memory.c 43.9 KB
Newer Older
1 2 3 4 5 6 7
// SPDX-License-Identifier: GPL-2.0

/*
 * Copyright 2016-2019 HabanaLabs, Ltd.
 * All Rights Reserved.
 */

8
#include <uapi/misc/habanalabs.h>
9
#include "habanalabs.h"
10
#include "include/hw_ip/mmu/mmu_general.h"
11 12 13

#include <linux/uaccess.h>
#include <linux/slab.h>
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#include <linux/genalloc.h>

#define PGS_IN_2MB_PAGE	(PAGE_SIZE_2MB >> PAGE_SHIFT)
#define HL_MMU_DEBUG	0

/*
 * The va ranges in context object contain a list with the available chunks of
 * device virtual memory.
 * There is one range for host allocations and one for DRAM allocations.
 *
 * On initialization each range contains one chunk of all of its available
 * virtual range which is a half of the total device virtual range.
 *
 * On each mapping of physical pages, a suitable virtual range chunk (with a
 * minimum size) is selected from the list. If the chunk size equals the
 * requested size, the chunk is returned. Otherwise, the chunk is split into
 * two chunks - one to return as result and a remainder to stay in the list.
 *
 * On each Unmapping of a virtual address, the relevant virtual chunk is
 * returned to the list. The chunk is added to the list and if its edges match
 * the edges of the adjacent chunks (means a contiguous chunk can be created),
 * the chunks are merged.
 *
 * On finish, the list is checked to have only one chunk of all the relevant
 * virtual range (which is a half of the device total virtual range).
 * If not (means not all mappings were unmapped), a warning is printed.
 */

/*
 * alloc_device_memory - allocate device memory
 *
 * @ctx                 : current context
 * @args                : host parameters containing the requested size
 * @ret_handle          : result handle
 *
 * This function does the following:
 * - Allocate the requested size rounded up to 2MB pages
 * - Return unique handle
 */
static int alloc_device_memory(struct hl_ctx *ctx, struct hl_mem_in *args,
				u32 *ret_handle)
{
	struct hl_device *hdev = ctx->hdev;
	struct hl_vm *vm = &hdev->vm;
	struct hl_vm_phys_pg_pack *phys_pg_pack;
59 60 61
	u64 paddr = 0, total_size, num_pgs, i;
	u32 num_curr_pgs, page_size, page_shift;
	int handle, rc;
62 63 64 65 66 67 68 69 70 71 72 73 74 75
	bool contiguous;

	num_curr_pgs = 0;
	page_size = hdev->asic_prop.dram_page_size;
	page_shift = __ffs(page_size);
	num_pgs = (args->alloc.mem_size + (page_size - 1)) >> page_shift;
	total_size = num_pgs << page_shift;

	contiguous = args->flags & HL_MEM_CONTIGUOUS;

	if (contiguous) {
		paddr = (u64) gen_pool_alloc(vm->dram_pg_pool, total_size);
		if (!paddr) {
			dev_err(hdev->dev,
76
				"failed to allocate %llu huge contiguous pages\n",
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
				num_pgs);
			return -ENOMEM;
		}
	}

	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
	if (!phys_pg_pack) {
		rc = -ENOMEM;
		goto pages_pack_err;
	}

	phys_pg_pack->vm_type = VM_TYPE_PHYS_PACK;
	phys_pg_pack->asid = ctx->asid;
	phys_pg_pack->npages = num_pgs;
	phys_pg_pack->page_size = page_size;
	phys_pg_pack->total_size = total_size;
	phys_pg_pack->flags = args->flags;
	phys_pg_pack->contiguous = contiguous;

96
	phys_pg_pack->pages = kvmalloc_array(num_pgs, sizeof(u64), GFP_KERNEL);
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
	if (!phys_pg_pack->pages) {
		rc = -ENOMEM;
		goto pages_arr_err;
	}

	if (phys_pg_pack->contiguous) {
		for (i = 0 ; i < num_pgs ; i++)
			phys_pg_pack->pages[i] = paddr + i * page_size;
	} else {
		for (i = 0 ; i < num_pgs ; i++) {
			phys_pg_pack->pages[i] = (u64) gen_pool_alloc(
							vm->dram_pg_pool,
							page_size);
			if (!phys_pg_pack->pages[i]) {
				dev_err(hdev->dev,
112
					"Failed to allocate device memory (out of memory)\n");
113 114 115 116 117 118 119 120 121 122
				rc = -ENOMEM;
				goto page_err;
			}

			num_curr_pgs++;
		}
	}

	spin_lock(&vm->idr_lock);
	handle = idr_alloc(&vm->phys_pg_pack_handles, phys_pg_pack, 1, 0,
123
				GFP_ATOMIC);
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
	spin_unlock(&vm->idr_lock);

	if (handle < 0) {
		dev_err(hdev->dev, "Failed to get handle for page\n");
		rc = -EFAULT;
		goto idr_err;
	}

	for (i = 0 ; i < num_pgs ; i++)
		kref_get(&vm->dram_pg_pool_refcount);

	phys_pg_pack->handle = handle;

	atomic64_add(phys_pg_pack->total_size, &ctx->dram_phys_mem);
	atomic64_add(phys_pg_pack->total_size, &hdev->dram_used_mem);

	*ret_handle = handle;

	return 0;

idr_err:
page_err:
	if (!phys_pg_pack->contiguous)
		for (i = 0 ; i < num_curr_pgs ; i++)
			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[i],
					page_size);

151
	kvfree(phys_pg_pack->pages);
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
pages_arr_err:
	kfree(phys_pg_pack);
pages_pack_err:
	if (contiguous)
		gen_pool_free(vm->dram_pg_pool, paddr, total_size);

	return rc;
}

/*
 * get_userptr_from_host_va - initialize userptr structure from given host
 *                            virtual address
 *
 * @hdev                : habanalabs device structure
 * @args                : parameters containing the virtual address and size
 * @p_userptr           : pointer to result userptr structure
 *
 * This function does the following:
 * - Allocate userptr structure
 * - Pin the given host memory using the userptr structure
 * - Perform DMA mapping to have the DMA addresses of the pages
 */
static int get_userptr_from_host_va(struct hl_device *hdev,
		struct hl_mem_in *args, struct hl_userptr **p_userptr)
{
	struct hl_userptr *userptr;
	int rc;

	userptr = kzalloc(sizeof(*userptr), GFP_KERNEL);
	if (!userptr) {
		rc = -ENOMEM;
		goto userptr_err;
	}

	rc = hl_pin_host_memory(hdev, args->map_host.host_virt_addr,
			args->map_host.mem_size, userptr);
	if (rc) {
		dev_err(hdev->dev, "Failed to pin host memory\n");
		goto pin_err;
	}

	rc = hdev->asic_funcs->asic_dma_map_sg(hdev, userptr->sgt->sgl,
					userptr->sgt->nents, DMA_BIDIRECTIONAL);
	if (rc) {
		dev_err(hdev->dev, "failed to map sgt with DMA region\n");
		goto dma_map_err;
	}

	userptr->dma_mapped = true;
	userptr->dir = DMA_BIDIRECTIONAL;
	userptr->vm_type = VM_TYPE_USERPTR;

	*p_userptr = userptr;

	return 0;

dma_map_err:
	hl_unpin_host_memory(hdev, userptr);
pin_err:
	kfree(userptr);
userptr_err:

	return rc;
}

/*
 * free_userptr - free userptr structure
 *
 * @hdev                : habanalabs device structure
 * @userptr             : userptr to free
 *
 * This function does the following:
 * - Unpins the physical pages
 * - Frees the userptr structure
 */
static void free_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
{
	hl_unpin_host_memory(hdev, userptr);
	kfree(userptr);
}

/*
 * dram_pg_pool_do_release - free DRAM pages pool
 *
 * @ref                 : pointer to reference object
 *
 * This function does the following:
 * - Frees the idr structure of physical pages handles
 * - Frees the generic pool of DRAM physical pages
 */
static void dram_pg_pool_do_release(struct kref *ref)
{
	struct hl_vm *vm = container_of(ref, struct hl_vm,
			dram_pg_pool_refcount);

	/*
	 * free the idr here as only here we know for sure that there are no
	 * allocated physical pages and hence there are no handles in use
	 */
	idr_destroy(&vm->phys_pg_pack_handles);
	gen_pool_destroy(vm->dram_pg_pool);
}

/*
 * free_phys_pg_pack   - free physical page pack
 *
 * @hdev               : habanalabs device structure
 * @phys_pg_pack       : physical page pack to free
 *
 * This function does the following:
 * - For DRAM memory only, iterate over the pack and free each physical block
 *   structure by returning it to the general pool
 * - Free the hl_vm_phys_pg_pack structure
 */
static void free_phys_pg_pack(struct hl_device *hdev,
		struct hl_vm_phys_pg_pack *phys_pg_pack)
{
	struct hl_vm *vm = &hdev->vm;
270
	u64 i;
271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290

	if (!phys_pg_pack->created_from_userptr) {
		if (phys_pg_pack->contiguous) {
			gen_pool_free(vm->dram_pg_pool, phys_pg_pack->pages[0],
					phys_pg_pack->total_size);

			for (i = 0; i < phys_pg_pack->npages ; i++)
				kref_put(&vm->dram_pg_pool_refcount,
					dram_pg_pool_do_release);
		} else {
			for (i = 0 ; i < phys_pg_pack->npages ; i++) {
				gen_pool_free(vm->dram_pg_pool,
						phys_pg_pack->pages[i],
						phys_pg_pack->page_size);
				kref_put(&vm->dram_pg_pool_refcount,
					dram_pg_pool_do_release);
			}
		}
	}

291
	kvfree(phys_pg_pack->pages);
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521
	kfree(phys_pg_pack);
}

/*
 * free_device_memory - free device memory
 *
 * @ctx                  : current context
 * @handle              : handle of the memory chunk to free
 *
 * This function does the following:
 * - Free the device memory related to the given handle
 */
static int free_device_memory(struct hl_ctx *ctx, u32 handle)
{
	struct hl_device *hdev = ctx->hdev;
	struct hl_vm *vm = &hdev->vm;
	struct hl_vm_phys_pg_pack *phys_pg_pack;

	spin_lock(&vm->idr_lock);
	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
	if (phys_pg_pack) {
		if (atomic_read(&phys_pg_pack->mapping_cnt) > 0) {
			dev_err(hdev->dev, "handle %u is mapped, cannot free\n",
				handle);
			spin_unlock(&vm->idr_lock);
			return -EINVAL;
		}

		/*
		 * must remove from idr before the freeing of the physical
		 * pages as the refcount of the pool is also the trigger of the
		 * idr destroy
		 */
		idr_remove(&vm->phys_pg_pack_handles, handle);
		spin_unlock(&vm->idr_lock);

		atomic64_sub(phys_pg_pack->total_size, &ctx->dram_phys_mem);
		atomic64_sub(phys_pg_pack->total_size, &hdev->dram_used_mem);

		free_phys_pg_pack(hdev, phys_pg_pack);
	} else {
		spin_unlock(&vm->idr_lock);
		dev_err(hdev->dev,
			"free device memory failed, no match for handle %u\n",
			handle);
		return -EINVAL;
	}

	return 0;
}

/*
 * clear_va_list_locked - free virtual addresses list
 *
 * @hdev                : habanalabs device structure
 * @va_list             : list of virtual addresses to free
 *
 * This function does the following:
 * - Iterate over the list and free each virtual addresses block
 *
 * This function should be called only when va_list lock is taken
 */
static void clear_va_list_locked(struct hl_device *hdev,
		struct list_head *va_list)
{
	struct hl_vm_va_block *va_block, *tmp;

	list_for_each_entry_safe(va_block, tmp, va_list, node) {
		list_del(&va_block->node);
		kfree(va_block);
	}
}

/*
 * print_va_list_locked    - print virtual addresses list
 *
 * @hdev                : habanalabs device structure
 * @va_list             : list of virtual addresses to print
 *
 * This function does the following:
 * - Iterate over the list and print each virtual addresses block
 *
 * This function should be called only when va_list lock is taken
 */
static void print_va_list_locked(struct hl_device *hdev,
		struct list_head *va_list)
{
#if HL_MMU_DEBUG
	struct hl_vm_va_block *va_block;

	dev_dbg(hdev->dev, "print va list:\n");

	list_for_each_entry(va_block, va_list, node)
		dev_dbg(hdev->dev,
			"va block, start: 0x%llx, end: 0x%llx, size: %llu\n",
			va_block->start, va_block->end, va_block->size);
#endif
}

/*
 * merge_va_blocks_locked - merge a virtual block if possible
 *
 * @hdev                : pointer to the habanalabs device structure
 * @va_list             : pointer to the virtual addresses block list
 * @va_block            : virtual block to merge with adjacent blocks
 *
 * This function does the following:
 * - Merge the given blocks with the adjacent blocks if their virtual ranges
 *   create a contiguous virtual range
 *
 * This Function should be called only when va_list lock is taken
 */
static void merge_va_blocks_locked(struct hl_device *hdev,
		struct list_head *va_list, struct hl_vm_va_block *va_block)
{
	struct hl_vm_va_block *prev, *next;

	prev = list_prev_entry(va_block, node);
	if (&prev->node != va_list && prev->end + 1 == va_block->start) {
		prev->end = va_block->end;
		prev->size = prev->end - prev->start;
		list_del(&va_block->node);
		kfree(va_block);
		va_block = prev;
	}

	next = list_next_entry(va_block, node);
	if (&next->node != va_list && va_block->end + 1 == next->start) {
		next->start = va_block->start;
		next->size = next->end - next->start;
		list_del(&va_block->node);
		kfree(va_block);
	}
}

/*
 * add_va_block_locked - add a virtual block to the virtual addresses list
 *
 * @hdev                : pointer to the habanalabs device structure
 * @va_list             : pointer to the virtual addresses block list
 * @start               : start virtual address
 * @end                 : end virtual address
 *
 * This function does the following:
 * - Add the given block to the virtual blocks list and merge with other
 * blocks if a contiguous virtual block can be created
 *
 * This Function should be called only when va_list lock is taken
 */
static int add_va_block_locked(struct hl_device *hdev,
		struct list_head *va_list, u64 start, u64 end)
{
	struct hl_vm_va_block *va_block, *res = NULL;
	u64 size = end - start;

	print_va_list_locked(hdev, va_list);

	list_for_each_entry(va_block, va_list, node) {
		/* TODO: remove upon matureness */
		if (hl_mem_area_crosses_range(start, size, va_block->start,
				va_block->end)) {
			dev_err(hdev->dev,
				"block crossing ranges at start 0x%llx, end 0x%llx\n",
				va_block->start, va_block->end);
			return -EINVAL;
		}

		if (va_block->end < start)
			res = va_block;
	}

	va_block = kmalloc(sizeof(*va_block), GFP_KERNEL);
	if (!va_block)
		return -ENOMEM;

	va_block->start = start;
	va_block->end = end;
	va_block->size = size;

	if (!res)
		list_add(&va_block->node, va_list);
	else
		list_add(&va_block->node, &res->node);

	merge_va_blocks_locked(hdev, va_list, va_block);

	print_va_list_locked(hdev, va_list);

	return 0;
}

/*
 * add_va_block - wrapper for add_va_block_locked
 *
 * @hdev                : pointer to the habanalabs device structure
 * @va_list             : pointer to the virtual addresses block list
 * @start               : start virtual address
 * @end                 : end virtual address
 *
 * This function does the following:
 * - Takes the list lock and calls add_va_block_locked
 */
static inline int add_va_block(struct hl_device *hdev,
		struct hl_va_range *va_range, u64 start, u64 end)
{
	int rc;

	mutex_lock(&va_range->lock);
	rc = add_va_block_locked(hdev, &va_range->list, start, end);
	mutex_unlock(&va_range->lock);

	return rc;
}

/*
 * get_va_block - get a virtual block with the requested size
 *
 * @hdev            : pointer to the habanalabs device structure
 * @va_range        : pointer to the virtual addresses range
 * @size            : requested block size
 * @hint_addr       : hint for request address by the user
 * @is_userptr      : is host or DRAM memory
 *
 * This function does the following:
 * - Iterate on the virtual block list to find a suitable virtual block for the
 *   requested size
 * - Reserve the requested block and update the list
 * - Return the start address of the virtual block
 */
static u64 get_va_block(struct hl_device *hdev,
522
		struct hl_va_range *va_range, u64 size, u64 hint_addr,
523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579
		bool is_userptr)
{
	struct hl_vm_va_block *va_block, *new_va_block = NULL;
	u64 valid_start, valid_size, prev_start, prev_end, page_mask,
		res_valid_start = 0, res_valid_size = 0;
	u32 page_size;
	bool add_prev = false;

	if (is_userptr) {
		/*
		 * We cannot know if the user allocated memory with huge pages
		 * or not, hence we continue with the biggest possible
		 * granularity.
		 */
		page_size = PAGE_SIZE_2MB;
		page_mask = PAGE_MASK_2MB;
	} else {
		page_size = hdev->asic_prop.dram_page_size;
		page_mask = ~((u64)page_size - 1);
	}

	mutex_lock(&va_range->lock);

	print_va_list_locked(hdev, &va_range->list);

	list_for_each_entry(va_block, &va_range->list, node) {
		/* calc the first possible aligned addr */
		valid_start = va_block->start;


		if (valid_start & (page_size - 1)) {
			valid_start &= page_mask;
			valid_start += page_size;
			if (valid_start > va_block->end)
				continue;
		}

		valid_size = va_block->end - valid_start;

		if (valid_size >= size &&
			(!new_va_block || valid_size < res_valid_size)) {

			new_va_block = va_block;
			res_valid_start = valid_start;
			res_valid_size = valid_size;
		}

		if (hint_addr && hint_addr >= valid_start &&
				((hint_addr + size) <= va_block->end)) {
			new_va_block = va_block;
			res_valid_start = hint_addr;
			res_valid_size = valid_size;
			break;
		}
	}

	if (!new_va_block) {
580 581
		dev_err(hdev->dev, "no available va block for size %llu\n",
				size);
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651
		goto out;
	}

	if (res_valid_start > new_va_block->start) {
		prev_start = new_va_block->start;
		prev_end = res_valid_start - 1;

		new_va_block->start = res_valid_start;
		new_va_block->size = res_valid_size;

		add_prev = true;
	}

	if (new_va_block->size > size) {
		new_va_block->start += size;
		new_va_block->size = new_va_block->end - new_va_block->start;
	} else {
		list_del(&new_va_block->node);
		kfree(new_va_block);
	}

	if (add_prev)
		add_va_block_locked(hdev, &va_range->list, prev_start,
				prev_end);

	print_va_list_locked(hdev, &va_range->list);
out:
	mutex_unlock(&va_range->lock);

	return res_valid_start;
}

/*
 * get_sg_info - get number of pages and the DMA address from SG list
 *
 * @sg                 : the SG list
 * @dma_addr           : pointer to DMA address to return
 *
 * Calculate the number of consecutive pages described by the SG list. Take the
 * offset of the address in the first page, add to it the length and round it up
 * to the number of needed pages.
 */
static u32 get_sg_info(struct scatterlist *sg, dma_addr_t *dma_addr)
{
	*dma_addr = sg_dma_address(sg);

	return ((((*dma_addr) & (PAGE_SIZE - 1)) + sg_dma_len(sg)) +
			(PAGE_SIZE - 1)) >> PAGE_SHIFT;
}

/*
 * init_phys_pg_pack_from_userptr - initialize physical page pack from host
 *                                   memory
 *
 * @ctx                : current context
 * @userptr            : userptr to initialize from
 * @pphys_pg_pack      : res pointer
 *
 * This function does the following:
 * - Pin the physical pages related to the given virtual block
 * - Create a physical page pack from the physical pages related to the given
 *   virtual block
 */
static int init_phys_pg_pack_from_userptr(struct hl_ctx *ctx,
		struct hl_userptr *userptr,
		struct hl_vm_phys_pg_pack **pphys_pg_pack)
{
	struct hl_vm_phys_pg_pack *phys_pg_pack;
	struct scatterlist *sg;
	dma_addr_t dma_addr;
652 653
	u64 page_mask, total_npages;
	u32 npages, page_size = PAGE_SIZE;
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
	bool first = true, is_huge_page_opt = true;
	int rc, i, j;

	phys_pg_pack = kzalloc(sizeof(*phys_pg_pack), GFP_KERNEL);
	if (!phys_pg_pack)
		return -ENOMEM;

	phys_pg_pack->vm_type = userptr->vm_type;
	phys_pg_pack->created_from_userptr = true;
	phys_pg_pack->asid = ctx->asid;
	atomic_set(&phys_pg_pack->mapping_cnt, 1);

	/* Only if all dma_addrs are aligned to 2MB and their
	 * sizes is at least 2MB, we can use huge page mapping.
	 * We limit the 2MB optimization to this condition,
	 * since later on we acquire the related VA range as one
	 * consecutive block.
	 */
	total_npages = 0;
	for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
		npages = get_sg_info(sg, &dma_addr);

		total_npages += npages;

		if ((npages % PGS_IN_2MB_PAGE) ||
					(dma_addr & (PAGE_SIZE_2MB - 1)))
			is_huge_page_opt = false;
	}

	if (is_huge_page_opt) {
		page_size = PAGE_SIZE_2MB;
		total_npages /= PGS_IN_2MB_PAGE;
	}

	page_mask = ~(((u64) page_size) - 1);

690 691
	phys_pg_pack->pages = kvmalloc_array(total_npages, sizeof(u64),
						GFP_KERNEL);
692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748
	if (!phys_pg_pack->pages) {
		rc = -ENOMEM;
		goto page_pack_arr_mem_err;
	}

	phys_pg_pack->npages = total_npages;
	phys_pg_pack->page_size = page_size;
	phys_pg_pack->total_size = total_npages * page_size;

	j = 0;
	for_each_sg(userptr->sgt->sgl, sg, userptr->sgt->nents, i) {
		npages = get_sg_info(sg, &dma_addr);

		/* align down to physical page size and save the offset */
		if (first) {
			first = false;
			phys_pg_pack->offset = dma_addr & (page_size - 1);
			dma_addr &= page_mask;
		}

		while (npages) {
			phys_pg_pack->pages[j++] = dma_addr;
			dma_addr += page_size;

			if (is_huge_page_opt)
				npages -= PGS_IN_2MB_PAGE;
			else
				npages--;
		}
	}

	*pphys_pg_pack = phys_pg_pack;

	return 0;

page_pack_arr_mem_err:
	kfree(phys_pg_pack);

	return rc;
}

/*
 * map_phys_page_pack - maps the physical page pack
 *
 * @ctx                : current context
 * @vaddr              : start address of the virtual area to map from
 * @phys_pg_pack       : the pack of physical pages to map to
 *
 * This function does the following:
 * - Maps each chunk of virtual memory to matching physical chunk
 * - Stores number of successful mappings in the given argument
 * - Returns 0 on success, error code otherwise.
 */
static int map_phys_page_pack(struct hl_ctx *ctx, u64 vaddr,
		struct hl_vm_phys_pg_pack *phys_pg_pack)
{
	struct hl_device *hdev = ctx->hdev;
749
	u64 next_vaddr = vaddr, paddr, mapped_pg_cnt = 0, i;
750
	u32 page_size = phys_pg_pack->page_size;
751
	int rc = 0;
752 753 754 755 756 757 758

	for (i = 0 ; i < phys_pg_pack->npages ; i++) {
		paddr = phys_pg_pack->pages[i];

		rc = hl_mmu_map(ctx, next_vaddr, paddr, page_size);
		if (rc) {
			dev_err(hdev->dev,
759
				"map failed for handle %u, npages: %llu, mapped: %llu",
760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919
				phys_pg_pack->handle, phys_pg_pack->npages,
				mapped_pg_cnt);
			goto err;
		}

		mapped_pg_cnt++;
		next_vaddr += page_size;
	}

	return 0;

err:
	next_vaddr = vaddr;
	for (i = 0 ; i < mapped_pg_cnt ; i++) {
		if (hl_mmu_unmap(ctx, next_vaddr, page_size))
			dev_warn_ratelimited(hdev->dev,
				"failed to unmap handle %u, va: 0x%llx, pa: 0x%llx, page size: %u\n",
					phys_pg_pack->handle, next_vaddr,
					phys_pg_pack->pages[i], page_size);

		next_vaddr += page_size;
	}

	return rc;
}

static int get_paddr_from_handle(struct hl_ctx *ctx, struct hl_mem_in *args,
				u64 *paddr)
{
	struct hl_device *hdev = ctx->hdev;
	struct hl_vm *vm = &hdev->vm;
	struct hl_vm_phys_pg_pack *phys_pg_pack;
	u32 handle;

	handle = lower_32_bits(args->map_device.handle);
	spin_lock(&vm->idr_lock);
	phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
	if (!phys_pg_pack) {
		spin_unlock(&vm->idr_lock);
		dev_err(hdev->dev, "no match for handle %u\n", handle);
		return -EINVAL;
	}

	*paddr = phys_pg_pack->pages[0];

	spin_unlock(&vm->idr_lock);

	return 0;
}

/*
 * map_device_va - map the given memory
 *
 * @ctx	         : current context
 * @args         : host parameters with handle/host virtual address
 * @device_addr	 : pointer to result device virtual address
 *
 * This function does the following:
 * - If given a physical device memory handle, map to a device virtual block
 *   and return the start address of this block
 * - If given a host virtual address and size, find the related physical pages,
 *   map a device virtual block to this pages and return the start address of
 *   this block
 */
static int map_device_va(struct hl_ctx *ctx, struct hl_mem_in *args,
		u64 *device_addr)
{
	struct hl_device *hdev = ctx->hdev;
	struct hl_vm *vm = &hdev->vm;
	struct hl_vm_phys_pg_pack *phys_pg_pack;
	struct hl_userptr *userptr = NULL;
	struct hl_vm_hash_node *hnode;
	enum vm_type_t *vm_type;
	u64 ret_vaddr, hint_addr;
	u32 handle = 0;
	int rc;
	bool is_userptr = args->flags & HL_MEM_USERPTR;

	/* Assume failure */
	*device_addr = 0;

	if (is_userptr) {
		rc = get_userptr_from_host_va(hdev, args, &userptr);
		if (rc) {
			dev_err(hdev->dev, "failed to get userptr from va\n");
			return rc;
		}

		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
				&phys_pg_pack);
		if (rc) {
			dev_err(hdev->dev,
				"unable to init page pack for vaddr 0x%llx\n",
				args->map_host.host_virt_addr);
			goto init_page_pack_err;
		}

		vm_type = (enum vm_type_t *) userptr;
		hint_addr = args->map_host.hint_addr;
	} else {
		handle = lower_32_bits(args->map_device.handle);

		spin_lock(&vm->idr_lock);
		phys_pg_pack = idr_find(&vm->phys_pg_pack_handles, handle);
		if (!phys_pg_pack) {
			spin_unlock(&vm->idr_lock);
			dev_err(hdev->dev,
				"no match for handle %u\n", handle);
			return -EINVAL;
		}

		/* increment now to avoid freeing device memory while mapping */
		atomic_inc(&phys_pg_pack->mapping_cnt);

		spin_unlock(&vm->idr_lock);

		vm_type = (enum vm_type_t *) phys_pg_pack;

		hint_addr = args->map_device.hint_addr;
	}

	/*
	 * relevant for mapping device physical memory only, as host memory is
	 * implicitly shared
	 */
	if (!is_userptr && !(phys_pg_pack->flags & HL_MEM_SHARED) &&
			phys_pg_pack->asid != ctx->asid) {
		dev_err(hdev->dev,
			"Failed to map memory, handle %u is not shared\n",
			handle);
		rc = -EPERM;
		goto shared_err;
	}

	hnode = kzalloc(sizeof(*hnode), GFP_KERNEL);
	if (!hnode) {
		rc = -ENOMEM;
		goto hnode_err;
	}

	ret_vaddr = get_va_block(hdev,
			is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
			phys_pg_pack->total_size, hint_addr, is_userptr);
	if (!ret_vaddr) {
		dev_err(hdev->dev, "no available va block for handle %u\n",
				handle);
		rc = -ENOMEM;
		goto va_block_err;
	}

	mutex_lock(&ctx->mmu_lock);

	rc = map_phys_page_pack(ctx, ret_vaddr, phys_pg_pack);
	if (rc) {
		mutex_unlock(&ctx->mmu_lock);
		dev_err(hdev->dev, "mapping page pack failed for handle %u\n",
				handle);
		goto map_err;
	}

920
	hdev->asic_funcs->mmu_invalidate_cache(hdev, false);
921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979

	mutex_unlock(&ctx->mmu_lock);

	ret_vaddr += phys_pg_pack->offset;

	hnode->ptr = vm_type;
	hnode->vaddr = ret_vaddr;

	mutex_lock(&ctx->mem_hash_lock);
	hash_add(ctx->mem_hash, &hnode->node, ret_vaddr);
	mutex_unlock(&ctx->mem_hash_lock);

	*device_addr = ret_vaddr;

	if (is_userptr)
		free_phys_pg_pack(hdev, phys_pg_pack);

	return 0;

map_err:
	if (add_va_block(hdev,
			is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
			ret_vaddr,
			ret_vaddr + phys_pg_pack->total_size - 1))
		dev_warn(hdev->dev,
			"release va block failed for handle 0x%x, vaddr: 0x%llx\n",
				handle, ret_vaddr);

va_block_err:
	kfree(hnode);
hnode_err:
shared_err:
	atomic_dec(&phys_pg_pack->mapping_cnt);
	if (is_userptr)
		free_phys_pg_pack(hdev, phys_pg_pack);
init_page_pack_err:
	if (is_userptr)
		free_userptr(hdev, userptr);

	return rc;
}

/*
 * unmap_device_va      - unmap the given device virtual address
 *
 * @ctx                 : current context
 * @vaddr               : device virtual address to unmap
 *
 * This function does the following:
 * - Unmap the physical pages related to the given virtual address
 * - return the device virtual block to the virtual block list
 */
static int unmap_device_va(struct hl_ctx *ctx, u64 vaddr)
{
	struct hl_device *hdev = ctx->hdev;
	struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
	struct hl_vm_hash_node *hnode = NULL;
	struct hl_userptr *userptr = NULL;
	enum vm_type_t *vm_type;
980
	u64 next_vaddr, i;
981 982
	u32 page_size;
	bool is_userptr;
983
	int rc;
984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038

	/* protect from double entrance */
	mutex_lock(&ctx->mem_hash_lock);
	hash_for_each_possible(ctx->mem_hash, hnode, node, (unsigned long)vaddr)
		if (vaddr == hnode->vaddr)
			break;

	if (!hnode) {
		mutex_unlock(&ctx->mem_hash_lock);
		dev_err(hdev->dev,
			"unmap failed, no mem hnode for vaddr 0x%llx\n",
			vaddr);
		return -EINVAL;
	}

	hash_del(&hnode->node);
	mutex_unlock(&ctx->mem_hash_lock);

	vm_type = hnode->ptr;

	if (*vm_type == VM_TYPE_USERPTR) {
		is_userptr = true;
		userptr = hnode->ptr;
		rc = init_phys_pg_pack_from_userptr(ctx, userptr,
				&phys_pg_pack);
		if (rc) {
			dev_err(hdev->dev,
				"unable to init page pack for vaddr 0x%llx\n",
				vaddr);
			goto vm_type_err;
		}
	} else if (*vm_type == VM_TYPE_PHYS_PACK) {
		is_userptr = false;
		phys_pg_pack = hnode->ptr;
	} else {
		dev_warn(hdev->dev,
			"unmap failed, unknown vm desc for vaddr 0x%llx\n",
				vaddr);
		rc = -EFAULT;
		goto vm_type_err;
	}

	if (atomic_read(&phys_pg_pack->mapping_cnt) == 0) {
		dev_err(hdev->dev, "vaddr 0x%llx is not mapped\n", vaddr);
		rc = -EINVAL;
		goto mapping_cnt_err;
	}

	page_size = phys_pg_pack->page_size;
	vaddr &= ~(((u64) page_size) - 1);

	next_vaddr = vaddr;

	mutex_lock(&ctx->mmu_lock);

1039
	for (i = 0 ; i < phys_pg_pack->npages ; i++, next_vaddr += page_size) {
1040 1041
		if (hl_mmu_unmap(ctx, next_vaddr, page_size))
			dev_warn_ratelimited(hdev->dev,
1042 1043 1044 1045 1046 1047 1048 1049
			"unmap failed for vaddr: 0x%llx\n", next_vaddr);

		/* unmapping on Palladium can be really long, so avoid a CPU
		 * soft lockup bug by sleeping a little between unmapping pages
		 */
		if (hdev->pldm)
			usleep_range(500, 1000);
	}
1050

1051
	hdev->asic_funcs->mmu_invalidate_cache(hdev, true);
1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082

	mutex_unlock(&ctx->mmu_lock);

	if (add_va_block(hdev,
			is_userptr ? &ctx->host_va_range : &ctx->dram_va_range,
			vaddr,
			vaddr + phys_pg_pack->total_size - 1))
		dev_warn(hdev->dev, "add va block failed for vaddr: 0x%llx\n",
				vaddr);

	atomic_dec(&phys_pg_pack->mapping_cnt);
	kfree(hnode);

	if (is_userptr) {
		free_phys_pg_pack(hdev, phys_pg_pack);
		free_userptr(hdev, userptr);
	}

	return 0;

mapping_cnt_err:
	if (is_userptr)
		free_phys_pg_pack(hdev, phys_pg_pack);
vm_type_err:
	mutex_lock(&ctx->mem_hash_lock);
	hash_add(ctx->mem_hash, &hnode->node, vaddr);
	mutex_unlock(&ctx->mem_hash_lock);

	return rc;
}

1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140
static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
{
	struct hl_device *hdev = hpriv->hdev;
	struct hl_ctx *ctx = hpriv->ctx;
	u64 device_addr = 0;
	u32 handle = 0;
	int rc;

	switch (args->in.op) {
	case HL_MEM_OP_ALLOC:
		if (args->in.alloc.mem_size == 0) {
			dev_err(hdev->dev,
				"alloc size must be larger than 0\n");
			rc = -EINVAL;
			goto out;
		}

		/* Force contiguous as there are no real MMU
		 * translations to overcome physical memory gaps
		 */
		args->in.flags |= HL_MEM_CONTIGUOUS;
		rc = alloc_device_memory(ctx, &args->in, &handle);

		memset(args, 0, sizeof(*args));
		args->out.handle = (__u64) handle;
		break;

	case HL_MEM_OP_FREE:
		rc = free_device_memory(ctx, args->in.free.handle);
		break;

	case HL_MEM_OP_MAP:
		if (args->in.flags & HL_MEM_USERPTR) {
			device_addr = args->in.map_host.host_virt_addr;
			rc = 0;
		} else {
			rc = get_paddr_from_handle(ctx, &args->in,
					&device_addr);
		}

		memset(args, 0, sizeof(*args));
		args->out.device_virt_addr = device_addr;
		break;

	case HL_MEM_OP_UNMAP:
		rc = 0;
		break;

	default:
		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
		rc = -ENOTTY;
		break;
	}

out:
	return rc;
}

1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
{
	union hl_mem_args *args = data;
	struct hl_device *hdev = hpriv->hdev;
	struct hl_ctx *ctx = hpriv->ctx;
	u64 device_addr = 0;
	u32 handle = 0;
	int rc;

	if (hl_device_disabled_or_in_reset(hdev)) {
		dev_warn_ratelimited(hdev->dev,
1152 1153
			"Device is %s. Can't execute MEMORY IOCTL\n",
			atomic_read(&hdev->in_reset) ? "in_reset" : "disabled");
1154 1155 1156
		return -EBUSY;
	}

1157 1158
	if (!hdev->mmu_enable)
		return mem_ioctl_no_mmu(hpriv, args);
1159

1160 1161 1162 1163 1164 1165
	switch (args->in.op) {
	case HL_MEM_OP_ALLOC:
		if (!hdev->dram_supports_virtual_memory) {
			dev_err(hdev->dev, "DRAM alloc is not supported\n");
			rc = -EINVAL;
			goto out;
1166 1167
		}

1168 1169 1170 1171 1172 1173 1174
		if (args->in.alloc.mem_size == 0) {
			dev_err(hdev->dev,
				"alloc size must be larger than 0\n");
			rc = -EINVAL;
			goto out;
		}
		rc = alloc_device_memory(ctx, &args->in, &handle);
1175

1176 1177 1178
		memset(args, 0, sizeof(*args));
		args->out.handle = (__u64) handle;
		break;
1179

1180 1181 1182
	case HL_MEM_OP_FREE:
		rc = free_device_memory(ctx, args->in.free.handle);
		break;
1183

1184 1185
	case HL_MEM_OP_MAP:
		rc = map_device_va(ctx, &args->in, &device_addr);
1186

1187 1188 1189
		memset(args, 0, sizeof(*args));
		args->out.device_virt_addr = device_addr;
		break;
1190

1191 1192 1193 1194
	case HL_MEM_OP_UNMAP:
		rc = unmap_device_va(ctx,
				args->in.unmap.device_virt_addr);
		break;
1195

1196 1197 1198 1199
	default:
		dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
		rc = -ENOTTY;
		break;
1200 1201 1202 1203 1204
	}

out:
	return rc;
}
1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217

/*
 * hl_pin_host_memory - pins a chunk of host memory
 *
 * @hdev                : pointer to the habanalabs device structure
 * @addr                : the user-space virtual address of the memory area
 * @size                : the size of the memory area
 * @userptr	        : pointer to hl_userptr structure
 *
 * This function does the following:
 * - Pins the physical pages
 * - Create a SG list from those pages
 */
1218
int hl_pin_host_memory(struct hl_device *hdev, u64 addr, u64 size,
1219 1220 1221 1222 1223 1224 1225
			struct hl_userptr *userptr)
{
	u64 start, end;
	u32 npages, offset;
	int rc;

	if (!size) {
1226
		dev_err(hdev->dev, "size to pin is invalid - %llu\n", size);
1227 1228 1229 1230
		return -EINVAL;
	}

	if (!access_ok((void __user *) (uintptr_t) addr, size)) {
1231
		dev_err(hdev->dev, "user pointer is invalid - 0x%llx\n", addr);
1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
		return -EFAULT;
	}

	/*
	 * If the combination of the address and size requested for this memory
	 * region causes an integer overflow, return error.
	 */
	if (((addr + size) < addr) ||
			PAGE_ALIGN(addr + size) < (addr + size)) {
		dev_err(hdev->dev,
1242
			"user pointer 0x%llx + %llu causes integer overflow\n",
1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
			addr, size);
		return -EINVAL;
	}

	start = addr & PAGE_MASK;
	offset = addr & ~PAGE_MASK;
	end = PAGE_ALIGN(addr + size);
	npages = (end - start) >> PAGE_SHIFT;

	userptr->size = size;
	userptr->addr = addr;
	userptr->dma_mapped = false;
	INIT_LIST_HEAD(&userptr->job_node);

	userptr->vec = frame_vector_create(npages);
	if (!userptr->vec) {
		dev_err(hdev->dev, "Failed to create frame vector\n");
		return -ENOMEM;
	}

	rc = get_vaddr_frames(start, npages, FOLL_FORCE | FOLL_WRITE,
				userptr->vec);

	if (rc != npages) {
		dev_err(hdev->dev,
			"Failed to map host memory, user ptr probably wrong\n");
		if (rc < 0)
			goto destroy_framevec;
		rc = -EFAULT;
		goto put_framevec;
	}

	if (frame_vector_to_pages(userptr->vec) < 0) {
		dev_err(hdev->dev,
			"Failed to translate frame vector to pages\n");
		rc = -EFAULT;
		goto put_framevec;
	}

	userptr->sgt = kzalloc(sizeof(*userptr->sgt), GFP_ATOMIC);
	if (!userptr->sgt) {
		rc = -ENOMEM;
		goto put_framevec;
	}

	rc = sg_alloc_table_from_pages(userptr->sgt,
					frame_vector_pages(userptr->vec),
					npages, offset, size, GFP_ATOMIC);
	if (rc < 0) {
		dev_err(hdev->dev, "failed to create SG table from pages\n");
		goto free_sgt;
	}

1296 1297
	hl_debugfs_add_userptr(hdev, userptr);

1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322
	return 0;

free_sgt:
	kfree(userptr->sgt);
put_framevec:
	put_vaddr_frames(userptr->vec);
destroy_framevec:
	frame_vector_destroy(userptr->vec);
	return rc;
}

/*
 * hl_unpin_host_memory - unpins a chunk of host memory
 *
 * @hdev                : pointer to the habanalabs device structure
 * @userptr             : pointer to hl_userptr structure
 *
 * This function does the following:
 * - Unpins the physical pages related to the host memory
 * - Free the SG list
 */
int hl_unpin_host_memory(struct hl_device *hdev, struct hl_userptr *userptr)
{
	struct page **pages;

1323 1324
	hl_debugfs_remove_userptr(hdev, userptr);

1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393
	if (userptr->dma_mapped)
		hdev->asic_funcs->hl_dma_unmap_sg(hdev,
				userptr->sgt->sgl,
				userptr->sgt->nents,
				userptr->dir);

	pages = frame_vector_pages(userptr->vec);
	if (!IS_ERR(pages)) {
		int i;

		for (i = 0; i < frame_vector_count(userptr->vec); i++)
			set_page_dirty_lock(pages[i]);
	}
	put_vaddr_frames(userptr->vec);
	frame_vector_destroy(userptr->vec);

	list_del(&userptr->job_node);

	sg_free_table(userptr->sgt);
	kfree(userptr->sgt);

	return 0;
}

/*
 * hl_userptr_delete_list - clear userptr list
 *
 * @hdev                : pointer to the habanalabs device structure
 * @userptr_list        : pointer to the list to clear
 *
 * This function does the following:
 * - Iterates over the list and unpins the host memory and frees the userptr
 *   structure.
 */
void hl_userptr_delete_list(struct hl_device *hdev,
				struct list_head *userptr_list)
{
	struct hl_userptr *userptr, *tmp;

	list_for_each_entry_safe(userptr, tmp, userptr_list, job_node) {
		hl_unpin_host_memory(hdev, userptr);
		kfree(userptr);
	}

	INIT_LIST_HEAD(userptr_list);
}

/*
 * hl_userptr_is_pinned - returns whether the given userptr is pinned
 *
 * @hdev                : pointer to the habanalabs device structure
 * @userptr_list        : pointer to the list to clear
 * @userptr             : pointer to userptr to check
 *
 * This function does the following:
 * - Iterates over the list and checks if the given userptr is in it, means is
 *   pinned. If so, returns true, otherwise returns false.
 */
bool hl_userptr_is_pinned(struct hl_device *hdev, u64 addr,
				u32 size, struct list_head *userptr_list,
				struct hl_userptr **userptr)
{
	list_for_each_entry((*userptr), userptr_list, job_node) {
		if ((addr == (*userptr)->addr) && (size == (*userptr)->size))
			return true;
	}

	return false;
}
1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455

/*
 * hl_va_range_init - initialize virtual addresses range
 *
 * @hdev                : pointer to the habanalabs device structure
 * @va_range            : pointer to the range to initialize
 * @start               : range start address
 * @end                 : range end address
 *
 * This function does the following:
 * - Initializes the virtual addresses list of the given range with the given
 *   addresses.
 */
static int hl_va_range_init(struct hl_device *hdev,
		struct hl_va_range *va_range, u64 start, u64 end)
{
	int rc;

	INIT_LIST_HEAD(&va_range->list);

	/* PAGE_SIZE alignment */

	if (start & (PAGE_SIZE - 1)) {
		start &= PAGE_MASK;
		start += PAGE_SIZE;
	}

	if (end & (PAGE_SIZE - 1))
		end &= PAGE_MASK;

	if (start >= end) {
		dev_err(hdev->dev, "too small vm range for va list\n");
		return -EFAULT;
	}

	rc = add_va_block(hdev, va_range, start, end);

	if (rc) {
		dev_err(hdev->dev, "Failed to init host va list\n");
		return rc;
	}

	va_range->start_addr = start;
	va_range->end_addr = end;

	return 0;
}

/*
 * hl_vm_ctx_init_with_ranges - initialize virtual memory for context
 *
 * @ctx                 : pointer to the habanalabs context structure
 * @host_range_start    : host virtual addresses range start
 * @host_range_end      : host virtual addresses range end
 * @dram_range_start    : dram virtual addresses range start
 * @dram_range_end      : dram virtual addresses range end
 *
 * This function initializes the following:
 * - MMU for context
 * - Virtual address to area descriptor hashtable
 * - Virtual block list of available virtual memory
 */
1456
static int hl_vm_ctx_init_with_ranges(struct hl_ctx *ctx, u64 host_range_start,
1457 1458 1459 1460 1461 1462
				u64 host_range_end, u64 dram_range_start,
				u64 dram_range_end)
{
	struct hl_device *hdev = ctx->hdev;
	int rc;

1463 1464 1465 1466 1467
	rc = hl_mmu_ctx_init(ctx);
	if (rc) {
		dev_err(hdev->dev, "failed to init context %d\n", ctx->asid);
		return rc;
	}
1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489

	mutex_init(&ctx->mem_hash_lock);
	hash_init(ctx->mem_hash);

	mutex_init(&ctx->host_va_range.lock);

	rc = hl_va_range_init(hdev, &ctx->host_va_range, host_range_start,
			host_range_end);
	if (rc) {
		dev_err(hdev->dev, "failed to init host vm range\n");
		goto host_vm_err;
	}

	mutex_init(&ctx->dram_va_range.lock);

	rc = hl_va_range_init(hdev, &ctx->dram_va_range, dram_range_start,
			dram_range_end);
	if (rc) {
		dev_err(hdev->dev, "failed to init dram vm range\n");
		goto dram_vm_err;
	}

1490 1491
	hl_debugfs_add_ctx_mem_hash(hdev, ctx);

1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613
	return 0;

dram_vm_err:
	mutex_destroy(&ctx->dram_va_range.lock);

	mutex_lock(&ctx->host_va_range.lock);
	clear_va_list_locked(hdev, &ctx->host_va_range.list);
	mutex_unlock(&ctx->host_va_range.lock);
host_vm_err:
	mutex_destroy(&ctx->host_va_range.lock);
	mutex_destroy(&ctx->mem_hash_lock);
	hl_mmu_ctx_fini(ctx);

	return rc;
}

int hl_vm_ctx_init(struct hl_ctx *ctx)
{
	struct asic_fixed_properties *prop = &ctx->hdev->asic_prop;
	u64 host_range_start, host_range_end, dram_range_start,
		dram_range_end;

	atomic64_set(&ctx->dram_phys_mem, 0);

	/*
	 * - If MMU is enabled, init the ranges as usual.
	 * - If MMU is disabled, in case of host mapping, the returned address
	 *   is the given one.
	 *   In case of DRAM mapping, the returned address is the physical
	 *   address of the memory related to the given handle.
	 */
	if (ctx->hdev->mmu_enable) {
		dram_range_start = prop->va_space_dram_start_address;
		dram_range_end = prop->va_space_dram_end_address;
		host_range_start = prop->va_space_host_start_address;
		host_range_end = prop->va_space_host_end_address;
	} else {
		dram_range_start = prop->dram_user_base_address;
		dram_range_end = prop->dram_end_address;
		host_range_start = prop->dram_user_base_address;
		host_range_end = prop->dram_end_address;
	}

	return hl_vm_ctx_init_with_ranges(ctx, host_range_start, host_range_end,
			dram_range_start, dram_range_end);
}

/*
 * hl_va_range_fini     - clear a virtual addresses range
 *
 * @hdev                : pointer to the habanalabs structure
 * va_range             : pointer to virtual addresses range
 *
 * This function initializes the following:
 * - Checks that the given range contains the whole initial range
 * - Frees the virtual addresses block list and its lock
 */
static void hl_va_range_fini(struct hl_device *hdev,
		struct hl_va_range *va_range)
{
	struct hl_vm_va_block *va_block;

	if (list_empty(&va_range->list)) {
		dev_warn(hdev->dev,
				"va list should not be empty on cleanup!\n");
		goto out;
	}

	if (!list_is_singular(&va_range->list)) {
		dev_warn(hdev->dev,
			"va list should not contain multiple blocks on cleanup!\n");
		goto free_va_list;
	}

	va_block = list_first_entry(&va_range->list, typeof(*va_block), node);

	if (va_block->start != va_range->start_addr ||
		va_block->end != va_range->end_addr) {
		dev_warn(hdev->dev,
			"wrong va block on cleanup, from 0x%llx to 0x%llx\n",
				va_block->start, va_block->end);
		goto free_va_list;
	}

free_va_list:
	mutex_lock(&va_range->lock);
	clear_va_list_locked(hdev, &va_range->list);
	mutex_unlock(&va_range->lock);

out:
	mutex_destroy(&va_range->lock);
}

/*
 * hl_vm_ctx_fini       - virtual memory teardown of context
 *
 * @ctx                 : pointer to the habanalabs context structure
 *
 * This function perform teardown the following:
 * - Virtual block list of available virtual memory
 * - Virtual address to area descriptor hashtable
 * - MMU for context
 *
 * In addition this function does the following:
 * - Unmaps the existing hashtable nodes if the hashtable is not empty. The
 *   hashtable should be empty as no valid mappings should exist at this
 *   point.
 * - Frees any existing physical page list from the idr which relates to the
 *   current context asid.
 * - This function checks the virtual block list for correctness. At this point
 *   the list should contain one element which describes the whole virtual
 *   memory range of the context. Otherwise, a warning is printed.
 */
void hl_vm_ctx_fini(struct hl_ctx *ctx)
{
	struct hl_device *hdev = ctx->hdev;
	struct hl_vm *vm = &hdev->vm;
	struct hl_vm_phys_pg_pack *phys_pg_list;
	struct hl_vm_hash_node *hnode;
	struct hlist_node *tmp_node;
	int i;

1614 1615
	hl_debugfs_remove_ctx_mem_hash(hdev, ctx);

1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631
	if (!hash_empty(ctx->mem_hash))
		dev_notice(hdev->dev, "ctx is freed while it has va in use\n");

	hash_for_each_safe(ctx->mem_hash, i, tmp_node, hnode, node) {
		dev_dbg(hdev->dev,
			"hl_mem_hash_node of vaddr 0x%llx of asid %d is still alive\n",
			hnode->vaddr, ctx->asid);
		unmap_device_va(ctx, hnode->vaddr);
	}

	spin_lock(&vm->idr_lock);
	idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_list, i)
		if (phys_pg_list->asid == ctx->asid) {
			dev_dbg(hdev->dev,
				"page list 0x%p of asid %d is still alive\n",
				phys_pg_list, ctx->asid);
1632 1633
			atomic64_sub(phys_pg_list->total_size,
					&hdev->dram_used_mem);
1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664
			free_phys_pg_pack(hdev, phys_pg_list);
			idr_remove(&vm->phys_pg_pack_handles, i);
		}
	spin_unlock(&vm->idr_lock);

	hl_va_range_fini(hdev, &ctx->dram_va_range);
	hl_va_range_fini(hdev, &ctx->host_va_range);

	mutex_destroy(&ctx->mem_hash_lock);
	hl_mmu_ctx_fini(ctx);
}

/*
 * hl_vm_init           - initialize virtual memory module
 *
 * @hdev                : pointer to the habanalabs device structure
 *
 * This function initializes the following:
 * - MMU module
 * - DRAM physical pages pool of 2MB
 * - Idr for device memory allocation handles
 */
int hl_vm_init(struct hl_device *hdev)
{
	struct asic_fixed_properties *prop = &hdev->asic_prop;
	struct hl_vm *vm = &hdev->vm;
	int rc;

	vm->dram_pg_pool = gen_pool_create(__ffs(prop->dram_page_size), -1);
	if (!vm->dram_pg_pool) {
		dev_err(hdev->dev, "Failed to create dram page pool\n");
1665
		return -ENOMEM;
1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721
	}

	kref_init(&vm->dram_pg_pool_refcount);

	rc = gen_pool_add(vm->dram_pg_pool, prop->dram_user_base_address,
			prop->dram_end_address - prop->dram_user_base_address,
			-1);

	if (rc) {
		dev_err(hdev->dev,
			"Failed to add memory to dram page pool %d\n", rc);
		goto pool_add_err;
	}

	spin_lock_init(&vm->idr_lock);
	idr_init(&vm->phys_pg_pack_handles);

	atomic64_set(&hdev->dram_used_mem, 0);

	vm->init_done = true;

	return 0;

pool_add_err:
	gen_pool_destroy(vm->dram_pg_pool);

	return rc;
}

/*
 * hl_vm_fini           - virtual memory module teardown
 *
 * @hdev                : pointer to the habanalabs device structure
 *
 * This function perform teardown to the following:
 * - Idr for device memory allocation handles
 * - DRAM physical pages pool of 2MB
 * - MMU module
 */
void hl_vm_fini(struct hl_device *hdev)
{
	struct hl_vm *vm = &hdev->vm;

	if (!vm->init_done)
		return;

	/*
	 * At this point all the contexts should be freed and hence no DRAM
	 * memory should be in use. Hence the DRAM pool should be freed here.
	 */
	if (kref_put(&vm->dram_pg_pool_refcount, dram_pg_pool_do_release) != 1)
		dev_warn(hdev->dev, "dram_pg_pool was not destroyed on %s\n",
				__func__);

	vm->init_done = false;
}