)
		static_call(amd_pmu_branch_reset)();

560 561 562 563 564 565
	if (x86_pmu.version < 2)
		return;

	/* Clear enable bits i.e. PerfCntrGlobalCtl.PerfCntrEn */
	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, 0);

566 567 568 569 570 571
	/*
	 * Clear freeze and overflow bits i.e. PerfCntrGLobalStatus.LbrFreeze
	 * and PerfCntrGLobalStatus.PerfCntrOvfl
	 */
	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
	       GLOBAL_STATUS_LBRS_FROZEN | amd_pmu_global_cntr_mask);
572 573
}

574 575 576 577
static int amd_pmu_cpu_prepare(int cpu)
{
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);

578 579 580 581 582
	cpuc->lbr_sel = kzalloc_node(sizeof(struct er_account), GFP_KERNEL,
				     cpu_to_node(cpu));
	if (!cpuc->lbr_sel)
		return -ENOMEM;

583 584
	WARN_ON_ONCE(cpuc->amd_nb);

585
	if (!x86_pmu.amd_nb_constraints)
586
		return 0;
587

588
	cpuc->amd_nb = amd_alloc_nb(cpu);
589 590
	if (cpuc->amd_nb)
		return 0;
591

592 593 594 595
	kfree(cpuc->lbr_sel);
	cpuc->lbr_sel = NULL;

	return -ENOMEM;
596 597 598
}

static void amd_pmu_cpu_starting(int cpu)
599
{
600
	struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
601
	void **onln = &cpuc->kfree_on_online[X86_PERF_KFREE_SHARED];
602
	struct amd_nb *nb;
603 604
	int i, nb_id;

605
	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
606
	amd_pmu_cpu_reset(cpu);
607

608
	if (!x86_pmu.amd_nb_constraints)
609 610
		return;

611
	nb_id = topology_amd_node_id(cpu);
612
	WARN_ON_ONCE(nb_id == BAD_APICID);
613 614

	for_each_online_cpu(i) {
615 616
		nb = per_cpu(cpu_hw_events, i).amd_nb;
		if (WARN_ON_ONCE(!nb))
617 618
			continue;

619
		if (nb->nb_id == nb_id) {
620
			*onln = cpuc->amd_nb;
621 622 623
			cpuc->amd_nb = nb;
			break;
		}
624
	}
625 626 627

	cpuc->amd_nb->nb_id = nb_id;
	cpuc->amd_nb->refcnt++;
628 629
}

630
static void amd_pmu_cpu_dead(int cpu)
631
{
632 633 634 635
	struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);

	kfree(cpuhw->lbr_sel);
	cpuhw->lbr_sel = NULL;
636

637
	if (!x86_pmu.amd_nb_constraints)
638 639
		return;

640
	if (cpuhw->amd_nb) {
641 642 643 644
		struct amd_nb *nb = cpuhw->amd_nb;

		if (nb->nb_id == -1 || --nb->refcnt == 0)
			kfree(nb);
645

646 647
		cpuhw->amd_nb = NULL;
	}
648 649
}

650
static __always_inline void amd_pmu_set_global_ctl(u64 ctl)
651 652 653 654
{
	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_CTL, ctl);
}

655 656 657 658 659 660 661
static inline u64 amd_pmu_get_global_status(void)
{
	u64 status;

	/* PerfCntrGlobalStatus is read-only */
	rdmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, status);

662
	return status;
663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691
}

static inline void amd_pmu_ack_global_status(u64 status)
{
	/*
	 * PerfCntrGlobalStatus is read-only but an overflow acknowledgment
	 * mechanism exists; writing 1 to a bit in PerfCntrGlobalStatusClr
	 * clears the same bit in PerfCntrGlobalStatus
	 */

	wrmsrl(MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, status);
}

static bool amd_pmu_test_overflow_topbit(int idx)
{
	u64 counter;

	rdmsrl(x86_pmu_event_addr(idx), counter);

	return !(counter & BIT_ULL(x86_pmu.cntval_bits - 1));
}

static bool amd_pmu_test_overflow_status(int idx)
{
	return amd_pmu_get_global_status() & BIT_ULL(idx);
}

DEFINE_STATIC_CALL(amd_pmu_test_overflow, amd_pmu_test_overflow_topbit);

692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
/*
 * When a PMC counter overflows, an NMI is used to process the event and
 * reset the counter. NMI latency can result in the counter being updated
 * before the NMI can run, which can result in what appear to be spurious
 * NMIs. This function is intended to wait for the NMI to run and reset
 * the counter to avoid possible unhandled NMI messages.
 */
#define OVERFLOW_WAIT_COUNT	50

static void amd_pmu_wait_on_overflow(int idx)
{
	unsigned int i;

	/*
	 * Wait for the counter to be reset if it has overflowed. This loop
	 * should exit very, very quickly, but just in case, don't wait
	 * forever...
	 */
	for (i = 0; i < OVERFLOW_WAIT_COUNT; i++) {
711
		if (!static_call(amd_pmu_test_overflow)(idx))
712 713 714 715 716 717 718
			break;

		/* Might be in IRQ context, so can't sleep */
		udelay(1);
	}
}

719
static void amd_pmu_check_overflow(void)
720 721 722 723 724 725 726 727 728 729 730 731 732 733 734
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int idx;

	/*
	 * This shouldn't be called from NMI context, but add a safeguard here
	 * to return, since if we're in NMI context we can't wait for an NMI
	 * to reset an overflowed counter value.
	 */
	if (in_nmi())
		return;

	/*
	 * Check each counter for overflow and wait for it to be reset by the
	 * NMI if it has overflowed. This relies on the fact that all active
735
	 * counters are always enabled when this function is called and
736 737 738 739 740 741 742 743 744 745
	 * ARCH_PERFMON_EVENTSEL_INT is always set.
	 */
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		amd_pmu_wait_on_overflow(idx);
	}
}

746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766
static void amd_pmu_enable_event(struct perf_event *event)
{
	x86_pmu_enable_event(event);
}

static void amd_pmu_enable_all(int added)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	int idx;

	amd_brs_enable_all();

	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		/* only activate events which are marked as active */
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		amd_pmu_enable_event(cpuc->events[idx]);
	}
}

767 768 769 770 771 772 773 774 775 776 777 778 779 780 781
static void amd_pmu_v2_enable_event(struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	/*
	 * Testing cpu_hw_events.enabled should be skipped in this case unlike
	 * in x86_pmu_enable_event().
	 *
	 * Since cpu_hw_events.enabled is set only after returning from
	 * x86_pmu_start(), the PMCs must be programmed and kept ready.
	 * Counting starts only after x86_pmu_enable_all() is called.
	 */
	__x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
}

782
static __always_inline void amd_pmu_core_enable_all(void)
783 784 785 786
{
	amd_pmu_set_global_ctl(amd_pmu_global_cntr_mask);
}

787 788 789 790 791 792
static void amd_pmu_v2_enable_all(int added)
{
	amd_pmu_lbr_enable_all();
	amd_pmu_core_enable_all();
}

793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809
static void amd_pmu_disable_event(struct perf_event *event)
{
	x86_pmu_disable_event(event);

	/*
	 * This can be called from NMI context (via x86_pmu_stop). The counter
	 * may have overflowed, but either way, we'll never see it get reset
	 * by the NMI if we're already in the NMI. And the NMI latency support
	 * below will take care of any pending NMI that might have been
	 * generated by the overflow.
	 */
	if (in_nmi())
		return;

	amd_pmu_wait_on_overflow(event->hw.idx);
}

810 811 812 813 814 815 816
static void amd_pmu_disable_all(void)
{
	amd_brs_disable_all();
	x86_pmu_disable_all();
	amd_pmu_check_overflow();
}

817
static __always_inline void amd_pmu_core_disable_all(void)
818 819
{
	amd_pmu_set_global_ctl(0);
820 821 822 823 824 825
}

static void amd_pmu_v2_disable_all(void)
{
	amd_pmu_core_disable_all();
	amd_pmu_lbr_disable_all();
826 827 828
	amd_pmu_check_overflow();
}

829 830
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_add, *x86_pmu.add);

831 832 833
static void amd_pmu_add_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
834
		static_call(amd_pmu_branch_add)(event);
835 836
}

837 838
DEFINE_STATIC_CALL_NULL(amd_pmu_branch_del, *x86_pmu.del);

839 840 841
static void amd_pmu_del_event(struct perf_event *event)
{
	if (needs_branch_stack(event))
842
		static_call(amd_pmu_branch_del)(event);
843 844
}

845 846 847 848 849 850 851 852 853 854 855
/*
 * Because of NMI latency, if multiple PMC counters are active or other sources
 * of NMIs are received, the perf NMI handler can handle one or more overflowed
 * PMC counters outside of the NMI associated with the PMC overflow. If the NMI
 * doesn't arrive at the LAPIC in time to become a pending NMI, then the kernel
 * back-to-back NMI support won't be active. This PMC handler needs to take into
 * account that this can occur, otherwise this could result in unknown NMI
 * messages being issued. Examples of this is PMC overflow while in the NMI
 * handler when multiple PMCs are active or PMC overflow while handling some
 * other source of an NMI.
 *
856 857 858 859 860 861
 * Attempt to mitigate this by creating an NMI window in which un-handled NMIs
 * received during this window will be claimed. This prevents extending the
 * window past when it is possible that latent NMIs should be received. The
 * per-CPU perf_nmi_tstamp will be set to the window end time whenever perf has
 * handled a counter. When an un-handled NMI is received, it will be claimed
 * only if arriving within that window.
862
 */
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
static inline int amd_pmu_adjust_nmi_window(int handled)
{
	/*
	 * If a counter was handled, record a timestamp such that un-handled
	 * NMIs will be claimed if arriving within that window.
	 */
	if (handled) {
		this_cpu_write(perf_nmi_tstamp, jiffies + perf_nmi_window);

		return handled;
	}

	if (time_after(jiffies, this_cpu_read(perf_nmi_tstamp)))
		return NMI_DONE;

	return NMI_HANDLED;
}

881 882
static int amd_pmu_handle_irq(struct pt_regs *regs)
{
883
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
884
	int handled;
885 886 887 888 889 890 891 892 893
	int pmu_enabled;

	/*
	 * Save the PMU state.
	 * It needs to be restored when leaving the handler.
	 */
	pmu_enabled = cpuc->enabled;
	cpuc->enabled = 0;

894
	amd_brs_disable_all();
895 896 897 898

	/* Drain BRS is in use (could be inactive) */
	if (cpuc->lbr_users)
		amd_brs_drain();
899 900 901 902

	/* Process any counter overflows */
	handled = x86_pmu_handle_irq(regs);

903 904
	cpuc->enabled = pmu_enabled;
	if (pmu_enabled)
905
		amd_brs_enable_all();
906

907 908 909
	return amd_pmu_adjust_nmi_window(handled);
}

910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940
/*
 * AMD-specific callback invoked through perf_snapshot_branch_stack static
 * call, defined in include/linux/perf_event.h. See its definition for API
 * details. It's up to caller to provide enough space in *entries* to fit all
 * LBR records, otherwise returned result will be truncated to *cnt* entries.
 */
static int amd_pmu_v2_snapshot_branch_stack(struct perf_branch_entry *entries, unsigned int cnt)
{
	struct cpu_hw_events *cpuc;
	unsigned long flags;

	/*
	 * The sequence of steps to freeze LBR should be completely inlined
	 * and contain no branches to minimize contamination of LBR snapshot
	 */
	local_irq_save(flags);
	amd_pmu_core_disable_all();
	__amd_pmu_lbr_disable();

	cpuc = this_cpu_ptr(&cpu_hw_events);

	amd_pmu_lbr_read();
	cnt = min(cnt, x86_pmu.lbr_nr);
	memcpy(entries, cpuc->lbr_entries, sizeof(struct perf_branch_entry) * cnt);

	amd_pmu_v2_enable_all(0);
	local_irq_restore(flags);

	return cnt;
}

941 942 943 944 945 946 947
static int amd_pmu_v2_handle_irq(struct pt_regs *regs)
{
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
	struct perf_sample_data data;
	struct hw_perf_event *hwc;
	struct perf_event *event;
	int handled = 0, idx;
948
	u64 reserved, status, mask;
949 950
	bool pmu_enabled;

951
	/*
952 953
	 * Save the PMU state as it needs to be restored when leaving the
	 * handler
954
	 */
955 956
	pmu_enabled = cpuc->enabled;
	cpuc->enabled = 0;
957

958 959
	/* Stop counting but do not disable LBR */
	amd_pmu_core_disable_all();
960 961 962 963 964 965 966

	status = amd_pmu_get_global_status();

	/* Check if any overflows are pending */
	if (!status)
		goto done;

967 968
	/* Read branch records */
	if (x86_pmu.lbr_nr) {
969 970 971 972
		amd_pmu_lbr_read();
		status &= ~GLOBAL_STATUS_LBRS_FROZEN;
	}

973 974 975 976 977 978 979 980
	reserved = status & ~amd_pmu_global_cntr_mask;
	if (reserved)
		pr_warn_once("Reserved PerfCntrGlobalStatus bits are set (0x%llx), please consider updating microcode\n",
			     reserved);

	/* Clear any reserved bits set by buggy microcode */
	status &= amd_pmu_global_cntr_mask;

981 982 983 984 985 986 987 988 989 990 991 992 993 994
	for (idx = 0; idx < x86_pmu.num_counters; idx++) {
		if (!test_bit(idx, cpuc->active_mask))
			continue;

		event = cpuc->events[idx];
		hwc = &event->hw;
		x86_perf_event_update(event);
		mask = BIT_ULL(idx);

		if (!(status & mask))
			continue;

		/* Event overflow */
		handled++;
995
		status &= ~mask;
996 997 998 999 1000
		perf_sample_data_init(&data, 0, hwc->last_period);

		if (!x86_perf_event_set_period(event))
			continue;

1001
		if (has_branch_stack(event))
1002
			perf_sample_save_brstack(&data, event, &cpuc->lbr_stack, NULL);
1003

1004 1005
		if (perf_event_overflow(event, &data, regs))
			x86_pmu_stop(event, 0);
1006 1007
	}

1008 1009 1010 1011 1012 1013
	/*
	 * It should never be the case that some overflows are not handled as
	 * the corresponding PMCs are expected to be inactive according to the
	 * active_mask
	 */
	WARN_ON(status > 0);
1014

1015
	/* Clear overflow and freeze bits */
1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028
	amd_pmu_ack_global_status(~status);

	/*
	 * Unmasking the LVTPC is not required as the Mask (M) bit of the LVT
	 * PMI entry is not set by the local APIC when a PMC overflow occurs
	 */
	inc_irq_stat(apic_perf_irqs);

done:
	cpuc->enabled = pmu_enabled;

	/* Resume counting only if PMU is active */
	if (pmu_enabled)
1029
		amd_pmu_core_enable_all();
1030 1031

	return amd_pmu_adjust_nmi_window(handled);
1032 1033
}

1034
static struct event_constraint *
1035 1036
amd_get_event_constraints(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
1037 1038 1039 1040 1041 1042 1043
{
	/*
	 * if not NB event or no NB, then no constraints
	 */
	if (!(amd_has_nb(cpuc) && amd_is_nb_event(&event->hw)))
		return &unconstrained;

1044
	return __amd_get_nb_event_constraints(cpuc, event, NULL);
1045 1046 1047 1048 1049 1050 1051 1052 1053
}

static void amd_put_event_constraints(struct cpu_hw_events *cpuc,
				      struct perf_event *event)
{
	if (amd_has_nb(cpuc) && amd_is_nb_event(&event->hw))
		__amd_put_nb_event_constraints(cpuc, event);
}

1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068
PMU_FORMAT_ATTR(event,	"config:0-7,32-35");
PMU_FORMAT_ATTR(umask,	"config:8-15"	);
PMU_FORMAT_ATTR(edge,	"config:18"	);
PMU_FORMAT_ATTR(inv,	"config:23"	);
PMU_FORMAT_ATTR(cmask,	"config:24-31"	);

static struct attribute *amd_format_attr[] = {
	&format_attr_event.attr,
	&format_attr_umask.attr,
	&format_attr_edge.attr,
	&format_attr_inv.attr,
	&format_attr_cmask.attr,
	NULL,
};

1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105
/* AMD Family 15h */

#define AMD_EVENT_TYPE_MASK	0x000000F0ULL

#define AMD_EVENT_FP		0x00000000ULL ... 0x00000010ULL
#define AMD_EVENT_LS		0x00000020ULL ... 0x00000030ULL
#define AMD_EVENT_DC		0x00000040ULL ... 0x00000050ULL
#define AMD_EVENT_CU		0x00000060ULL ... 0x00000070ULL
#define AMD_EVENT_IC_DE		0x00000080ULL ... 0x00000090ULL
#define AMD_EVENT_EX_LS		0x000000C0ULL
#define AMD_EVENT_DE		0x000000D0ULL
#define AMD_EVENT_NB		0x000000E0ULL ... 0x000000F0ULL

/*
 * AMD family 15h event code/PMC mappings:
 *
 * type = event_code & 0x0F0:
 *
 * 0x000	FP	PERF_CTL[5:3]
 * 0x010	FP	PERF_CTL[5:3]
 * 0x020	LS	PERF_CTL[5:0]
 * 0x030	LS	PERF_CTL[5:0]
 * 0x040	DC	PERF_CTL[5:0]
 * 0x050	DC	PERF_CTL[5:0]
 * 0x060	CU	PERF_CTL[2:0]
 * 0x070	CU	PERF_CTL[2:0]
 * 0x080	IC/DE	PERF_CTL[2:0]
 * 0x090	IC/DE	PERF_CTL[2:0]
 * 0x0A0	---
 * 0x0B0	---
 * 0x0C0	EX/LS	PERF_CTL[5:0]
 * 0x0D0	DE	PERF_CTL[2:0]
 * 0x0E0	NB	NB_PERF_CTL[3:0]
 * 0x0F0	NB	NB_PERF_CTL[3:0]
 *
 * Exceptions:
 *
1106
 * 0x000	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
1107
 * 0x003	FP	PERF_CTL[3]
1108
 * 0x004	FP	PERF_CTL[3], PERF_CTL[5:3] (*)
1109 1110 1111 1112 1113
 * 0x00B	FP	PERF_CTL[3]
 * 0x00D	FP	PERF_CTL[3]
 * 0x023	DE	PERF_CTL[2:0]
 * 0x02D	LS	PERF_CTL[3]
 * 0x02E	LS	PERF_CTL[3,0]
1114
 * 0x031	LS	PERF_CTL[2:0] (**)
1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127
 * 0x043	CU	PERF_CTL[2:0]
 * 0x045	CU	PERF_CTL[2:0]
 * 0x046	CU	PERF_CTL[2:0]
 * 0x054	CU	PERF_CTL[2:0]
 * 0x055	CU	PERF_CTL[2:0]
 * 0x08F	IC	PERF_CTL[0]
 * 0x187	DE	PERF_CTL[0]
 * 0x188	DE	PERF_CTL[0]
 * 0x0DB	EX	PERF_CTL[5:0]
 * 0x0DC	LS	PERF_CTL[5:0]
 * 0x0DD	LS	PERF_CTL[5:0]
 * 0x0DE	LS	PERF_CTL[5:0]
 * 0x0DF	LS	PERF_CTL[5:0]
1128
 * 0x1C0	EX	PERF_CTL[5:3]
1129 1130
 * 0x1D6	EX	PERF_CTL[5:0]
 * 0x1D8	EX	PERF_CTL[5:0]
1131
 *
1132 1133
 * (*)  depending on the umask all FPU counters may be used
 * (**) only one unitmask enabled at a time
1134 1135 1136 1137 1138
 */

static struct event_constraint amd_f15_PMC0  = EVENT_CONSTRAINT(0, 0x01, 0);
static struct event_constraint amd_f15_PMC20 = EVENT_CONSTRAINT(0, 0x07, 0);
static struct event_constraint amd_f15_PMC3  = EVENT_CONSTRAINT(0, 0x08, 0);
1139
static struct event_constraint amd_f15_PMC30 = EVENT_CONSTRAINT_OVERLAP(0, 0x09, 0);
1140 1141 1142 1143
static struct event_constraint amd_f15_PMC50 = EVENT_CONSTRAINT(0, 0x3F, 0);
static struct event_constraint amd_f15_PMC53 = EVENT_CONSTRAINT(0, 0x38, 0);

static struct event_constraint *
1144 1145
amd_get_event_constraints_f15h(struct cpu_hw_events *cpuc, int idx,
			       struct perf_event *event)
1146
{
1147 1148
	struct hw_perf_event *hwc = &event->hw;
	unsigned int event_code = amd_get_event_code(hwc);
1149 1150 1151 1152

	switch (event_code & AMD_EVENT_TYPE_MASK) {
	case AMD_EVENT_FP:
		switch (event_code) {
1153 1154 1155 1156 1157 1158 1159 1160 1161 1162
		case 0x000:
			if (!(hwc->config & 0x0000F000ULL))
				break;
			if (!(hwc->config & 0x00000F00ULL))
				break;
			return &amd_f15_PMC3;
		case 0x004:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				break;
			return &amd_f15_PMC3;
1163 1164 1165 1166 1167
		case 0x003:
		case 0x00B:
		case 0x00D:
			return &amd_f15_PMC3;
		}
1168
		return &amd_f15_PMC53;
1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183
	case AMD_EVENT_LS:
	case AMD_EVENT_DC:
	case AMD_EVENT_EX_LS:
		switch (event_code) {
		case 0x023:
		case 0x043:
		case 0x045:
		case 0x046:
		case 0x054:
		case 0x055:
			return &amd_f15_PMC20;
		case 0x02D:
			return &amd_f15_PMC3;
		case 0x02E:
			return &amd_f15_PMC30;
1184 1185 1186 1187 1188 1189
		case 0x031:
			if (hweight_long(hwc->config & ARCH_PERFMON_EVENTSEL_UMASK) <= 1)
				return &amd_f15_PMC20;
			return &emptyconstraint;
		case 0x1C0:
			return &amd_f15_PMC53;
1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208
		default:
			return &amd_f15_PMC50;
		}
	case AMD_EVENT_CU:
	case AMD_EVENT_IC_DE:
	case AMD_EVENT_DE:
		switch (event_code) {
		case 0x08F:
		case 0x187:
		case 0x188:
			return &amd_f15_PMC0;
		case 0x0DB ... 0x0DF:
		case 0x1D6:
		case 0x1D8:
			return &amd_f15_PMC50;
		default:
			return &amd_f15_PMC20;
		}
	case AMD_EVENT_NB:
1209
		/* moved to uncore.c */
1210
		return &emptyconstraint;
1211 1212 1213 1214 1215
	default:
		return &emptyconstraint;
	}
}

1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229
static struct event_constraint pair_constraint;

static struct event_constraint *
amd_get_event_constraints_f17h(struct cpu_hw_events *cpuc, int idx,
			       struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (amd_is_pair_event_code(hwc))
		return &pair_constraint;

	return &unconstrained;
}

1230 1231 1232 1233 1234 1235 1236 1237 1238
static void amd_put_event_constraints_f17h(struct cpu_hw_events *cpuc,
					   struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;

	if (is_counter_pair(hwc))
		--cpuc->n_pair;
}

1239 1240 1241 1242 1243 1244 1245
/*
 * Because of the way BRS operates with an inactive and active phases, and
 * the link to one counter, it is not possible to have two events using BRS
 * scheduled at the same time. There would be an issue with enforcing the
 * period of each one and given that the BRS saturates, it would not be possible
 * to guarantee correlated content for all events. Therefore, in situations
 * where multiple events want to use BRS, the kernel enforces mutual exclusion.
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1246
 * Exclusion is enforced by choosing only one counter for events using BRS.
1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283
 * The event scheduling logic will then automatically multiplex the
 * events and ensure that at most one event is actively using BRS.
 *
 * The BRS counter could be any counter, but there is no constraint on Fam19h,
 * therefore all counters are equal and thus we pick the first one: PMC0
 */
static struct event_constraint amd_fam19h_brs_cntr0_constraint =
	EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK);

static struct event_constraint amd_fam19h_brs_pair_cntr0_constraint =
	__EVENT_CONSTRAINT(0, 0x1, AMD64_RAW_EVENT_MASK, 1, 0, PERF_X86_EVENT_PAIR);

static struct event_constraint *
amd_get_event_constraints_f19h(struct cpu_hw_events *cpuc, int idx,
			  struct perf_event *event)
{
	struct hw_perf_event *hwc = &event->hw;
	bool has_brs = has_amd_brs(hwc);

	/*
	 * In case BRS is used with an event requiring a counter pair,
	 * the kernel allows it but only on counter 0 & 1 to enforce
	 * multiplexing requiring to protect BRS in case of multiple
	 * BRS users
	 */
	if (amd_is_pair_event_code(hwc)) {
		return has_brs ? &amd_fam19h_brs_pair_cntr0_constraint
			       : &pair_constraint;
	}

	if (has_brs)
		return &amd_fam19h_brs_cntr0_constraint;

	return &unconstrained;
}


1284 1285 1286 1287 1288 1289 1290 1291
static ssize_t amd_event_sysfs_show(char *page, u64 config)
{
	u64 event = (config & ARCH_PERFMON_EVENTSEL_EVENT) |
		    (config & AMD64_EVENTSEL_EVENT) >> 24;

	return x86_event_sysfs_show(page, config, event);
}

1292
static void amd_pmu_limit_period(struct perf_event *event, s64 *left)
1293 1294 1295 1296 1297
{
	/*
	 * Decrease period by the depth of the BRS feature to get the last N
	 * taken branches and approximate the desired period
	 */
1298 1299
	if (has_branch_stack(event) && *left > x86_pmu.lbr_nr)
		*left -= x86_pmu.lbr_nr;
1300 1301
}

1302 1303
static __initconst const struct x86_pmu amd_pmu = {
	.name			= "AMD",
1304
	.handle_irq		= amd_pmu_handle_irq,
1305
	.disable_all		= amd_pmu_disable_all,
1306 1307
	.enable_all		= amd_pmu_enable_all,
	.enable			= amd_pmu_enable_event,
1308
	.disable		= amd_pmu_disable_event,
1309 1310
	.hw_config		= amd_pmu_hw_config,
	.schedule_events	= x86_schedule_events,
1311 1312
	.eventsel		= MSR_K7_EVNTSEL0,
	.perfctr		= MSR_K7_PERFCTR0,
1313
	.addr_offset            = amd_pmu_addr_offset,
1314 1315
	.event_map		= amd_pmu_event_map,
	.max_events		= ARRAY_SIZE(amd_perfmon_event_map),
1316
	.num_counters		= AMD64_NUM_COUNTERS,
1317 1318
	.add			= amd_pmu_add_event,
	.del			= amd_pmu_del_event,
1319 1320 1321 1322 1323
	.cntval_bits		= 48,
	.cntval_mask		= (1ULL << 48) - 1,
	.apic			= 1,
	/* use highest bit to detect overflow */
	.max_period		= (1ULL << 47) - 1,
1324
	.get_event_constraints	= amd_get_event_constraints,
1325 1326
	.put_event_constraints	= amd_put_event_constraints,

1327
	.format_attrs		= amd_format_attr,
1328
	.events_sysfs_show	= amd_event_sysfs_show,
1329

1330
	.cpu_prepare		= amd_pmu_cpu_prepare,
1331
	.cpu_starting		= amd_pmu_cpu_starting,
1332
	.cpu_dead		= amd_pmu_cpu_dead,
1333 1334

	.amd_nb_constraints	= 1,
1335 1336
};

1337 1338 1339 1340 1341 1342 1343 1344 1345
static ssize_t branches_show(struct device *cdev,
			      struct device_attribute *attr,
			      char *buf)
{
	return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu.lbr_nr);
}

static DEVICE_ATTR_RO(branches);

1346
static struct attribute *amd_pmu_branches_attrs[] = {
1347 1348 1349 1350 1351
	&dev_attr_branches.attr,
	NULL,
};

static umode_t
1352
amd_branches_is_visible(struct kobject *kobj, struct attribute *attr, int i)
1353 1354 1355 1356
{
	return x86_pmu.lbr_nr ? attr->mode : 0;
}

1357
static struct attribute_group group_caps_amd_branches = {
1358
	.name  = "caps",
1359 1360
	.attrs = amd_pmu_branches_attrs,
	.is_visible = amd_branches_is_visible,
1361 1362
};

1363 1364
#ifdef CONFIG_PERF_EVENTS_AMD_BRS

1365 1366 1367 1368 1369 1370 1371 1372
EVENT_ATTR_STR(branch-brs, amd_branch_brs,
	       "event=" __stringify(AMD_FAM19H_BRS_EVENT)"\n");

static struct attribute *amd_brs_events_attrs[] = {
	EVENT_PTR(amd_branch_brs),
	NULL,
};

1373 1374 1375 1376 1377 1378 1379
static umode_t
amd_brs_is_visible(struct kobject *kobj, struct attribute *attr, int i)
{
	return static_cpu_has(X86_FEATURE_BRS) && x86_pmu.lbr_nr ?
	       attr->mode : 0;
}

1380 1381 1382 1383 1384 1385
static struct attribute_group group_events_amd_brs = {
	.name       = "events",
	.attrs      = amd_brs_events_attrs,
	.is_visible = amd_brs_is_visible,
};

1386 1387
#endif	/* CONFIG_PERF_EVENTS_AMD_BRS */

1388
static const struct attribute_group *amd_attr_update[] = {
1389 1390
	&group_caps_amd_branches,
#ifdef CONFIG_PERF_EVENTS_AMD_BRS
1391
	&group_events_amd_brs,
1392
#endif
1393 1394 1395
	NULL,
};

1396
static int __init amd_core_pmu_init(void)
1397
{
1398
	union cpuid_0x80000022_ebx ebx;
1399 1400 1401
	u64 even_ctr_mask = 0ULL;
	int i;

1402
	if (!boot_cpu_has(X86_FEATURE_PERFCTR_CORE))
1403 1404
		return 0;

1405
	/* Avoid calculating the value each time in the NMI handler */
1406 1407
	perf_nmi_window = msecs_to_jiffies(100);

1408 1409 1410
	/*
	 * If core performance counter extensions exists, we must use
	 * MSR_F15H_PERF_CTL/MSR_F15H_PERF_CTR msrs. See also
1411
	 * amd_pmu_addr_offset().
1412 1413 1414 1415
	 */
	x86_pmu.eventsel	= MSR_F15H_PERF_CTL;
	x86_pmu.perfctr		= MSR_F15H_PERF_CTR;
	x86_pmu.num_counters	= AMD64_NUM_COUNTERS_CORE;
1416 1417 1418

	/* Check for Performance Monitoring v2 support */
	if (boot_cpu_has(X86_FEATURE_PERFMON_V2)) {
1419 1420
		ebx.full = cpuid_ebx(EXT_PERFMON_DEBUG_FEATURES);

1421 1422 1423
		/* Update PMU version for later usage */
		x86_pmu.version = 2;

1424 1425 1426
		/* Find the number of available Core PMCs */
		x86_pmu.num_counters = ebx.split.num_core_pmc;

1427
		amd_pmu_global_cntr_mask = (1ULL << x86_pmu.num_counters) - 1;
1428 1429 1430 1431 1432

		/* Update PMC handling functions */
		x86_pmu.enable_all = amd_pmu_v2_enable_all;
		x86_pmu.disable_all = amd_pmu_v2_disable_all;
		x86_pmu.enable = amd_pmu_v2_enable_event;
1433 1434
		x86_pmu.handle_irq = amd_pmu_v2_handle_irq;
		static_call_update(amd_pmu_test_overflow, amd_pmu_test_overflow_status);
1435 1436
	}

1437 1438 1439 1440 1441
	/*
	 * AMD Core perfctr has separate MSRs for the NB events, see
	 * the amd/uncore.c driver.
	 */
	x86_pmu.amd_nb_constraints = 0;
1442

1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455
	if (boot_cpu_data.x86 == 0x15) {
		pr_cont("Fam15h ");
		x86_pmu.get_event_constraints = amd_get_event_constraints_f15h;
	}
	if (boot_cpu_data.x86 >= 0x17) {
		pr_cont("Fam17h+ ");
		/*
		 * Family 17h and compatibles have constraints for Large
		 * Increment per Cycle events: they may only be assigned an
		 * even numbered counter that has a consecutive adjacent odd
		 * numbered counter following it.
		 */
		for (i = 0; i < x86_pmu.num_counters - 1; i += 2)
1456
			even_ctr_mask |= BIT_ULL(i);
1457 1458 1459 1460 1461 1462 1463

		pair_constraint = (struct event_constraint)
				    __EVENT_CONSTRAINT(0, even_ctr_mask, 0,
				    x86_pmu.num_counters / 2, 0,
				    PERF_X86_EVENT_PAIR);

		x86_pmu.get_event_constraints = amd_get_event_constraints_f17h;
1464 1465
		x86_pmu.put_event_constraints = amd_put_event_constraints_f17h;
		x86_pmu.perf_ctr_pair_en = AMD_MERGE_EVENT_ENABLE;
1466 1467 1468
		x86_pmu.flags |= PMU_FL_PAIR;
	}

1469
	/* LBR and BRS are mutually exclusive features */
1470 1471 1472 1473 1474 1475 1476
	if (!amd_pmu_lbr_init()) {
		/* LBR requires flushing on context switch */
		x86_pmu.sched_task = amd_pmu_lbr_sched_task;
		static_call_update(amd_pmu_branch_hw_config, amd_pmu_lbr_hw_config);
		static_call_update(amd_pmu_branch_reset, amd_pmu_lbr_reset);
		static_call_update(amd_pmu_branch_add, amd_pmu_lbr_add);
		static_call_update(amd_pmu_branch_del, amd_pmu_lbr_del);
1477 1478 1479 1480

		/* Only support branch_stack snapshot on perfmon v2 */
		if (x86_pmu.handle_irq == amd_pmu_v2_handle_irq)
			static_call_update(perf_snapshot_branch_stack, amd_pmu_v2_snapshot_branch_stack);
1481
	} else if (!amd_brs_init()) {
1482 1483 1484
		/*
		 * BRS requires special event constraints and flushing on ctxsw.
		 */
1485
		x86_pmu.get_event_constraints = amd_get_event_constraints_f19h;
1486
		x86_pmu.sched_task = amd_pmu_brs_sched_task;
1487
		x86_pmu.limit_period = amd_pmu_limit_period;
1488 1489 1490 1491 1492 1493

		static_call_update(amd_pmu_branch_hw_config, amd_brs_hw_config);
		static_call_update(amd_pmu_branch_reset, amd_brs_reset);
		static_call_update(amd_pmu_branch_add, amd_pmu_brs_add);
		static_call_update(amd_pmu_branch_del, amd_pmu_brs_del);

1494 1495 1496
		/*
		 * put_event_constraints callback same as Fam17h, set above
		 */
1497 1498 1499

		/* branch sampling must be stopped when entering low power */
		amd_brs_lopwr_init();
1500 1501 1502 1503
	}

	x86_pmu.attr_update = amd_attr_update;

1504
	pr_cont("core perfctr, ");
1505 1506 1507
	return 0;
}

1508
__init int amd_pmu_init(void)
1509
{
1510 1511
	int ret;

1512 1513 1514 1515
	/* Performance-monitoring supported from K7 and later: */
	if (boot_cpu_data.x86 < 6)
		return -ENODEV;

1516 1517
	x86_pmu = amd_pmu;

1518 1519 1520
	ret = amd_core_pmu_init();
	if (ret)
		return ret;
1521

1522 1523 1524 1525 1526 1527 1528 1529
	if (num_possible_cpus() == 1) {
		/*
		 * No point in allocating data structures to serialize
		 * against other CPUs, when there is only the one CPU.
		 */
		x86_pmu.amd_nb_constraints = 0;
	}

1530 1531 1532 1533
	if (boot_cpu_data.x86 >= 0x17)
		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids_f17h, sizeof(hw_cache_event_ids));
	else
		memcpy(hw_cache_event_ids, amd_hw_cache_event_ids, sizeof(hw_cache_event_ids));
1534 1535 1536

	return 0;
}
1537

1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555
static inline void amd_pmu_reload_virt(void)
{
	if (x86_pmu.version >= 2) {
		/*
		 * Clear global enable bits, reprogram the PERF_CTL
		 * registers with updated perf_ctr_virt_mask and then
		 * set global enable bits once again
		 */
		amd_pmu_v2_disable_all();
		amd_pmu_enable_all(0);
		amd_pmu_v2_enable_all(0);
		return;
	}

	amd_pmu_disable_all();
	amd_pmu_enable_all(0);
}

1556 1557
void amd_pmu_enable_virt(void)
{
1558
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1559 1560 1561 1562

	cpuc->perf_ctr_virt_mask = 0;

	/* Reload all events */
1563
	amd_pmu_reload_virt();
1564 1565 1566 1567 1568
}
EXPORT_SYMBOL_GPL(amd_pmu_enable_virt);

void amd_pmu_disable_virt(void)
{
1569
	struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1570 1571 1572 1573 1574 1575 1576

	/*
	 * We only mask out the Host-only bit so that host-only counting works
	 * when SVM is disabled. If someone sets up a guest-only counter when
	 * SVM is disabled the Guest-only bits still gets set and the counter
	 * will not count anything.
	 */
1577
	cpuc->perf_ctr_virt_mask = AMD64_EVENTSEL_HOSTONLY;
1578 1579

	/* Reload all events */
1580
	amd_pmu_reload_virt();
1581 1582
}
EXPORT_SYMBOL_GPL(amd_pmu_disable_virt);