pci.c 188 KB
Newer Older
1
// SPDX-License-Identifier: GPL-2.0
Linus Torvalds's avatar
Linus Torvalds committed
2
/*
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3
 * PCI Bus Services, see include/linux/pci.h for further explanation.
Linus Torvalds's avatar
Linus Torvalds committed
4
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
5 6
 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
 * David Mosberger-Tang
Linus Torvalds's avatar
Linus Torvalds committed
7
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
8
 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
Linus Torvalds's avatar
Linus Torvalds committed
9 10
 */

11
#include <linux/acpi.h>
Linus Torvalds's avatar
Linus Torvalds committed
12 13
#include <linux/kernel.h>
#include <linux/delay.h>
14
#include <linux/dmi.h>
Linus Torvalds's avatar
Linus Torvalds committed
15
#include <linux/init.h>
16
#include <linux/msi.h>
17
#include <linux/of.h>
Linus Torvalds's avatar
Linus Torvalds committed
18
#include <linux/pci.h>
19
#include <linux/pm.h>
20
#include <linux/slab.h>
Linus Torvalds's avatar
Linus Torvalds committed
21 22
#include <linux/module.h>
#include <linux/spinlock.h>
Tim Schmielau's avatar
Tim Schmielau committed
23
#include <linux/string.h>
24
#include <linux/log2.h>
25
#include <linux/logic_pio.h>
26
#include <linux/pm_wakeup.h>
27
#include <linux/interrupt.h>
28
#include <linux/device.h>
29
#include <linux/pm_runtime.h>
30
#include <linux/pci_hotplug.h>
31
#include <linux/vmalloc.h>
32
#include <asm/dma.h>
33
#include <linux/aer.h>
34
#include <linux/bitfield.h>
35
#include "pci.h"
Linus Torvalds's avatar
Linus Torvalds committed
36

37 38
DEFINE_MUTEX(pci_slot_mutex);

39 40 41 42 43
const char *pci_power_names[] = {
	"error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
};
EXPORT_SYMBOL_GPL(pci_power_names);

44
#ifdef CONFIG_X86_32
45 46
int isa_dma_bridge_buggy;
EXPORT_SYMBOL(isa_dma_bridge_buggy);
47
#endif
48 49 50 51

int pci_pci_problems;
EXPORT_SYMBOL(pci_pci_problems);

52
unsigned int pci_pm_d3hot_delay;
53

54 55 56 57 58 59 60 61 62 63 64 65 66
static void pci_pme_list_scan(struct work_struct *work);

static LIST_HEAD(pci_pme_list);
static DEFINE_MUTEX(pci_pme_list_mutex);
static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);

struct pci_pme_device {
	struct list_head list;
	struct pci_dev *dev;
};

#define PME_TIMEOUT 1000 /* How long between PME checks */

67 68 69 70 71 72 73
/*
 * Following exit from Conventional Reset, devices must be ready within 1 sec
 * (PCIe r6.0 sec 6.6.1).  A D3cold to D0 transition implies a Conventional
 * Reset (PCIe r6.0 sec 5.8).
 */
#define PCI_RESET_WAIT 1000 /* msec */

74 75 76 77 78 79 80 81
/*
 * Devices may extend the 1 sec period through Request Retry Status
 * completions (PCIe r6.0 sec 2.3.1).  The spec does not provide an upper
 * limit, but 60 sec ought to be enough for any device to become
 * responsive.
 */
#define PCIE_RESET_READY_POLL_MS 60000 /* msec */

82 83
static void pci_dev_d3_sleep(struct pci_dev *dev)
{
84 85 86 87 88 89 90 91 92
	unsigned int delay_ms = max(dev->d3hot_delay, pci_pm_d3hot_delay);
	unsigned int upper;

	if (delay_ms) {
		/* Use a 20% upper bound, 1ms minimum */
		upper = max(DIV_ROUND_CLOSEST(delay_ms, 5), 1U);
		usleep_range(delay_ms * USEC_PER_MSEC,
			     (delay_ms + upper) * USEC_PER_MSEC);
	}
93
}
Linus Torvalds's avatar
Linus Torvalds committed
94

95 96 97 98 99
bool pci_reset_supported(struct pci_dev *dev)
{
	return dev->reset_methods[0] != 0;
}

100 101 102 103
#ifdef CONFIG_PCI_DOMAINS
int pci_domains_supported = 1;
#endif

104 105 106 107 108 109
#define DEFAULT_CARDBUS_IO_SIZE		(256)
#define DEFAULT_CARDBUS_MEM_SIZE	(64*1024*1024)
/* pci=cbmemsize=nnM,cbiosize=nn can override this */
unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;

110
#define DEFAULT_HOTPLUG_IO_SIZE		(256)
111 112 113
#define DEFAULT_HOTPLUG_MMIO_SIZE	(2*1024*1024)
#define DEFAULT_HOTPLUG_MMIO_PREF_SIZE	(2*1024*1024)
/* hpiosize=nn can override this */
114
unsigned long pci_hotplug_io_size  = DEFAULT_HOTPLUG_IO_SIZE;
115 116 117 118 119 120 121
/*
 * pci=hpmmiosize=nnM overrides non-prefetchable MMIO size,
 * pci=hpmmioprefsize=nnM overrides prefetchable MMIO size;
 * pci=hpmemsize=nnM overrides both
 */
unsigned long pci_hotplug_mmio_size = DEFAULT_HOTPLUG_MMIO_SIZE;
unsigned long pci_hotplug_mmio_pref_size = DEFAULT_HOTPLUG_MMIO_PREF_SIZE;
122

123 124 125
#define DEFAULT_HOTPLUG_BUS_SIZE	1
unsigned long pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;

126 127 128 129 130 131 132 133 134 135 136

/* PCIe MPS/MRRS strategy; can be overridden by kernel command-line param */
#ifdef CONFIG_PCIE_BUS_TUNE_OFF
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
#elif defined CONFIG_PCIE_BUS_SAFE
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_SAFE;
#elif defined CONFIG_PCIE_BUS_PERFORMANCE
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PERFORMANCE;
#elif defined CONFIG_PCIE_BUS_PEER2PEER
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_PEER2PEER;
#else
137
enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_DEFAULT;
138
#endif
139

140 141 142 143 144 145
/*
 * The default CLS is used if arch didn't set CLS explicitly and not
 * all pci devices agree on the same value.  Arch can override either
 * the dfl or actual value as it sees fit.  Don't forget this is
 * measured in 32-bit words, not bytes.
 */
Bill Pemberton's avatar
Bill Pemberton committed
146
u8 pci_dfl_cache_line_size = L1_CACHE_BYTES >> 2;
147 148
u8 pci_cache_line_size;

149 150 151 152 153 154
/*
 * If we set up a device for bus mastering, we need to check the latency
 * timer as certain BIOSes forget to set it properly.
 */
unsigned int pcibios_max_latency = 255;

155 156 157
/* If set, the PCIe ARI capability will not be used. */
static bool pcie_ari_disabled;

158 159 160
/* If set, the PCIe ATS capability will not be used. */
static bool pcie_ats_disabled;

161 162 163
/* If set, the PCI config space of each device is printed during boot. */
bool pci_early_dump;

164 165 166 167
bool pci_ats_disabled(void)
{
	return pcie_ats_disabled;
}
168
EXPORT_SYMBOL_GPL(pci_ats_disabled);
169

170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
/* Disable bridge_d3 for all PCIe ports */
static bool pci_bridge_d3_disable;
/* Force bridge_d3 for all PCIe ports */
static bool pci_bridge_d3_force;

static int __init pcie_port_pm_setup(char *str)
{
	if (!strcmp(str, "off"))
		pci_bridge_d3_disable = true;
	else if (!strcmp(str, "force"))
		pci_bridge_d3_force = true;
	return 1;
}
__setup("pcie_port_pm=", pcie_port_pm_setup);

Linus Torvalds's avatar
Linus Torvalds committed
185 186 187 188 189 190 191
/**
 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
 * @bus: pointer to PCI bus structure to search
 *
 * Given a PCI bus, returns the highest PCI bus number present in the set
 * including the given PCI bus and its list of child PCI buses.
 */
192
unsigned char pci_bus_max_busnr(struct pci_bus *bus)
Linus Torvalds's avatar
Linus Torvalds committed
193
{
194
	struct pci_bus *tmp;
Linus Torvalds's avatar
Linus Torvalds committed
195 196
	unsigned char max, n;

197
	max = bus->busn_res.end;
198 199
	list_for_each_entry(tmp, &bus->children, node) {
		n = pci_bus_max_busnr(tmp);
Ryan Desfosses's avatar
Ryan Desfosses committed
200
		if (n > max)
Linus Torvalds's avatar
Linus Torvalds committed
201 202 203 204
			max = n;
	}
	return max;
}
205
EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
Linus Torvalds's avatar
Linus Torvalds committed
206

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
/**
 * pci_status_get_and_clear_errors - return and clear error bits in PCI_STATUS
 * @pdev: the PCI device
 *
 * Returns error bits set in PCI_STATUS and clears them.
 */
int pci_status_get_and_clear_errors(struct pci_dev *pdev)
{
	u16 status;
	int ret;

	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
	if (ret != PCIBIOS_SUCCESSFUL)
		return -EIO;

	status &= PCI_STATUS_ERROR_BITS;
	if (status)
		pci_write_config_word(pdev, PCI_STATUS, status);

	return status;
}
EXPORT_SYMBOL_GPL(pci_status_get_and_clear_errors);

230
#ifdef CONFIG_HAS_IOMEM
231 232
static void __iomem *__pci_ioremap_resource(struct pci_dev *pdev, int bar,
					    bool write_combine)
233
{
234
	struct resource *res = &pdev->resource[bar];
235 236
	resource_size_t start = res->start;
	resource_size_t size = resource_size(res);
237

238 239 240
	/*
	 * Make sure the BAR is actually a memory resource, not an IO resource
	 */
241
	if (res->flags & IORESOURCE_UNSET || !(res->flags & IORESOURCE_MEM)) {
242
		pci_err(pdev, "can't ioremap BAR %d: %pR\n", bar, res);
243 244
		return NULL;
	}
245 246 247 248 249 250 251 252 253 254

	if (write_combine)
		return ioremap_wc(start, size);

	return ioremap(start, size);
}

void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
{
	return __pci_ioremap_resource(pdev, bar, false);
255 256
}
EXPORT_SYMBOL_GPL(pci_ioremap_bar);
257 258 259

void __iomem *pci_ioremap_wc_bar(struct pci_dev *pdev, int bar)
{
260
	return __pci_ioremap_resource(pdev, bar, true);
261 262
}
EXPORT_SYMBOL_GPL(pci_ioremap_wc_bar);
263 264
#endif

265 266
/**
 * pci_dev_str_match_path - test if a path string matches a device
Bjorn Helgaas's avatar
Bjorn Helgaas committed
267 268
 * @dev: the PCI device to test
 * @path: string to match the device against
269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
 * @endptr: pointer to the string after the match
 *
 * Test if a string (typically from a kernel parameter) formatted as a
 * path of device/function addresses matches a PCI device. The string must
 * be of the form:
 *
 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
 *
 * A path for a device can be obtained using 'lspci -t'.  Using a path
 * is more robust against bus renumbering than using only a single bus,
 * device and function address.
 *
 * Returns 1 if the string matches the device, 0 if it does not and
 * a negative error code if it fails to parse the string.
 */
static int pci_dev_str_match_path(struct pci_dev *dev, const char *path,
				  const char **endptr)
{
	int ret;
288
	unsigned int seg, bus, slot, func;
289 290 291 292 293
	char *wpath, *p;
	char end;

	*endptr = strchrnul(path, ';');

294
	wpath = kmemdup_nul(path, *endptr - path, GFP_ATOMIC);
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
	if (!wpath)
		return -ENOMEM;

	while (1) {
		p = strrchr(wpath, '/');
		if (!p)
			break;
		ret = sscanf(p, "/%x.%x%c", &slot, &func, &end);
		if (ret != 2) {
			ret = -EINVAL;
			goto free_and_exit;
		}

		if (dev->devfn != PCI_DEVFN(slot, func)) {
			ret = 0;
			goto free_and_exit;
		}

		/*
		 * Note: we don't need to get a reference to the upstream
		 * bridge because we hold a reference to the top level
		 * device which should hold a reference to the bridge,
		 * and so on.
		 */
		dev = pci_upstream_bridge(dev);
		if (!dev) {
			ret = 0;
			goto free_and_exit;
		}

		*p = 0;
	}

	ret = sscanf(wpath, "%x:%x:%x.%x%c", &seg, &bus, &slot,
		     &func, &end);
	if (ret != 4) {
		seg = 0;
		ret = sscanf(wpath, "%x:%x.%x%c", &bus, &slot, &func, &end);
		if (ret != 3) {
			ret = -EINVAL;
			goto free_and_exit;
		}
	}

	ret = (seg == pci_domain_nr(dev->bus) &&
	       bus == dev->bus->number &&
	       dev->devfn == PCI_DEVFN(slot, func));

free_and_exit:
	kfree(wpath);
	return ret;
}

348 349
/**
 * pci_dev_str_match - test if a string matches a device
Bjorn Helgaas's avatar
Bjorn Helgaas committed
350 351
 * @dev: the PCI device to test
 * @p: string to match the device against
352 353 354 355 356
 * @endptr: pointer to the string after the match
 *
 * Test if a string (typically from a kernel parameter) matches a specified
 * PCI device. The string may be of one of the following formats:
 *
357
 *   [<domain>:]<bus>:<device>.<func>[/<device>.<func>]*
358 359 360 361 362
 *   pci:<vendor>:<device>[:<subvendor>:<subdevice>]
 *
 * The first format specifies a PCI bus/device/function address which
 * may change if new hardware is inserted, if motherboard firmware changes,
 * or due to changes caused in kernel parameters. If the domain is
363 364 365 366
 * left unspecified, it is taken to be 0.  In order to be robust against
 * bus renumbering issues, a path of PCI device/function numbers may be used
 * to address the specific device.  The path for a device can be determined
 * through the use of 'lspci -t'.
367 368 369 370 371 372 373 374 375 376 377 378 379 380 381
 *
 * The second format matches devices using IDs in the configuration
 * space which may match multiple devices in the system. A value of 0
 * for any field will match all devices. (Note: this differs from
 * in-kernel code that uses PCI_ANY_ID which is ~0; this is for
 * legacy reasons and convenience so users don't have to specify
 * FFFFFFFFs on the command line.)
 *
 * Returns 1 if the string matches the device, 0 if it does not and
 * a negative error code if the string cannot be parsed.
 */
static int pci_dev_str_match(struct pci_dev *dev, const char *p,
			     const char **endptr)
{
	int ret;
382
	int count;
383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408
	unsigned short vendor, device, subsystem_vendor, subsystem_device;

	if (strncmp(p, "pci:", 4) == 0) {
		/* PCI vendor/device (subvendor/subdevice) IDs are specified */
		p += 4;
		ret = sscanf(p, "%hx:%hx:%hx:%hx%n", &vendor, &device,
			     &subsystem_vendor, &subsystem_device, &count);
		if (ret != 4) {
			ret = sscanf(p, "%hx:%hx%n", &vendor, &device, &count);
			if (ret != 2)
				return -EINVAL;

			subsystem_vendor = 0;
			subsystem_device = 0;
		}

		p += count;

		if ((!vendor || vendor == dev->vendor) &&
		    (!device || device == dev->device) &&
		    (!subsystem_vendor ||
			    subsystem_vendor == dev->subsystem_vendor) &&
		    (!subsystem_device ||
			    subsystem_device == dev->subsystem_device))
			goto found;
	} else {
409 410
		/*
		 * PCI Bus, Device, Function IDs are specified
Bjorn Helgaas's avatar
Bjorn Helgaas committed
411
		 * (optionally, may include a path of devfns following it)
412 413 414 415 416
		 */
		ret = pci_dev_str_match_path(dev, p, &p);
		if (ret < 0)
			return ret;
		else if (ret)
417 418 419 420 421 422 423 424 425 426
			goto found;
	}

	*endptr = p;
	return 0;

found:
	*endptr = p;
	return 1;
}
427

428 429
static u8 __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
				  u8 pos, int cap, int *ttl)
430 431
{
	u8 id;
432 433 434
	u16 ent;

	pci_bus_read_config_byte(bus, devfn, pos, &pos);
435

436
	while ((*ttl)--) {
437 438 439
		if (pos < 0x40)
			break;
		pos &= ~3;
440 441 442
		pci_bus_read_config_word(bus, devfn, pos, &ent);

		id = ent & 0xff;
443 444 445 446
		if (id == 0xff)
			break;
		if (id == cap)
			return pos;
447
		pos = (ent >> 8);
448 449 450 451
	}
	return 0;
}

452 453
static u8 __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
			      u8 pos, int cap)
454 455 456 457 458 459
{
	int ttl = PCI_FIND_CAP_TTL;

	return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
}

460
u8 pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
461 462 463 464 465 466
{
	return __pci_find_next_cap(dev->bus, dev->devfn,
				   pos + PCI_CAP_LIST_NEXT, cap);
}
EXPORT_SYMBOL_GPL(pci_find_next_capability);

467
static u8 __pci_bus_find_cap_start(struct pci_bus *bus,
468
				    unsigned int devfn, u8 hdr_type)
Linus Torvalds's avatar
Linus Torvalds committed
469 470 471 472 473 474 475 476 477 478
{
	u16 status;

	pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
	if (!(status & PCI_STATUS_CAP_LIST))
		return 0;

	switch (hdr_type) {
	case PCI_HEADER_TYPE_NORMAL:
	case PCI_HEADER_TYPE_BRIDGE:
479
		return PCI_CAPABILITY_LIST;
Linus Torvalds's avatar
Linus Torvalds committed
480
	case PCI_HEADER_TYPE_CARDBUS:
481
		return PCI_CB_CAPABILITY_LIST;
Linus Torvalds's avatar
Linus Torvalds committed
482
	}
483 484

	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
485 486 487
}

/**
488
 * pci_find_capability - query for devices' capabilities
Linus Torvalds's avatar
Linus Torvalds committed
489 490 491 492 493 494
 * @dev: PCI device to query
 * @cap: capability code
 *
 * Tell if a device supports a given PCI capability.
 * Returns the address of the requested capability structure within the
 * device's PCI configuration space or 0 in case the device does not
Bjorn Helgaas's avatar
Bjorn Helgaas committed
495
 * support it.  Possible values for @cap include:
Linus Torvalds's avatar
Linus Torvalds committed
496
 *
497 498 499 500
 *  %PCI_CAP_ID_PM           Power Management
 *  %PCI_CAP_ID_AGP          Accelerated Graphics Port
 *  %PCI_CAP_ID_VPD          Vital Product Data
 *  %PCI_CAP_ID_SLOTID       Slot Identification
Linus Torvalds's avatar
Linus Torvalds committed
501
 *  %PCI_CAP_ID_MSI          Message Signalled Interrupts
502
 *  %PCI_CAP_ID_CHSWP        CompactPCI HotSwap
Linus Torvalds's avatar
Linus Torvalds committed
503 504 505
 *  %PCI_CAP_ID_PCIX         PCI-X
 *  %PCI_CAP_ID_EXP          PCI Express
 */
506
u8 pci_find_capability(struct pci_dev *dev, int cap)
Linus Torvalds's avatar
Linus Torvalds committed
507
{
508
	u8 pos;
509 510 511 512 513 514

	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
	if (pos)
		pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);

	return pos;
Linus Torvalds's avatar
Linus Torvalds committed
515
}
516
EXPORT_SYMBOL(pci_find_capability);
Linus Torvalds's avatar
Linus Torvalds committed
517 518

/**
519
 * pci_bus_find_capability - query for devices' capabilities
Bjorn Helgaas's avatar
Bjorn Helgaas committed
520
 * @bus: the PCI bus to query
Linus Torvalds's avatar
Linus Torvalds committed
521
 * @devfn: PCI device to query
Bjorn Helgaas's avatar
Bjorn Helgaas committed
522
 * @cap: capability code
Linus Torvalds's avatar
Linus Torvalds committed
523
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
524
 * Like pci_find_capability() but works for PCI devices that do not have a
525
 * pci_dev structure set up yet.
Linus Torvalds's avatar
Linus Torvalds committed
526 527 528 529 530
 *
 * Returns the address of the requested capability structure within the
 * device's PCI configuration space or 0 in case the device does not
 * support it.
 */
531
u8 pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
Linus Torvalds's avatar
Linus Torvalds committed
532
{
533
	u8 hdr_type, pos;
Linus Torvalds's avatar
Linus Torvalds committed
534 535 536

	pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);

537
	pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & PCI_HEADER_TYPE_MASK);
538 539 540 541
	if (pos)
		pos = __pci_find_next_cap(bus, devfn, pos, cap);

	return pos;
Linus Torvalds's avatar
Linus Torvalds committed
542
}
543
EXPORT_SYMBOL(pci_bus_find_capability);
Linus Torvalds's avatar
Linus Torvalds committed
544 545

/**
546
 * pci_find_next_ext_capability - Find an extended capability
Linus Torvalds's avatar
Linus Torvalds committed
547
 * @dev: PCI device to query
548
 * @start: address at which to start looking (0 to start at beginning of list)
Linus Torvalds's avatar
Linus Torvalds committed
549 550
 * @cap: capability code
 *
551
 * Returns the address of the next matching extended capability structure
Linus Torvalds's avatar
Linus Torvalds committed
552
 * within the device's PCI configuration space or 0 if the device does
553 554
 * not support it.  Some capabilities can occur several times, e.g., the
 * vendor-specific capability, and this provides a way to find them all.
Linus Torvalds's avatar
Linus Torvalds committed
555
 */
556
u16 pci_find_next_ext_capability(struct pci_dev *dev, u16 start, int cap)
Linus Torvalds's avatar
Linus Torvalds committed
557 558
{
	u32 header;
559
	int ttl;
560
	u16 pos = PCI_CFG_SPACE_SIZE;
Linus Torvalds's avatar
Linus Torvalds committed
561

562 563 564 565
	/* minimum 8 bytes per capability */
	ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;

	if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
Linus Torvalds's avatar
Linus Torvalds committed
566 567
		return 0;

568 569 570
	if (start)
		pos = start;

Linus Torvalds's avatar
Linus Torvalds committed
571 572 573 574 575 576 577 578 579 580 581
	if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
		return 0;

	/*
	 * If we have no capabilities, this is indicated by cap ID,
	 * cap version and next pointer all being 0.
	 */
	if (header == 0)
		return 0;

	while (ttl-- > 0) {
582
		if (PCI_EXT_CAP_ID(header) == cap && pos != start)
Linus Torvalds's avatar
Linus Torvalds committed
583 584 585
			return pos;

		pos = PCI_EXT_CAP_NEXT(header);
586
		if (pos < PCI_CFG_SPACE_SIZE)
Linus Torvalds's avatar
Linus Torvalds committed
587 588 589 590 591 592 593 594
			break;

		if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
			break;
	}

	return 0;
}
595 596 597 598 599 600 601 602 603
EXPORT_SYMBOL_GPL(pci_find_next_ext_capability);

/**
 * pci_find_ext_capability - Find an extended capability
 * @dev: PCI device to query
 * @cap: capability code
 *
 * Returns the address of the requested extended capability structure
 * within the device's PCI configuration space or 0 if the device does
Bjorn Helgaas's avatar
Bjorn Helgaas committed
604
 * not support it.  Possible values for @cap include:
605 606 607 608 609 610
 *
 *  %PCI_EXT_CAP_ID_ERR		Advanced Error Reporting
 *  %PCI_EXT_CAP_ID_VC		Virtual Channel
 *  %PCI_EXT_CAP_ID_DSN		Device Serial Number
 *  %PCI_EXT_CAP_ID_PWR		Power Budgeting
 */
611
u16 pci_find_ext_capability(struct pci_dev *dev, int cap)
612 613 614
{
	return pci_find_next_ext_capability(dev, 0, cap);
}
615
EXPORT_SYMBOL_GPL(pci_find_ext_capability);
Linus Torvalds's avatar
Linus Torvalds committed
616

Jacob Keller's avatar
Jacob Keller committed
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650
/**
 * pci_get_dsn - Read and return the 8-byte Device Serial Number
 * @dev: PCI device to query
 *
 * Looks up the PCI_EXT_CAP_ID_DSN and reads the 8 bytes of the Device Serial
 * Number.
 *
 * Returns the DSN, or zero if the capability does not exist.
 */
u64 pci_get_dsn(struct pci_dev *dev)
{
	u32 dword;
	u64 dsn;
	int pos;

	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DSN);
	if (!pos)
		return 0;

	/*
	 * The Device Serial Number is two dwords offset 4 bytes from the
	 * capability position. The specification says that the first dword is
	 * the lower half, and the second dword is the upper half.
	 */
	pos += 4;
	pci_read_config_dword(dev, pos, &dword);
	dsn = (u64)dword;
	pci_read_config_dword(dev, pos + 4, &dword);
	dsn |= ((u64)dword) << 32;

	return dsn;
}
EXPORT_SYMBOL_GPL(pci_get_dsn);

651
static u8 __pci_find_next_ht_cap(struct pci_dev *dev, u8 pos, int ht_cap)
652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670
{
	int rc, ttl = PCI_FIND_CAP_TTL;
	u8 cap, mask;

	if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
		mask = HT_3BIT_CAP_MASK;
	else
		mask = HT_5BIT_CAP_MASK;

	pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
				      PCI_CAP_ID_HT, &ttl);
	while (pos) {
		rc = pci_read_config_byte(dev, pos + 3, &cap);
		if (rc != PCIBIOS_SUCCESSFUL)
			return 0;

		if ((cap & mask) == ht_cap)
			return pos;

671 672
		pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
					      pos + PCI_CAP_LIST_NEXT,
673 674 675 676 677
					      PCI_CAP_ID_HT, &ttl);
	}

	return 0;
}
678

679
/**
680
 * pci_find_next_ht_capability - query a device's HyperTransport capabilities
681 682
 * @dev: PCI device to query
 * @pos: Position from which to continue searching
683
 * @ht_cap: HyperTransport capability code
684 685 686 687 688 689 690 691
 *
 * To be used in conjunction with pci_find_ht_capability() to search for
 * all capabilities matching @ht_cap. @pos should always be a value returned
 * from pci_find_ht_capability().
 *
 * NB. To be 100% safe against broken PCI devices, the caller should take
 * steps to avoid an infinite loop.
 */
692
u8 pci_find_next_ht_capability(struct pci_dev *dev, u8 pos, int ht_cap)
693 694 695 696 697 698
{
	return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
}
EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);

/**
699
 * pci_find_ht_capability - query a device's HyperTransport capabilities
700
 * @dev: PCI device to query
701
 * @ht_cap: HyperTransport capability code
702
 *
703
 * Tell if a device supports a given HyperTransport capability.
704 705 706
 * Returns an address within the device's PCI configuration space
 * or 0 in case the device does not support the request capability.
 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
707
 * which has a HyperTransport capability matching @ht_cap.
708
 */
709
u8 pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
710
{
711
	u8 pos;
712 713 714 715 716 717 718 719 720

	pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
	if (pos)
		pos = __pci_find_next_ht_cap(dev, pos, ht_cap);

	return pos;
}
EXPORT_SYMBOL_GPL(pci_find_ht_capability);

721 722 723 724 725 726 727 728 729 730 731 732 733 734
/**
 * pci_find_vsec_capability - Find a vendor-specific extended capability
 * @dev: PCI device to query
 * @vendor: Vendor ID for which capability is defined
 * @cap: Vendor-specific capability ID
 *
 * If @dev has Vendor ID @vendor, search for a VSEC capability with
 * VSEC ID @cap. If found, return the capability offset in
 * config space; otherwise return 0.
 */
u16 pci_find_vsec_capability(struct pci_dev *dev, u16 vendor, int cap)
{
	u16 vsec = 0;
	u32 header;
735
	int ret;
736 737 738 739 740 741

	if (vendor != dev->vendor)
		return 0;

	while ((vsec = pci_find_next_ext_capability(dev, vsec,
						     PCI_EXT_CAP_ID_VNDR))) {
742 743 744 745 746
		ret = pci_read_config_dword(dev, vsec + PCI_VNDR_HEADER, &header);
		if (ret != PCIBIOS_SUCCESSFUL)
			continue;

		if (PCI_VNDR_HEADER_ID(header) == cap)
747 748 749 750 751 752 753
			return vsec;
	}

	return 0;
}
EXPORT_SYMBOL_GPL(pci_find_vsec_capability);

754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785
/**
 * pci_find_dvsec_capability - Find DVSEC for vendor
 * @dev: PCI device to query
 * @vendor: Vendor ID to match for the DVSEC
 * @dvsec: Designated Vendor-specific capability ID
 *
 * If DVSEC has Vendor ID @vendor and DVSEC ID @dvsec return the capability
 * offset in config space; otherwise return 0.
 */
u16 pci_find_dvsec_capability(struct pci_dev *dev, u16 vendor, u16 dvsec)
{
	int pos;

	pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_DVSEC);
	if (!pos)
		return 0;

	while (pos) {
		u16 v, id;

		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER1, &v);
		pci_read_config_word(dev, pos + PCI_DVSEC_HEADER2, &id);
		if (vendor == v && dvsec == id)
			return pos;

		pos = pci_find_next_ext_capability(dev, pos, PCI_EXT_CAP_ID_DVSEC);
	}

	return 0;
}
EXPORT_SYMBOL_GPL(pci_find_dvsec_capability);

Linus Torvalds's avatar
Linus Torvalds committed
786
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
787 788
 * pci_find_parent_resource - return resource region of parent bus of given
 *			      region
Linus Torvalds's avatar
Linus Torvalds committed
789 790 791
 * @dev: PCI device structure contains resources to be searched
 * @res: child resource record for which parent is sought
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
792 793
 * For given resource region of given device, return the resource region of
 * parent bus the given region is contained in.
Linus Torvalds's avatar
Linus Torvalds committed
794
 */
Ryan Desfosses's avatar
Ryan Desfosses committed
795 796
struct resource *pci_find_parent_resource(const struct pci_dev *dev,
					  struct resource *res)
Linus Torvalds's avatar
Linus Torvalds committed
797 798
{
	const struct pci_bus *bus = dev->bus;
799
	struct resource *r;
Linus Torvalds's avatar
Linus Torvalds committed
800

801
	pci_bus_for_each_resource(bus, r) {
Linus Torvalds's avatar
Linus Torvalds committed
802 803
		if (!r)
			continue;
804
		if (resource_contains(r, res)) {
805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823

			/*
			 * If the window is prefetchable but the BAR is
			 * not, the allocator made a mistake.
			 */
			if (r->flags & IORESOURCE_PREFETCH &&
			    !(res->flags & IORESOURCE_PREFETCH))
				return NULL;

			/*
			 * If we're below a transparent bridge, there may
			 * be both a positively-decoded aperture and a
			 * subtractively-decoded region that contain the BAR.
			 * We want the positively-decoded one, so this depends
			 * on pci_bus_for_each_resource() giving us those
			 * first.
			 */
			return r;
		}
Linus Torvalds's avatar
Linus Torvalds committed
824
	}
825
	return NULL;
Linus Torvalds's avatar
Linus Torvalds committed
826
}
827
EXPORT_SYMBOL(pci_find_parent_resource);
Linus Torvalds's avatar
Linus Torvalds committed
828

829 830 831 832 833 834 835 836 837 838 839 840 841
/**
 * pci_find_resource - Return matching PCI device resource
 * @dev: PCI device to query
 * @res: Resource to look for
 *
 * Goes over standard PCI resources (BARs) and checks if the given resource
 * is partially or fully contained in any of them. In that case the
 * matching resource is returned, %NULL otherwise.
 */
struct resource *pci_find_resource(struct pci_dev *dev, struct resource *res)
{
	int i;

842
	for (i = 0; i < PCI_STD_NUM_BARS; i++) {
843 844 845 846 847 848 849 850 851 852
		struct resource *r = &dev->resource[i];

		if (r->start && resource_contains(r, res))
			return r;
	}

	return NULL;
}
EXPORT_SYMBOL(pci_find_resource);

853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912
/**
 * pci_resource_name - Return the name of the PCI resource
 * @dev: PCI device to query
 * @i: index of the resource
 *
 * Return the standard PCI resource (BAR) name according to their index.
 */
const char *pci_resource_name(struct pci_dev *dev, unsigned int i)
{
	static const char * const bar_name[] = {
		"BAR 0",
		"BAR 1",
		"BAR 2",
		"BAR 3",
		"BAR 4",
		"BAR 5",
		"ROM",
#ifdef CONFIG_PCI_IOV
		"VF BAR 0",
		"VF BAR 1",
		"VF BAR 2",
		"VF BAR 3",
		"VF BAR 4",
		"VF BAR 5",
#endif
		"bridge window",	/* "io" included in %pR */
		"bridge window",	/* "mem" included in %pR */
		"bridge window",	/* "mem pref" included in %pR */
	};
	static const char * const cardbus_name[] = {
		"BAR 1",
		"unknown",
		"unknown",
		"unknown",
		"unknown",
		"unknown",
#ifdef CONFIG_PCI_IOV
		"unknown",
		"unknown",
		"unknown",
		"unknown",
		"unknown",
		"unknown",
#endif
		"CardBus bridge window 0",	/* I/O */
		"CardBus bridge window 1",	/* I/O */
		"CardBus bridge window 0",	/* mem */
		"CardBus bridge window 1",	/* mem */
	};

	if (dev->hdr_type == PCI_HEADER_TYPE_CARDBUS &&
	    i < ARRAY_SIZE(cardbus_name))
		return cardbus_name[i];

	if (i < ARRAY_SIZE(bar_name))
		return bar_name[i];

	return "unknown";
}

913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938
/**
 * pci_wait_for_pending - wait for @mask bit(s) to clear in status word @pos
 * @dev: the PCI device to operate on
 * @pos: config space offset of status word
 * @mask: mask of bit(s) to care about in status word
 *
 * Return 1 when mask bit(s) in status word clear, 0 otherwise.
 */
int pci_wait_for_pending(struct pci_dev *dev, int pos, u16 mask)
{
	int i;

	/* Wait for Transaction Pending bit clean */
	for (i = 0; i < 4; i++) {
		u16 status;
		if (i)
			msleep((1 << (i - 1)) * 100);

		pci_read_config_word(dev, pos, &status);
		if (!(status & mask))
			return 1;
	}

	return 0;
}

939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992
static int pci_acs_enable;

/**
 * pci_request_acs - ask for ACS to be enabled if supported
 */
void pci_request_acs(void)
{
	pci_acs_enable = 1;
}

static const char *disable_acs_redir_param;

/**
 * pci_disable_acs_redir - disable ACS redirect capabilities
 * @dev: the PCI device
 *
 * For only devices specified in the disable_acs_redir parameter.
 */
static void pci_disable_acs_redir(struct pci_dev *dev)
{
	int ret = 0;
	const char *p;
	int pos;
	u16 ctrl;

	if (!disable_acs_redir_param)
		return;

	p = disable_acs_redir_param;
	while (*p) {
		ret = pci_dev_str_match(dev, p, &p);
		if (ret < 0) {
			pr_info_once("PCI: Can't parse disable_acs_redir parameter: %s\n",
				     disable_acs_redir_param);

			break;
		} else if (ret == 1) {
			/* Found a match */
			break;
		}

		if (*p != ';' && *p != ',') {
			/* End of param or invalid format */
			break;
		}
		p++;
	}

	if (ret != 1)
		return;

	if (!pci_dev_specific_disable_acs_redir(dev))
		return;

993
	pos = dev->acs_cap;
994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018
	if (!pos) {
		pci_warn(dev, "cannot disable ACS redirect for this hardware as it does not have ACS capabilities\n");
		return;
	}

	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);

	/* P2P Request & Completion Redirect */
	ctrl &= ~(PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_EC);

	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);

	pci_info(dev, "disabled ACS redirect\n");
}

/**
 * pci_std_enable_acs - enable ACS on devices using standard ACS capabilities
 * @dev: the PCI device
 */
static void pci_std_enable_acs(struct pci_dev *dev)
{
	int pos;
	u16 cap;
	u16 ctrl;

1019
	pos = dev->acs_cap;
1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037
	if (!pos)
		return;

	pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
	pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);

	/* Source Validation */
	ctrl |= (cap & PCI_ACS_SV);

	/* P2P Request Redirect */
	ctrl |= (cap & PCI_ACS_RR);

	/* P2P Completion Redirect */
	ctrl |= (cap & PCI_ACS_CR);

	/* Upstream Forwarding */
	ctrl |= (cap & PCI_ACS_UF);

1038 1039
	/* Enable Translation Blocking for external devices and noats */
	if (pci_ats_disabled() || dev->external_facing || dev->untrusted)
1040 1041
		ctrl |= (cap & PCI_ACS_TB);

1042 1043 1044 1045 1046 1047 1048
	pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
}

/**
 * pci_enable_acs - enable ACS if hardware support it
 * @dev: the PCI device
 */
1049
static void pci_enable_acs(struct pci_dev *dev)
1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069
{
	if (!pci_acs_enable)
		goto disable_acs_redir;

	if (!pci_dev_specific_enable_acs(dev))
		goto disable_acs_redir;

	pci_std_enable_acs(dev);

disable_acs_redir:
	/*
	 * Note: pci_disable_acs_redir() must be called even if ACS was not
	 * enabled by the kernel because it may have been enabled by
	 * platform firmware.  So if we are told to disable it, we should
	 * always disable it after setting the kernel's default
	 * preferences.
	 */
	pci_disable_acs_redir(dev);
}

1070
/**
1071
 * pci_restore_bars - restore a device's BAR values (e.g. after wake-up)
1072 1073 1074 1075 1076
 * @dev: PCI device to have its BARs restored
 *
 * Restore the BAR values for a given device, so as to make it
 * accessible by its driver.
 */
Ryan Desfosses's avatar
Ryan Desfosses committed
1077
static void pci_restore_bars(struct pci_dev *dev)
1078
{
1079
	int i;
1080

1081
	for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
1082
		pci_update_resource(dev, i);
1083 1084
}

1085 1086
static inline bool platform_pci_power_manageable(struct pci_dev *dev)
{
1087 1088 1089
	if (pci_use_mid_pm())
		return true;

1090
	return acpi_pci_power_manageable(dev);
1091 1092 1093
}

static inline int platform_pci_set_power_state(struct pci_dev *dev,
Ryan Desfosses's avatar
Ryan Desfosses committed
1094
					       pci_power_t t)
1095
{
1096 1097 1098
	if (pci_use_mid_pm())
		return mid_pci_set_power_state(dev, t);

1099
	return acpi_pci_set_power_state(dev, t);
1100 1101
}

1102 1103
static inline pci_power_t platform_pci_get_power_state(struct pci_dev *dev)
{
1104 1105 1106
	if (pci_use_mid_pm())
		return mid_pci_get_power_state(dev);

1107
	return acpi_pci_get_power_state(dev);
1108 1109
}

1110 1111
static inline void platform_pci_refresh_power_state(struct pci_dev *dev)
{
1112 1113
	if (!pci_use_mid_pm())
		acpi_pci_refresh_power_state(dev);
1114 1115
}

1116 1117
static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
{
1118 1119 1120
	if (pci_use_mid_pm())
		return PCI_POWER_ERROR;

1121
	return acpi_pci_choose_state(dev);
1122
}
Randy Dunlap's avatar
Randy Dunlap committed
1123

1124
static inline int platform_pci_set_wakeup(struct pci_dev *dev, bool enable)
1125
{
1126 1127 1128
	if (pci_use_mid_pm())
		return PCI_POWER_ERROR;

1129
	return acpi_pci_wakeup(dev, enable);
1130 1131
}

1132 1133
static inline bool platform_pci_need_resume(struct pci_dev *dev)
{
1134 1135 1136
	if (pci_use_mid_pm())
		return false;

1137
	return acpi_pci_need_resume(dev);
1138 1139
}

1140 1141
static inline bool platform_pci_bridge_d3(struct pci_dev *dev)
{
1142 1143 1144
	if (pci_use_mid_pm())
		return false;

1145
	return acpi_pci_bridge_d3(dev);
1146 1147
}

1148
/**
1149
 * pci_update_current_state - Read power state of given device and cache it
1150
 * @dev: PCI device to handle.
1151
 * @state: State to cache in case the device doesn't have the PM capability
1152 1153 1154 1155 1156 1157 1158
 *
 * The power state is read from the PMCSR register, which however is
 * inaccessible in D3cold.  The platform firmware is therefore queried first
 * to detect accessibility of the register.  In case the platform firmware
 * reports an incorrect state or the device isn't power manageable by the
 * platform at all, we try to detect D3cold by testing accessibility of the
 * vendor ID in config space.
1159
 */
1160
void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
1161
{
1162
	if (platform_pci_get_power_state(dev) == PCI_D3cold) {
1163 1164
		dev->current_state = PCI_D3cold;
	} else if (dev->pm_cap) {
1165 1166
		u16 pmcsr;

1167
		pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1168 1169 1170 1171 1172
		if (PCI_POSSIBLE_ERROR(pmcsr)) {
			dev->current_state = PCI_D3cold;
			return;
		}
		dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1173 1174
	} else {
		dev->current_state = state;
1175 1176 1177
	}
}

1178 1179 1180 1181 1182 1183 1184 1185 1186
/**
 * pci_refresh_power_state - Refresh the given device's power state data
 * @dev: Target PCI device.
 *
 * Ask the platform to refresh the devices power state information and invoke
 * pci_update_current_state() to update its current PCI power state.
 */
void pci_refresh_power_state(struct pci_dev *dev)
{
1187
	platform_pci_refresh_power_state(dev);
1188 1189 1190
	pci_update_current_state(dev, dev->current_state);
}

1191 1192 1193 1194 1195
/**
 * pci_platform_power_transition - Use platform to change device power state
 * @dev: PCI device to handle.
 * @state: State to put the device into.
 */
1196
int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
1197 1198 1199
{
	int error;

1200 1201 1202 1203
	error = platform_pci_set_power_state(dev, state);
	if (!error)
		pci_update_current_state(dev, state);
	else if (!dev->pm_cap) /* Fall back to PCI_D0 */
1204
		dev->current_state = PCI_D0;
1205 1206 1207

	return error;
}
1208
EXPORT_SYMBOL_GPL(pci_platform_power_transition);
1209

1210
static int pci_resume_one(struct pci_dev *pci_dev, void *ign)
1211 1212 1213 1214 1215 1216
{
	pm_request_resume(&pci_dev->dev);
	return 0;
}

/**
1217
 * pci_resume_bus - Walk given bus and runtime resume devices on it
1218 1219
 * @bus: Top bus of the subtree to walk.
 */
1220
void pci_resume_bus(struct pci_bus *bus)
1221 1222
{
	if (bus)
1223
		pci_walk_bus(bus, pci_resume_one, NULL);
1224 1225
}

1226 1227 1228
static int pci_dev_wait(struct pci_dev *dev, char *reset_type, int timeout)
{
	int delay = 1;
1229 1230 1231 1232 1233 1234 1235 1236
	bool retrain = false;
	struct pci_dev *bridge;

	if (pci_is_pcie(dev)) {
		bridge = pci_upstream_bridge(dev);
		if (bridge)
			retrain = true;
	}
1237 1238 1239 1240 1241

	/*
	 * After reset, the device should not silently discard config
	 * requests, but it may still indicate that it needs more time by
	 * responding to them with CRS completions.  The Root Port will
1242 1243 1244
	 * generally synthesize ~0 (PCI_ERROR_RESPONSE) data to complete
	 * the read (except when CRS SV is enabled and the read was for the
	 * Vendor ID; in that case it synthesizes 0x0001 data).
1245 1246 1247 1248 1249
	 *
	 * Wait for the device to return a non-CRS completion.  Read the
	 * Command register instead of Vendor ID so we don't have to
	 * contend with the CRS SV value.
	 */
1250 1251 1252 1253 1254 1255 1256
	for (;;) {
		u32 id;

		pci_read_config_dword(dev, PCI_COMMAND, &id);
		if (!PCI_POSSIBLE_ERROR(id))
			break;

1257 1258 1259 1260 1261 1262
		if (delay > timeout) {
			pci_warn(dev, "not ready %dms after %s; giving up\n",
				 delay - 1, reset_type);
			return -ENOTTY;
		}

1263 1264 1265 1266 1267 1268 1269 1270
		if (delay > PCI_RESET_WAIT) {
			if (retrain) {
				retrain = false;
				if (pcie_failed_link_retrain(bridge)) {
					delay = 1;
					continue;
				}
			}
1271 1272
			pci_info(dev, "not ready %dms after %s; waiting\n",
				 delay - 1, reset_type);
1273
		}
1274 1275 1276 1277 1278

		msleep(delay);
		delay *= 2;
	}

1279
	if (delay > PCI_RESET_WAIT)
1280 1281
		pci_info(dev, "ready %dms after %s\n", delay - 1,
			 reset_type);
1282 1283 1284
	else
		pci_dbg(dev, "ready %dms after %s\n", delay - 1,
			reset_type);
1285 1286 1287 1288

	return 0;
}

1289
/**
1290 1291
 * pci_power_up - Put the given device into D0
 * @dev: PCI device to power up
1292 1293 1294
 *
 * On success, return 0 or 1, depending on whether or not it is necessary to
 * restore the device's BARs subsequently (1 is returned in that case).
1295 1296 1297 1298
 *
 * On failure, return a negative error code.  Always return failure if @dev
 * lacks a Power Management Capability, even if the platform was able to
 * put the device in D0 via non-PCI means.
1299
 */
1300
int pci_power_up(struct pci_dev *dev)
1301
{
1302 1303
	bool need_restore;
	pci_power_t state;
1304 1305
	u16 pmcsr;

1306
	platform_pci_set_power_state(dev, PCI_D0);
1307

1308 1309 1310 1311 1312 1313 1314
	if (!dev->pm_cap) {
		state = platform_pci_get_power_state(dev);
		if (state == PCI_UNKNOWN)
			dev->current_state = PCI_D0;
		else
			dev->current_state = state;

1315
		return -EIO;
1316
	}
1317 1318 1319 1320 1321

	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
	if (PCI_POSSIBLE_ERROR(pmcsr)) {
		pci_err(dev, "Unable to change power state from %s to D0, device inaccessible\n",
			pci_power_name(dev->current_state));
1322
		dev->current_state = PCI_D3cold;
1323 1324 1325
		return -EIO;
	}

1326 1327 1328 1329 1330
	state = pmcsr & PCI_PM_CTRL_STATE_MASK;

	need_restore = (state == PCI_D3hot || dev->current_state >= PCI_D3hot) &&
			!(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET);

1331
	if (state == PCI_D0)
1332
		goto end;
1333 1334

	/*
1335 1336
	 * Force the entire word to 0. This doesn't affect PME_Status, disables
	 * PME_En, and sets PowerState to 0.
1337
	 */
1338
	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, 0);
1339 1340

	/* Mandatory transition delays; see PCI PM 1.2. */
1341
	if (state == PCI_D3hot)
1342
		pci_dev_d3_sleep(dev);
1343
	else if (state == PCI_D2)
1344 1345
		udelay(PCI_PM_D2_DELAY);

1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356
end:
	dev->current_state = PCI_D0;
	if (need_restore)
		return 1;

	return 0;
}

/**
 * pci_set_full_power_state - Put a PCI device into D0 and update its state
 * @dev: PCI device to power up
1357
 * @locked: whether pci_bus_sem is held
1358 1359 1360
 *
 * Call pci_power_up() to put @dev into D0, read from its PCI_PM_CTRL register
 * to confirm the state change, restore its BARs if they might be lost and
1361
 * reconfigure ASPM in accordance with the new power state.
1362 1363 1364 1365 1366
 *
 * If pci_restore_state() is going to be called right after a power state change
 * to D0, it is more efficient to use pci_power_up() directly instead of this
 * function.
 */
1367
static int pci_set_full_power_state(struct pci_dev *dev, bool locked)
1368 1369 1370 1371 1372
{
	u16 pmcsr;
	int ret;

	ret = pci_power_up(dev);
1373 1374 1375 1376
	if (ret < 0) {
		if (dev->current_state == PCI_D0)
			return 0;

1377
		return ret;
1378
	}
1379

1380 1381
	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
1382
	if (dev->current_state != PCI_D0) {
1383 1384
		pci_info_ratelimited(dev, "Refused to change power state from %s to D0\n",
				     pci_power_name(dev->current_state));
1385
	} else if (ret > 0) {
1386
		/*
1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397
		 * According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
		 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
		 * from D3hot to D0 _may_ perform an internal reset, thereby
		 * going to "D0 Uninitialized" rather than "D0 Initialized".
		 * For example, at least some versions of the 3c905B and the
		 * 3c556B exhibit this behaviour.
		 *
		 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
		 * devices in a D3hot state at boot.  Consequently, we need to
		 * restore at least the BARs so that the device will be
		 * accessible to its driver.
1398
		 */
1399
		pci_restore_bars(dev);
1400 1401
	}

1402
	if (dev->bus->self)
1403
		pcie_aspm_pm_state_change(dev->bus->self, locked);
1404

1405
	return 0;
1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421
}

/**
 * __pci_dev_set_current_state - Set current state of a PCI device
 * @dev: Device to handle
 * @data: pointer to state to be set
 */
static int __pci_dev_set_current_state(struct pci_dev *dev, void *data)
{
	pci_power_t state = *(pci_power_t *)data;

	dev->current_state = state;
	return 0;
}

/**
1422
 * pci_bus_set_current_state - Walk given bus and set current state of devices
1423 1424 1425
 * @bus: Top bus of the subtree to walk.
 * @state: state to be set
 */
1426
void pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state)
1427 1428 1429
{
	if (bus)
		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
1430 1431
}

1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442
static void __pci_bus_set_current_state(struct pci_bus *bus, pci_power_t state, bool locked)
{
	if (!bus)
		return;

	if (locked)
		pci_walk_bus_locked(bus, __pci_dev_set_current_state, &state);
	else
		pci_walk_bus(bus, __pci_dev_set_current_state, &state);
}

1443 1444 1445 1446
/**
 * pci_set_low_power_state - Put a PCI device into a low-power state.
 * @dev: PCI device to handle.
 * @state: PCI power state (D1, D2, D3hot) to put the device into.
1447
 * @locked: whether pci_bus_sem is held
1448 1449 1450 1451 1452 1453 1454 1455 1456 1457
 *
 * Use the device's PCI_PM_CTRL register to put it into a low-power state.
 *
 * RETURN VALUE:
 * -EINVAL if the requested state is invalid.
 * -EIO if device does not support PCI PM or its PM capabilities register has a
 * wrong version, or device doesn't support the requested state.
 * 0 if device already is in the requested state.
 * 0 if device's power state has been successfully changed.
 */
1458
static int pci_set_low_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471
{
	u16 pmcsr;

	if (!dev->pm_cap)
		return -EIO;

	/*
	 * Validate transition: We can enter D0 from any state, but if
	 * we're already in a low-power state, we can only go deeper.  E.g.,
	 * we can go from D1 to D3, but we can't go directly from D3 to D1;
	 * we'd have to go from D3 to D0, then to D1.
	 */
	if (dev->current_state <= PCI_D3cold && dev->current_state > state) {
1472
		pci_dbg(dev, "Invalid power transition (from %s to %s)\n",
1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487
			pci_power_name(dev->current_state),
			pci_power_name(state));
		return -EINVAL;
	}

	/* Check if this device supports the desired state */
	if ((state == PCI_D1 && !dev->d1_support)
	   || (state == PCI_D2 && !dev->d2_support))
		return -EIO;

	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
	if (PCI_POSSIBLE_ERROR(pmcsr)) {
		pci_err(dev, "Unable to change power state from %s to %s, device inaccessible\n",
			pci_power_name(dev->current_state),
			pci_power_name(state));
1488
		dev->current_state = PCI_D3cold;
1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
		return -EIO;
	}

	pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
	pmcsr |= state;

	/* Enter specified state */
	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);

	/* Mandatory power management transition delays; see PCI PM 1.2. */
	if (state == PCI_D3hot)
		pci_dev_d3_sleep(dev);
	else if (state == PCI_D2)
		udelay(PCI_PM_D2_DELAY);

	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
	dev->current_state = pmcsr & PCI_PM_CTRL_STATE_MASK;
	if (dev->current_state != state)
		pci_info_ratelimited(dev, "Refused to change power state from %s to %s\n",
				     pci_power_name(dev->current_state),
				     pci_power_name(state));

1511
	if (dev->bus->self)
1512
		pcie_aspm_pm_state_change(dev->bus->self, locked);
1513

1514 1515 1516
	return 0;
}

1517
static int __pci_set_power_state(struct pci_dev *dev, pci_power_t state, bool locked)
1518
{
1519
	int error;
1520

Bjorn Helgaas's avatar
Bjorn Helgaas committed
1521
	/* Bound the state we're entering */
1522 1523
	if (state > PCI_D3cold)
		state = PCI_D3cold;
1524 1525 1526
	else if (state < PCI_D0)
		state = PCI_D0;
	else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1527

1528
		/*
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1529 1530 1531 1532
		 * If the device or the parent bridge do not support PCI
		 * PM, ignore the request if we're doing anything other
		 * than putting it into D0 (which would only happen on
		 * boot).
1533 1534 1535
		 */
		return 0;

1536 1537 1538 1539
	/* Check if we're already there */
	if (dev->current_state == state)
		return 0;

1540
	if (state == PCI_D0)
1541
		return pci_set_full_power_state(dev, locked);
1542

Bjorn Helgaas's avatar
Bjorn Helgaas committed
1543 1544 1545 1546
	/*
	 * This device is quirked not to be put into D3, so don't put it in
	 * D3
	 */
1547
	if (state >= PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
1548
		return 0;
1549

1550 1551 1552 1553 1554
	if (state == PCI_D3cold) {
		/*
		 * To put the device in D3cold, put it into D3hot in the native
		 * way, then put it into D3cold using platform ops.
		 */
1555
		error = pci_set_low_power_state(dev, PCI_D3hot, locked);
1556

1557 1558
		if (pci_platform_power_transition(dev, PCI_D3cold))
			return error;
1559

1560 1561
		/* Powering off a bridge may power off the whole hierarchy */
		if (dev->current_state == PCI_D3cold)
1562
			__pci_bus_set_current_state(dev->subordinate, PCI_D3cold, locked);
1563
	} else {
1564
		error = pci_set_low_power_state(dev, state, locked);
1565

1566 1567 1568
		if (pci_platform_power_transition(dev, state))
			return error;
	}
1569

1570
	return 0;
1571
}
1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593

/**
 * pci_set_power_state - Set the power state of a PCI device
 * @dev: PCI device to handle.
 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
 *
 * Transition a device to a new power state, using the platform firmware and/or
 * the device's PCI PM registers.
 *
 * RETURN VALUE:
 * -EINVAL if the requested state is invalid.
 * -EIO if device does not support PCI PM or its PM capabilities register has a
 * wrong version, or device doesn't support the requested state.
 * 0 if the transition is to D1 or D2 but D1 and D2 are not supported.
 * 0 if device already is in the requested state.
 * 0 if the transition is to D3 but D3 is not supported.
 * 0 if device's power state has been successfully changed.
 */
int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
{
	return __pci_set_power_state(dev, state, false);
}
1594
EXPORT_SYMBOL(pci_set_power_state);
1595

1596 1597 1598 1599 1600 1601 1602 1603
int pci_set_power_state_locked(struct pci_dev *dev, pci_power_t state)
{
	lockdep_assert_held(&pci_bus_sem);

	return __pci_set_power_state(dev, state, true);
}
EXPORT_SYMBOL(pci_set_power_state_locked);

1604 1605
#define PCI_EXP_SAVE_REGS	7

1606 1607
static struct pci_cap_saved_state *_pci_find_saved_cap(struct pci_dev *pci_dev,
						       u16 cap, bool extended)
1608 1609 1610
{
	struct pci_cap_saved_state *tmp;

1611
	hlist_for_each_entry(tmp, &pci_dev->saved_cap_space, next) {
1612
		if (tmp->cap.cap_extended == extended && tmp->cap.cap_nr == cap)
1613 1614 1615 1616 1617
			return tmp;
	}
	return NULL;
}

1618 1619 1620 1621 1622 1623 1624 1625 1626 1627
struct pci_cap_saved_state *pci_find_saved_cap(struct pci_dev *dev, char cap)
{
	return _pci_find_saved_cap(dev, cap, false);
}

struct pci_cap_saved_state *pci_find_saved_ext_cap(struct pci_dev *dev, u16 cap)
{
	return _pci_find_saved_cap(dev, cap, true);
}

1628 1629
static int pci_save_pcie_state(struct pci_dev *dev)
{
1630
	int i = 0;
1631 1632 1633
	struct pci_cap_saved_state *save_state;
	u16 *cap;

1634
	if (!pci_is_pcie(dev))
1635 1636
		return 0;

1637
	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1638
	if (!save_state) {
1639
		pci_err(dev, "buffer not found in %s\n", __func__);
1640 1641
		return -ENOMEM;
	}
1642

1643 1644 1645 1646 1647 1648 1649 1650
	cap = (u16 *)&save_state->cap.data[0];
	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &cap[i++]);
	pcie_capability_read_word(dev, PCI_EXP_LNKCTL, &cap[i++]);
	pcie_capability_read_word(dev, PCI_EXP_SLTCTL, &cap[i++]);
	pcie_capability_read_word(dev, PCI_EXP_RTCTL,  &cap[i++]);
	pcie_capability_read_word(dev, PCI_EXP_DEVCTL2, &cap[i++]);
	pcie_capability_read_word(dev, PCI_EXP_LNKCTL2, &cap[i++]);
	pcie_capability_read_word(dev, PCI_EXP_SLTCTL2, &cap[i++]);
1651

1652 1653 1654
	return 0;
}

1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672
void pci_bridge_reconfigure_ltr(struct pci_dev *dev)
{
#ifdef CONFIG_PCIEASPM
	struct pci_dev *bridge;
	u32 ctl;

	bridge = pci_upstream_bridge(dev);
	if (bridge && bridge->ltr_path) {
		pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2, &ctl);
		if (!(ctl & PCI_EXP_DEVCTL2_LTR_EN)) {
			pci_dbg(bridge, "re-enabling LTR\n");
			pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
						 PCI_EXP_DEVCTL2_LTR_EN);
		}
	}
#endif
}

1673 1674
static void pci_restore_pcie_state(struct pci_dev *dev)
{
1675
	int i = 0;
1676 1677 1678 1679
	struct pci_cap_saved_state *save_state;
	u16 *cap;

	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
1680
	if (!save_state)
1681 1682
		return;

1683 1684 1685 1686 1687 1688 1689
	/*
	 * Downstream ports reset the LTR enable bit when link goes down.
	 * Check and re-configure the bit here before restoring device.
	 * PCIe r5.0, sec 7.5.3.16.
	 */
	pci_bridge_reconfigure_ltr(dev);

1690 1691 1692 1693 1694 1695 1696 1697
	cap = (u16 *)&save_state->cap.data[0];
	pcie_capability_write_word(dev, PCI_EXP_DEVCTL, cap[i++]);
	pcie_capability_write_word(dev, PCI_EXP_LNKCTL, cap[i++]);
	pcie_capability_write_word(dev, PCI_EXP_SLTCTL, cap[i++]);
	pcie_capability_write_word(dev, PCI_EXP_RTCTL, cap[i++]);
	pcie_capability_write_word(dev, PCI_EXP_DEVCTL2, cap[i++]);
	pcie_capability_write_word(dev, PCI_EXP_LNKCTL2, cap[i++]);
	pcie_capability_write_word(dev, PCI_EXP_SLTCTL2, cap[i++]);
1698 1699
}

1700 1701
static int pci_save_pcix_state(struct pci_dev *dev)
{
1702
	int pos;
1703 1704 1705
	struct pci_cap_saved_state *save_state;

	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1706
	if (!pos)
1707 1708
		return 0;

1709
	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
1710
	if (!save_state) {
1711
		pci_err(dev, "buffer not found in %s\n", __func__);
1712 1713 1714
		return -ENOMEM;
	}

1715 1716
	pci_read_config_word(dev, pos + PCI_X_CMD,
			     (u16 *)save_state->cap.data);
1717

1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728
	return 0;
}

static void pci_restore_pcix_state(struct pci_dev *dev)
{
	int i = 0, pos;
	struct pci_cap_saved_state *save_state;
	u16 *cap;

	save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
	pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
1729
	if (!save_state || !pos)
1730
		return;
1731
	cap = (u16 *)&save_state->cap.data[0];
1732 1733 1734 1735

	pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
}

1736 1737 1738 1739
static void pci_save_ltr_state(struct pci_dev *dev)
{
	int ltr;
	struct pci_cap_saved_state *save_state;
1740
	u32 *cap;
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754

	if (!pci_is_pcie(dev))
		return;

	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
	if (!ltr)
		return;

	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
	if (!save_state) {
		pci_err(dev, "no suspend buffer for LTR; ASPM issues possible after resume\n");
		return;
	}

1755 1756 1757
	/* Some broken devices only support dword access to LTR */
	cap = &save_state->cap.data[0];
	pci_read_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, cap);
1758 1759 1760 1761 1762 1763
}

static void pci_restore_ltr_state(struct pci_dev *dev)
{
	struct pci_cap_saved_state *save_state;
	int ltr;
1764
	u32 *cap;
1765 1766 1767 1768 1769 1770

	save_state = pci_find_saved_ext_cap(dev, PCI_EXT_CAP_ID_LTR);
	ltr = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
	if (!save_state || !ltr)
		return;

1771 1772 1773
	/* Some broken devices only support dword access to LTR */
	cap = &save_state->cap.data[0];
	pci_write_config_dword(dev, ltr + PCI_LTR_MAX_SNOOP_LAT, *cap);
1774
}
1775

Linus Torvalds's avatar
Linus Torvalds committed
1776
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1777 1778 1779
 * pci_save_state - save the PCI configuration space of a device before
 *		    suspending
 * @dev: PCI device that we're dealing with
Linus Torvalds's avatar
Linus Torvalds committed
1780
 */
Ryan Desfosses's avatar
Ryan Desfosses committed
1781
int pci_save_state(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
1782 1783 1784
{
	int i;
	/* XXX: 100% dword access ok here? */
1785
	for (i = 0; i < 16; i++) {
1786
		pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
1787
		pci_dbg(dev, "save config %#04x: %#010x\n",
1788 1789
			i * 4, dev->saved_config_space[i]);
	}
1790
	dev->state_saved = true;
1791 1792 1793

	i = pci_save_pcie_state(dev);
	if (i != 0)
1794
		return i;
1795 1796 1797

	i = pci_save_pcix_state(dev);
	if (i != 0)
1798
		return i;
1799

1800
	pci_save_ltr_state(dev);
1801
	pci_save_dpc_state(dev);
1802
	pci_save_aer_state(dev);
1803
	pci_save_ptm_state(dev);
1804
	return pci_save_vc_state(dev);
Linus Torvalds's avatar
Linus Torvalds committed
1805
}
1806
EXPORT_SYMBOL(pci_save_state);
Linus Torvalds's avatar
Linus Torvalds committed
1807

1808
static void pci_restore_config_dword(struct pci_dev *pdev, int offset,
1809
				     u32 saved_val, int retry, bool force)
1810 1811 1812 1813
{
	u32 val;

	pci_read_config_dword(pdev, offset, &val);
1814
	if (!force && val == saved_val)
1815 1816 1817
		return;

	for (;;) {
1818
		pci_dbg(pdev, "restore config %#04x: %#010x -> %#010x\n",
1819
			offset, val, saved_val);
1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831
		pci_write_config_dword(pdev, offset, saved_val);
		if (retry-- <= 0)
			return;

		pci_read_config_dword(pdev, offset, &val);
		if (val == saved_val)
			return;

		mdelay(1);
	}
}

1832
static void pci_restore_config_space_range(struct pci_dev *pdev,
1833 1834
					   int start, int end, int retry,
					   bool force)
1835 1836 1837 1838 1839 1840
{
	int index;

	for (index = end; index >= start; index--)
		pci_restore_config_dword(pdev, 4 * index,
					 pdev->saved_config_space[index],
1841
					 retry, force);
1842 1843
}

1844 1845 1846
static void pci_restore_config_space(struct pci_dev *pdev)
{
	if (pdev->hdr_type == PCI_HEADER_TYPE_NORMAL) {
1847
		pci_restore_config_space_range(pdev, 10, 15, 0, false);
1848
		/* Restore BARs before the command register. */
1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860
		pci_restore_config_space_range(pdev, 4, 9, 10, false);
		pci_restore_config_space_range(pdev, 0, 3, 0, false);
	} else if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
		pci_restore_config_space_range(pdev, 12, 15, 0, false);

		/*
		 * Force rewriting of prefetch registers to avoid S3 resume
		 * issues on Intel PCI bridges that occur when these
		 * registers are not explicitly written.
		 */
		pci_restore_config_space_range(pdev, 9, 11, 0, true);
		pci_restore_config_space_range(pdev, 0, 8, 0, false);
1861
	} else {
1862
		pci_restore_config_space_range(pdev, 0, 15, 0, false);
1863 1864 1865
	}
}

1866 1867 1868 1869 1870 1871 1872 1873 1874 1875
static void pci_restore_rebar_state(struct pci_dev *pdev)
{
	unsigned int pos, nbars, i;
	u32 ctrl;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
	if (!pos)
		return;

	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1876
	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
1877 1878 1879 1880 1881 1882 1883 1884

	for (i = 0; i < nbars; i++, pos += 8) {
		struct resource *res;
		int bar_idx, size;

		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
		bar_idx = ctrl & PCI_REBAR_CTRL_BAR_IDX;
		res = pdev->resource + bar_idx;
1885
		size = pci_rebar_bytes_to_size(resource_size(res));
1886
		ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1887
		ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
1888 1889 1890 1891
		pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
	}
}

1892
/**
Linus Torvalds's avatar
Linus Torvalds committed
1893
 * pci_restore_state - Restore the saved state of a PCI device
Bjorn Helgaas's avatar
Bjorn Helgaas committed
1894
 * @dev: PCI device that we're dealing with
Linus Torvalds's avatar
Linus Torvalds committed
1895
 */
1896
void pci_restore_state(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
1897
{
1898
	if (!dev->state_saved)
1899
		return;
1900

1901 1902 1903 1904 1905 1906
	/*
	 * Restore max latencies (in the LTR capability) before enabling
	 * LTR itself (in the PCIe capability).
	 */
	pci_restore_ltr_state(dev);

1907
	pci_restore_pcie_state(dev);
1908 1909
	pci_restore_pasid_state(dev);
	pci_restore_pri_state(dev);
1910
	pci_restore_ats_state(dev);
1911
	pci_restore_vc_state(dev);
1912
	pci_restore_rebar_state(dev);
1913
	pci_restore_dpc_state(dev);
1914
	pci_restore_ptm_state(dev);
1915

1916
	pci_aer_clear_status(dev);
1917
	pci_restore_aer_state(dev);
1918

1919
	pci_restore_config_space(dev);
1920

1921
	pci_restore_pcix_state(dev);
1922
	pci_restore_msi_state(dev);
1923 1924 1925

	/* Restore ACS and IOV configuration state */
	pci_enable_acs(dev);
Yu Zhao's avatar
Yu Zhao committed
1926
	pci_restore_iov_state(dev);
1927

1928
	dev->state_saved = false;
Linus Torvalds's avatar
Linus Torvalds committed
1929
}
1930
EXPORT_SYMBOL(pci_restore_state);
Linus Torvalds's avatar
Linus Torvalds committed
1931

1932 1933
struct pci_saved_state {
	u32 config_space[16];
1934
	struct pci_cap_saved_data cap[];
1935 1936 1937 1938 1939 1940 1941
};

/**
 * pci_store_saved_state - Allocate and return an opaque struct containing
 *			   the device saved state.
 * @dev: PCI device that we're dealing with
 *
1942
 * Return NULL if no state or error.
1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955
 */
struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
{
	struct pci_saved_state *state;
	struct pci_cap_saved_state *tmp;
	struct pci_cap_saved_data *cap;
	size_t size;

	if (!dev->state_saved)
		return NULL;

	size = sizeof(*state) + sizeof(struct pci_cap_saved_data);

1956
	hlist_for_each_entry(tmp, &dev->saved_cap_space, next)
1957 1958 1959 1960 1961 1962 1963 1964 1965 1966
		size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;

	state = kzalloc(size, GFP_KERNEL);
	if (!state)
		return NULL;

	memcpy(state->config_space, dev->saved_config_space,
	       sizeof(state->config_space));

	cap = state->cap;
1967
	hlist_for_each_entry(tmp, &dev->saved_cap_space, next) {
1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
		size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
		memcpy(cap, &tmp->cap, len);
		cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
	}
	/* Empty cap_save terminates list */

	return state;
}
EXPORT_SYMBOL_GPL(pci_store_saved_state);

/**
 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
 * @dev: PCI device that we're dealing with
 * @state: Saved state returned from pci_store_saved_state()
 */
1983 1984
int pci_load_saved_state(struct pci_dev *dev,
			 struct pci_saved_state *state)
1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
{
	struct pci_cap_saved_data *cap;

	dev->state_saved = false;

	if (!state)
		return 0;

	memcpy(dev->saved_config_space, state->config_space,
	       sizeof(state->config_space));

	cap = state->cap;
	while (cap->size) {
		struct pci_cap_saved_state *tmp;

2000
		tmp = _pci_find_saved_cap(dev, cap->cap_nr, cap->cap_extended);
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
		if (!tmp || tmp->cap.size != cap->size)
			return -EINVAL;

		memcpy(tmp->cap.data, cap->data, tmp->cap.size);
		cap = (struct pci_cap_saved_data *)((u8 *)cap +
		       sizeof(struct pci_cap_saved_data) + cap->size);
	}

	dev->state_saved = true;
	return 0;
}
2012
EXPORT_SYMBOL_GPL(pci_load_saved_state);
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029

/**
 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
 *				   and free the memory allocated for it.
 * @dev: PCI device that we're dealing with
 * @state: Pointer to saved state returned from pci_store_saved_state()
 */
int pci_load_and_free_saved_state(struct pci_dev *dev,
				  struct pci_saved_state **state)
{
	int ret = pci_load_saved_state(dev, *state);
	kfree(*state);
	*state = NULL;
	return ret;
}
EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);

2030 2031 2032 2033 2034
int __weak pcibios_enable_device(struct pci_dev *dev, int bars)
{
	return pci_enable_resources(dev, bars);
}

2035 2036 2037
static int do_pci_enable_device(struct pci_dev *dev, int bars)
{
	int err;
2038
	struct pci_dev *bridge;
2039 2040
	u16 cmd;
	u8 pin;
2041 2042 2043 2044

	err = pci_set_power_state(dev, PCI_D0);
	if (err < 0 && err != -EIO)
		return err;
2045 2046 2047 2048 2049

	bridge = pci_upstream_bridge(dev);
	if (bridge)
		pcie_aspm_powersave_config_link(bridge);

2050 2051 2052 2053 2054
	err = pcibios_enable_device(dev, bars);
	if (err < 0)
		return err;
	pci_fixup_device(pci_fixup_enable, dev);

2055 2056 2057
	if (dev->msi_enabled || dev->msix_enabled)
		return 0;

2058 2059 2060 2061 2062 2063 2064 2065
	pci_read_config_byte(dev, PCI_INTERRUPT_PIN, &pin);
	if (pin) {
		pci_read_config_word(dev, PCI_COMMAND, &cmd);
		if (cmd & PCI_COMMAND_INTX_DISABLE)
			pci_write_config_word(dev, PCI_COMMAND,
					      cmd & ~PCI_COMMAND_INTX_DISABLE);
	}

2066 2067 2068 2069
	return 0;
}

/**
2070
 * pci_reenable_device - Resume abandoned device
2071 2072
 * @dev: PCI device to be resumed
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2073 2074
 * NOTE: This function is a backend of pci_default_resume() and is not supposed
 * to be called by normal code, write proper resume handler and use it instead.
2075
 */
2076
int pci_reenable_device(struct pci_dev *dev)
2077
{
2078
	if (pci_is_enabled(dev))
2079 2080 2081
		return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
	return 0;
}
2082
EXPORT_SYMBOL(pci_reenable_device);
2083

2084 2085
static void pci_enable_bridge(struct pci_dev *dev)
{
2086
	struct pci_dev *bridge;
2087 2088
	int retval;

2089 2090 2091
	bridge = pci_upstream_bridge(dev);
	if (bridge)
		pci_enable_bridge(bridge);
2092

2093
	if (pci_is_enabled(dev)) {
2094
		if (!dev->is_busmaster)
2095
			pci_set_master(dev);
2096
		return;
2097 2098
	}

2099 2100
	retval = pci_enable_device(dev);
	if (retval)
2101
		pci_err(dev, "Error enabling bridge (%d), continuing\n",
2102 2103 2104 2105
			retval);
	pci_set_master(dev);
}

2106
static int pci_enable_device_flags(struct pci_dev *dev, unsigned long flags)
Linus Torvalds's avatar
Linus Torvalds committed
2107
{
2108
	struct pci_dev *bridge;
Linus Torvalds's avatar
Linus Torvalds committed
2109
	int err;
2110
	int i, bars = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2111

2112 2113 2114 2115 2116 2117
	/*
	 * Power state could be unknown at this point, either due to a fresh
	 * boot or a device removal call.  So get the current power state
	 * so that things like MSI message writing will behave as expected
	 * (e.g. if the device really is in D0 at enable time).
	 */
2118
	pci_update_current_state(dev, dev->current_state);
2119

2120 2121 2122
	if (atomic_inc_return(&dev->enable_cnt) > 1)
		return 0;		/* already enabled */

2123
	bridge = pci_upstream_bridge(dev);
2124
	if (bridge)
2125
		pci_enable_bridge(bridge);
2126

2127 2128 2129 2130 2131
	/* only skip sriov related */
	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
		if (dev->resource[i].flags & flags)
			bars |= (1 << i);
	for (i = PCI_BRIDGE_RESOURCES; i < DEVICE_COUNT_RESOURCE; i++)
2132 2133 2134
		if (dev->resource[i].flags & flags)
			bars |= (1 << i);

2135
	err = do_pci_enable_device(dev, bars);
2136
	if (err < 0)
2137
		atomic_dec(&dev->enable_cnt);
2138
	return err;
Linus Torvalds's avatar
Linus Torvalds committed
2139 2140
}

2141 2142 2143 2144
/**
 * pci_enable_device_io - Initialize a device for use with IO space
 * @dev: PCI device to be initialized
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2145 2146 2147
 * Initialize device before it's used by a driver. Ask low-level code
 * to enable I/O resources. Wake up the device if it was suspended.
 * Beware, this function can fail.
2148 2149 2150
 */
int pci_enable_device_io(struct pci_dev *dev)
{
2151
	return pci_enable_device_flags(dev, IORESOURCE_IO);
2152
}
2153
EXPORT_SYMBOL(pci_enable_device_io);
2154 2155 2156 2157 2158

/**
 * pci_enable_device_mem - Initialize a device for use with Memory space
 * @dev: PCI device to be initialized
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2159 2160 2161
 * Initialize device before it's used by a driver. Ask low-level code
 * to enable Memory resources. Wake up the device if it was suspended.
 * Beware, this function can fail.
2162 2163 2164
 */
int pci_enable_device_mem(struct pci_dev *dev)
{
2165
	return pci_enable_device_flags(dev, IORESOURCE_MEM);
2166
}
2167
EXPORT_SYMBOL(pci_enable_device_mem);
2168

2169 2170 2171 2172
/**
 * pci_enable_device - Initialize device before it's used by a driver.
 * @dev: PCI device to be initialized
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2173 2174 2175
 * Initialize device before it's used by a driver. Ask low-level code
 * to enable I/O and memory. Wake up the device if it was suspended.
 * Beware, this function can fail.
2176
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2177 2178
 * Note we don't actually enable the device many times if we call
 * this function repeatedly (we just increment the count).
2179 2180 2181
 */
int pci_enable_device(struct pci_dev *dev)
{
2182
	return pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
2183
}
2184
EXPORT_SYMBOL(pci_enable_device);
2185

2186
/*
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2187 2188
 * Managed PCI resources.  This manages device on/off, INTx/MSI/MSI-X
 * on/off and BAR regions.  pci_dev itself records MSI/MSI-X status, so
2189 2190 2191 2192
 * there's no need to track it separately.  pci_devres is initialized
 * when a device is enabled using managed PCI device enable interface.
 */
struct pci_devres {
2193 2194
	unsigned int enabled:1;
	unsigned int pinned:1;
2195 2196
	unsigned int orig_intx:1;
	unsigned int restore_intx:1;
2197
	unsigned int mwi:1;
2198 2199 2200 2201 2202
	u32 region_mask;
};

static void pcim_release(struct device *gendev, void *res)
{
2203
	struct pci_dev *dev = to_pci_dev(gendev);
2204 2205 2206 2207 2208 2209 2210
	struct pci_devres *this = res;
	int i;

	for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
		if (this->region_mask & (1 << i))
			pci_release_region(dev, i);

2211 2212 2213
	if (this->mwi)
		pci_clear_mwi(dev);

2214 2215 2216
	if (this->restore_intx)
		pci_intx(dev, this->orig_intx);

2217
	if (this->enabled && !this->pinned)
2218 2219 2220
		pci_disable_device(dev);
}

2221
static struct pci_devres *get_pci_dr(struct pci_dev *pdev)
2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234
{
	struct pci_devres *dr, *new_dr;

	dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
	if (dr)
		return dr;

	new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
	if (!new_dr)
		return NULL;
	return devres_get(&pdev->dev, new_dr, NULL, NULL);
}

2235
static struct pci_devres *find_pci_dr(struct pci_dev *pdev)
2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255
{
	if (pci_is_managed(pdev))
		return devres_find(&pdev->dev, pcim_release, NULL, NULL);
	return NULL;
}

/**
 * pcim_enable_device - Managed pci_enable_device()
 * @pdev: PCI device to be initialized
 *
 * Managed pci_enable_device().
 */
int pcim_enable_device(struct pci_dev *pdev)
{
	struct pci_devres *dr;
	int rc;

	dr = get_pci_dr(pdev);
	if (unlikely(!dr))
		return -ENOMEM;
2256 2257
	if (dr->enabled)
		return 0;
2258 2259 2260 2261

	rc = pci_enable_device(pdev);
	if (!rc) {
		pdev->is_managed = 1;
2262
		dr->enabled = 1;
2263 2264 2265
	}
	return rc;
}
2266
EXPORT_SYMBOL(pcim_enable_device);
2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280

/**
 * pcim_pin_device - Pin managed PCI device
 * @pdev: PCI device to pin
 *
 * Pin managed PCI device @pdev.  Pinned device won't be disabled on
 * driver detach.  @pdev must have been enabled with
 * pcim_enable_device().
 */
void pcim_pin_device(struct pci_dev *pdev)
{
	struct pci_devres *dr;

	dr = find_pci_dr(pdev);
2281
	WARN_ON(!dr || !dr->enabled);
2282
	if (dr)
2283
		dr->pinned = 1;
2284
}
2285
EXPORT_SYMBOL(pcim_pin_device);
2286

2287
/*
2288
 * pcibios_device_add - provide arch specific hooks when adding device dev
2289 2290 2291 2292 2293 2294
 * @dev: the PCI device being added
 *
 * Permits the platform to provide architecture specific functionality when
 * devices are added. This is the default implementation. Architecture
 * implementations can override this.
 */
2295
int __weak pcibios_device_add(struct pci_dev *dev)
2296 2297 2298 2299
{
	return 0;
}

2300
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2301 2302
 * pcibios_release_device - provide arch specific hooks when releasing
 *			    device dev
2303 2304 2305 2306 2307 2308 2309 2310
 * @dev: the PCI device being released
 *
 * Permits the platform to provide architecture specific functionality when
 * devices are released. This is the default implementation. Architecture
 * implementations can override this.
 */
void __weak pcibios_release_device(struct pci_dev *dev) {}

Linus Torvalds's avatar
Linus Torvalds committed
2311 2312 2313 2314 2315 2316 2317 2318
/**
 * pcibios_disable_device - disable arch specific PCI resources for device dev
 * @dev: the PCI device to disable
 *
 * Disables architecture specific PCI resources for the device. This
 * is the default implementation. Architecture implementations can
 * override this.
 */
2319
void __weak pcibios_disable_device(struct pci_dev *dev) {}
Linus Torvalds's avatar
Linus Torvalds committed
2320

2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331
/**
 * pcibios_penalize_isa_irq - penalize an ISA IRQ
 * @irq: ISA IRQ to penalize
 * @active: IRQ active or not
 *
 * Permits the platform to provide architecture-specific functionality when
 * penalizing ISA IRQs. This is the default implementation. Architecture
 * implementations can override this.
 */
void __weak pcibios_penalize_isa_irq(int irq, int active) {}

2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353
static void do_pci_disable_device(struct pci_dev *dev)
{
	u16 pci_command;

	pci_read_config_word(dev, PCI_COMMAND, &pci_command);
	if (pci_command & PCI_COMMAND_MASTER) {
		pci_command &= ~PCI_COMMAND_MASTER;
		pci_write_config_word(dev, PCI_COMMAND, pci_command);
	}

	pcibios_disable_device(dev);
}

/**
 * pci_disable_enabled_device - Disable device without updating enable_cnt
 * @dev: PCI device to disable
 *
 * NOTE: This function is a backend of PCI power management routines and is
 * not supposed to be called drivers.
 */
void pci_disable_enabled_device(struct pci_dev *dev)
{
2354
	if (pci_is_enabled(dev))
2355 2356 2357
		do_pci_disable_device(dev);
}

Linus Torvalds's avatar
Linus Torvalds committed
2358 2359 2360 2361 2362 2363
/**
 * pci_disable_device - Disable PCI device after use
 * @dev: PCI device to be disabled
 *
 * Signal to the system that the PCI device is not in use by the system
 * anymore.  This only involves disabling PCI bus-mastering, if active.
2364 2365
 *
 * Note we don't actually disable the device until all callers of
2366
 * pci_enable_device() have called pci_disable_device().
Linus Torvalds's avatar
Linus Torvalds committed
2367
 */
Ryan Desfosses's avatar
Ryan Desfosses committed
2368
void pci_disable_device(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
2369
{
2370
	struct pci_devres *dr;
2371

2372 2373
	dr = find_pci_dr(dev);
	if (dr)
2374
		dr->enabled = 0;
2375

2376 2377 2378
	dev_WARN_ONCE(&dev->dev, atomic_read(&dev->enable_cnt) <= 0,
		      "disabling already-disabled device");

2379
	if (atomic_dec_return(&dev->enable_cnt) != 0)
2380 2381
		return;

2382
	do_pci_disable_device(dev);
Linus Torvalds's avatar
Linus Torvalds committed
2383

2384
	dev->is_busmaster = 0;
Linus Torvalds's avatar
Linus Torvalds committed
2385
}
2386
EXPORT_SYMBOL(pci_disable_device);
Linus Torvalds's avatar
Linus Torvalds committed
2387

Brian King's avatar
Brian King committed
2388 2389
/**
 * pcibios_set_pcie_reset_state - set reset state for device dev
2390
 * @dev: the PCIe device reset
Brian King's avatar
Brian King committed
2391 2392
 * @state: Reset state to enter into
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2393
 * Set the PCIe reset state for the device. This is the default
Brian King's avatar
Brian King committed
2394 2395
 * implementation. Architecture implementations can override this.
 */
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2396 2397
int __weak pcibios_set_pcie_reset_state(struct pci_dev *dev,
					enum pcie_reset_state state)
Brian King's avatar
Brian King committed
2398 2399 2400 2401 2402 2403
{
	return -EINVAL;
}

/**
 * pci_set_pcie_reset_state - set reset state for device dev
2404
 * @dev: the PCIe device reset
Brian King's avatar
Brian King committed
2405 2406 2407 2408 2409 2410 2411 2412
 * @state: Reset state to enter into
 *
 * Sets the PCI reset state for the device.
 */
int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
{
	return pcibios_set_pcie_reset_state(dev, state);
}
2413
EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);
Brian King's avatar
Brian King committed
2414

2415
#ifdef CONFIG_PCIEAER
2416 2417 2418 2419 2420 2421 2422
void pcie_clear_device_status(struct pci_dev *dev)
{
	u16 sta;

	pcie_capability_read_word(dev, PCI_EXP_DEVSTA, &sta);
	pcie_capability_write_word(dev, PCI_EXP_DEVSTA, sta);
}
2423
#endif
2424

2425 2426 2427 2428 2429 2430 2431 2432 2433
/**
 * pcie_clear_root_pme_status - Clear root port PME interrupt status.
 * @dev: PCIe root port or event collector.
 */
void pcie_clear_root_pme_status(struct pci_dev *dev)
{
	pcie_capability_set_dword(dev, PCI_EXP_RTSTA, PCI_EXP_RTSTA_PME);
}

2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468
/**
 * pci_check_pme_status - Check if given device has generated PME.
 * @dev: Device to check.
 *
 * Check the PME status of the device and if set, clear it and clear PME enable
 * (if set).  Return 'true' if PME status and PME enable were both set or
 * 'false' otherwise.
 */
bool pci_check_pme_status(struct pci_dev *dev)
{
	int pmcsr_pos;
	u16 pmcsr;
	bool ret = false;

	if (!dev->pm_cap)
		return false;

	pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
	pci_read_config_word(dev, pmcsr_pos, &pmcsr);
	if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
		return false;

	/* Clear PME status. */
	pmcsr |= PCI_PM_CTRL_PME_STATUS;
	if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
		/* Disable PME to avoid interrupt flood. */
		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
		ret = true;
	}

	pci_write_config_word(dev, pmcsr_pos, pmcsr);

	return ret;
}

2469 2470 2471
/**
 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
 * @dev: Device to handle.
2472
 * @pme_poll_reset: Whether or not to reset the device's pme_poll flag.
2473 2474 2475 2476
 *
 * Check if @dev has generated PME and queue a resume request for it in that
 * case.
 */
2477
static int pci_pme_wakeup(struct pci_dev *dev, void *pme_poll_reset)
2478
{
2479 2480 2481
	if (pme_poll_reset && dev->pme_poll)
		dev->pme_poll = false;

2482 2483
	if (pci_check_pme_status(dev)) {
		pci_wakeup_event(dev);
2484
		pm_request_resume(&dev->dev);
2485
	}
2486 2487 2488 2489 2490 2491 2492 2493 2494 2495
	return 0;
}

/**
 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
 * @bus: Top bus of the subtree to walk.
 */
void pci_pme_wakeup_bus(struct pci_bus *bus)
{
	if (bus)
2496
		pci_walk_bus(bus, pci_pme_wakeup, (void *)true);
2497 2498
}

2499

2500 2501 2502 2503 2504
/**
 * pci_pme_capable - check the capability of PCI device to generate PME#
 * @dev: PCI device to handle.
 * @state: PCI state from which device will issue PME#.
 */
2505
bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
2506
{
2507
	if (!dev->pm_cap)
2508 2509
		return false;

2510
	return !!(dev->pme_support & (1 << state));
2511
}
2512
EXPORT_SYMBOL(pci_pme_capable);
2513

2514 2515
static void pci_pme_list_scan(struct work_struct *work)
{
2516
	struct pci_pme_device *pme_dev, *n;
2517 2518

	mutex_lock(&pci_pme_list_mutex);
2519
	list_for_each_entry_safe(pme_dev, n, &pci_pme_list, list) {
2520 2521 2522 2523 2524
		struct pci_dev *pdev = pme_dev->dev;

		if (pdev->pme_poll) {
			struct pci_dev *bridge = pdev->bus->self;
			struct device *dev = &pdev->dev;
2525 2526
			struct device *bdev = bridge ? &bridge->dev : NULL;
			int bref = 0;
2527 2528

			/*
2529 2530 2531 2532
			 * If we have a bridge, it should be in an active/D0
			 * state or the configuration space of subordinate
			 * devices may not be accessible or stable over the
			 * course of the call.
2533
			 */
2534 2535 2536 2537 2538 2539 2540 2541
			if (bdev) {
				bref = pm_runtime_get_if_active(bdev, true);
				if (!bref)
					continue;

				if (bridge->current_state != PCI_D0)
					goto put_bridge;
			}
2542

2543
			/*
2544 2545 2546
			 * The device itself should be suspended but config
			 * space must be accessible, therefore it cannot be in
			 * D3cold.
2547
			 */
2548 2549
			if (pm_runtime_suspended(dev) &&
			    pdev->current_state != PCI_D3cold)
2550 2551
				pci_pme_wakeup(pdev, NULL);

2552 2553 2554
put_bridge:
			if (bref > 0)
				pm_runtime_put(bdev);
2555 2556 2557
		} else {
			list_del(&pme_dev->list);
			kfree(pme_dev);
2558
		}
2559
	}
2560
	if (!list_empty(&pci_pme_list))
2561 2562
		queue_delayed_work(system_freezable_wq, &pci_pme_work,
				   msecs_to_jiffies(PME_TIMEOUT));
2563 2564 2565
	mutex_unlock(&pci_pme_list_mutex);
}

2566
static void __pci_pme_active(struct pci_dev *dev, bool enable)
2567 2568 2569
{
	u16 pmcsr;

2570
	if (!dev->pme_support)
2571 2572
		return;

2573
	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
2574 2575 2576 2577 2578
	/* Clear PME_Status by writing 1 to it and enable PME# */
	pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
	if (!enable)
		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;

2579
	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
2580 2581
}

2582 2583 2584 2585 2586
/**
 * pci_pme_restore - Restore PME configuration after config space restore.
 * @dev: PCI device to update.
 */
void pci_pme_restore(struct pci_dev *dev)
2587 2588 2589 2590 2591 2592 2593 2594 2595
{
	u16 pmcsr;

	if (!dev->pme_support)
		return;

	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
	if (dev->wakeup_prepared) {
		pmcsr |= PCI_PM_CTRL_PME_ENABLE;
2596
		pmcsr &= ~PCI_PM_CTRL_PME_STATUS;
2597 2598 2599 2600 2601 2602 2603
	} else {
		pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
		pmcsr |= PCI_PM_CTRL_PME_STATUS;
	}
	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
}

2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614
/**
 * pci_pme_active - enable or disable PCI device's PME# function
 * @dev: PCI device to handle.
 * @enable: 'true' to enable PME# generation; 'false' to disable it.
 *
 * The caller must verify that the device is capable of generating PME# before
 * calling this function with @enable equal to 'true'.
 */
void pci_pme_active(struct pci_dev *dev, bool enable)
{
	__pci_pme_active(dev, enable);
2615

2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634
	/*
	 * PCI (as opposed to PCIe) PME requires that the device have
	 * its PME# line hooked up correctly. Not all hardware vendors
	 * do this, so the PME never gets delivered and the device
	 * remains asleep. The easiest way around this is to
	 * periodically walk the list of suspended devices and check
	 * whether any have their PME flag set. The assumption is that
	 * we'll wake up often enough anyway that this won't be a huge
	 * hit, and the power savings from the devices will still be a
	 * win.
	 *
	 * Although PCIe uses in-band PME message instead of PME# line
	 * to report PME, PME does not work for some PCIe devices in
	 * reality.  For example, there are devices that set their PME
	 * status bits, but don't really bother to send a PME message;
	 * there are PCI Express Root Ports that don't bother to
	 * trigger interrupts when they receive PME messages from the
	 * devices below.  So PME poll is used for PCIe devices too.
	 */
2635

2636
	if (dev->pme_poll) {
2637 2638 2639 2640
		struct pci_pme_device *pme_dev;
		if (enable) {
			pme_dev = kmalloc(sizeof(struct pci_pme_device),
					  GFP_KERNEL);
2641
			if (!pme_dev) {
2642
				pci_warn(dev, "can't enable PME#\n");
2643 2644
				return;
			}
2645 2646 2647 2648
			pme_dev->dev = dev;
			mutex_lock(&pci_pme_list_mutex);
			list_add(&pme_dev->list, &pci_pme_list);
			if (list_is_singular(&pci_pme_list))
2649 2650 2651
				queue_delayed_work(system_freezable_wq,
						   &pci_pme_work,
						   msecs_to_jiffies(PME_TIMEOUT));
2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665
			mutex_unlock(&pci_pme_list_mutex);
		} else {
			mutex_lock(&pci_pme_list_mutex);
			list_for_each_entry(pme_dev, &pci_pme_list, list) {
				if (pme_dev->dev == dev) {
					list_del(&pme_dev->list);
					kfree(pme_dev);
					break;
				}
			}
			mutex_unlock(&pci_pme_list_mutex);
		}
	}

2666
	pci_dbg(dev, "PME# %s\n", enable ? "enabled" : "disabled");
2667
}
2668
EXPORT_SYMBOL(pci_pme_active);
2669

Linus Torvalds's avatar
Linus Torvalds committed
2670
/**
2671
 * __pci_enable_wake - enable PCI device as wakeup event source
2672 2673 2674 2675 2676 2677 2678 2679 2680
 * @dev: PCI device affected
 * @state: PCI state from which device will issue wakeup events
 * @enable: True to enable event generation; false to disable
 *
 * This enables the device as a wakeup event source, or disables it.
 * When such events involves platform-specific hooks, those hooks are
 * called automatically by this routine.
 *
 * Devices with legacy power management (no standard PCI PM capabilities)
2681
 * always require such platform hooks.
2682
 *
2683 2684 2685 2686 2687
 * RETURN VALUE:
 * 0 is returned on success
 * -EINVAL is returned if device is not supposed to wake up the system
 * Error code depending on the platform is returned if both the platform and
 * the native mechanism fail to enable the generation of wake-up events
Linus Torvalds's avatar
Linus Torvalds committed
2688
 */
2689
static int __pci_enable_wake(struct pci_dev *dev, pci_power_t state, bool enable)
Linus Torvalds's avatar
Linus Torvalds committed
2690
{
2691
	int ret = 0;
2692

2693
	/*
2694 2695 2696 2697 2698
	 * Bridges that are not power-manageable directly only signal
	 * wakeup on behalf of subordinate devices which is set up
	 * elsewhere, so skip them. However, bridges that are
	 * power-manageable may signal wakeup for themselves (for example,
	 * on a hotplug event) and they need to be covered here.
2699
	 */
2700
	if (!pci_power_manageable(dev))
2701 2702
		return 0;

2703 2704
	/* Don't do the same thing twice in a row for one device. */
	if (!!enable == !!dev->wakeup_prepared)
2705 2706
		return 0;

2707 2708 2709 2710
	/*
	 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
	 * Anderson we should be doing PME# wake enable followed by ACPI wake
	 * enable.  To disable wake-up we call the platform first, for symmetry.
2711
	 */
Linus Torvalds's avatar
Linus Torvalds committed
2712

2713 2714
	if (enable) {
		int error;
Linus Torvalds's avatar
Linus Torvalds committed
2715

2716 2717 2718 2719 2720 2721 2722 2723
		/*
		 * Enable PME signaling if the device can signal PME from
		 * D3cold regardless of whether or not it can signal PME from
		 * the current target state, because that will allow it to
		 * signal PME when the hierarchy above it goes into D3cold and
		 * the device itself ends up in D3cold as a result of that.
		 */
		if (pci_pme_capable(dev, state) || pci_pme_capable(dev, PCI_D3cold))
2724 2725 2726
			pci_pme_active(dev, true);
		else
			ret = 1;
2727
		error = platform_pci_set_wakeup(dev, true);
2728 2729
		if (ret)
			ret = error;
2730 2731
		if (!ret)
			dev->wakeup_prepared = true;
2732
	} else {
2733
		platform_pci_set_wakeup(dev, false);
2734
		pci_pme_active(dev, false);
2735
		dev->wakeup_prepared = false;
2736
	}
Linus Torvalds's avatar
Linus Torvalds committed
2737

2738
	return ret;
2739
}
2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756

/**
 * pci_enable_wake - change wakeup settings for a PCI device
 * @pci_dev: Target device
 * @state: PCI state from which device will issue wakeup events
 * @enable: Whether or not to enable event generation
 *
 * If @enable is set, check device_may_wakeup() for the device before calling
 * __pci_enable_wake() for it.
 */
int pci_enable_wake(struct pci_dev *pci_dev, pci_power_t state, bool enable)
{
	if (enable && !device_may_wakeup(&pci_dev->dev))
		return -EINVAL;

	return __pci_enable_wake(pci_dev, state, enable);
}
2757
EXPORT_SYMBOL(pci_enable_wake);
Linus Torvalds's avatar
Linus Torvalds committed
2758

2759 2760 2761 2762 2763 2764 2765 2766 2767 2768
/**
 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
 * @dev: PCI device to prepare
 * @enable: True to enable wake-up event generation; false to disable
 *
 * Many drivers want the device to wake up the system from D3_hot or D3_cold
 * and this function allows them to set that up cleanly - pci_enable_wake()
 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
 * ordering constraints.
 *
2769 2770 2771
 * This function only returns error code if the device is not allowed to wake
 * up the system from sleep or it is not capable of generating PME# from both
 * D3_hot and D3_cold and the platform is unable to enable wake-up power for it.
2772 2773 2774 2775 2776 2777 2778
 */
int pci_wake_from_d3(struct pci_dev *dev, bool enable)
{
	return pci_pme_capable(dev, PCI_D3cold) ?
			pci_enable_wake(dev, PCI_D3cold, enable) :
			pci_enable_wake(dev, PCI_D3hot, enable);
}
2779
EXPORT_SYMBOL(pci_wake_from_d3);
2780

2781
/**
2782 2783
 * pci_target_state - find an appropriate low power state for a given PCI dev
 * @dev: PCI device
2784
 * @wakeup: Whether or not wakeup functionality will be enabled for the device.
2785 2786 2787 2788
 *
 * Use underlying platform code to find a supported low power state for @dev.
 * If the platform can't manage @dev, return the deepest state from which it
 * can generate wake events, based on any available PME info.
2789
 */
2790
static pci_power_t pci_target_state(struct pci_dev *dev, bool wakeup)
2791 2792 2793
{
	if (platform_pci_power_manageable(dev)) {
		/*
2794
		 * Call the platform to find the target state for the device.
2795 2796 2797 2798 2799 2800
		 */
		pci_power_t state = platform_pci_choose_state(dev);

		switch (state) {
		case PCI_POWER_ERROR:
		case PCI_UNKNOWN:
2801 2802
			return PCI_D3hot;

2803 2804 2805
		case PCI_D1:
		case PCI_D2:
			if (pci_no_d1d2(dev))
2806
				return PCI_D3hot;
2807
		}
2808

2809
		return state;
2810 2811 2812 2813 2814 2815 2816 2817
	}

	/*
	 * If the device is in D3cold even though it's not power-manageable by
	 * the platform, it may have been powered down by non-standard means.
	 * Best to let it slumber.
	 */
	if (dev->current_state == PCI_D3cold)
2818 2819 2820
		return PCI_D3cold;
	else if (!dev->pm_cap)
		return PCI_D0;
2821

2822
	if (wakeup && dev->pme_support) {
2823
		pci_power_t state = PCI_D3hot;
2824

2825 2826
		/*
		 * Find the deepest state from which the device can generate
2827
		 * PME#.
2828
		 */
2829 2830 2831 2832 2833 2834 2835
		while (state && !(dev->pme_support & (1 << state)))
			state--;

		if (state)
			return state;
		else if (dev->pme_support & 1)
			return PCI_D0;
2836 2837
	}

2838
	return PCI_D3hot;
2839 2840 2841
}

/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2842 2843
 * pci_prepare_to_sleep - prepare PCI device for system-wide transition
 *			  into a sleep state
2844 2845 2846 2847 2848 2849 2850 2851
 * @dev: Device to handle.
 *
 * Choose the power state appropriate for the device depending on whether
 * it can wake up the system and/or is power manageable by the platform
 * (PCI_D3hot is the default) and put the device into that state.
 */
int pci_prepare_to_sleep(struct pci_dev *dev)
{
2852 2853
	bool wakeup = device_may_wakeup(&dev->dev);
	pci_power_t target_state = pci_target_state(dev, wakeup);
2854 2855 2856 2857 2858
	int error;

	if (target_state == PCI_POWER_ERROR)
		return -EIO;

2859
	pci_enable_wake(dev, target_state, wakeup);
2860

2861 2862
	error = pci_set_power_state(dev, target_state);

2863
	if (error)
2864 2865 2866 2867
		pci_enable_wake(dev, target_state, false);

	return error;
}
2868
EXPORT_SYMBOL(pci_prepare_to_sleep);
2869 2870

/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
2871 2872
 * pci_back_from_sleep - turn PCI device on during system-wide transition
 *			 into working state
2873 2874
 * @dev: Device to handle.
 *
Thomas Weber's avatar
Thomas Weber committed
2875
 * Disable device's system wake-up capability and put it into D0.
2876 2877 2878
 */
int pci_back_from_sleep(struct pci_dev *dev)
{
2879 2880 2881 2882 2883
	int ret = pci_set_power_state(dev, PCI_D0);

	if (ret)
		return ret;

2884
	pci_enable_wake(dev, PCI_D0, false);
2885
	return 0;
2886
}
2887
EXPORT_SYMBOL(pci_back_from_sleep);
2888

2889 2890 2891 2892 2893 2894 2895 2896 2897
/**
 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
 * @dev: PCI device being suspended.
 *
 * Prepare @dev to generate wake-up events at run time and put it into a low
 * power state.
 */
int pci_finish_runtime_suspend(struct pci_dev *dev)
{
2898
	pci_power_t target_state;
2899 2900
	int error;

2901
	target_state = pci_target_state(dev, device_can_wakeup(&dev->dev));
2902 2903 2904
	if (target_state == PCI_POWER_ERROR)
		return -EIO;

2905
	__pci_enable_wake(dev, target_state, pci_dev_run_wake(dev));
2906 2907 2908

	error = pci_set_power_state(dev, target_state);

2909
	if (error)
2910
		pci_enable_wake(dev, target_state, false);
2911 2912 2913 2914

	return error;
}

2915 2916 2917 2918
/**
 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
 * @dev: Device to check.
 *
2919
 * Return true if the device itself is capable of generating wake-up events
2920 2921 2922 2923 2924 2925 2926 2927 2928 2929
 * (through the platform or using the native PCIe PME) or if the device supports
 * PME and one of its upstream bridges can generate wake-up events.
 */
bool pci_dev_run_wake(struct pci_dev *dev)
{
	struct pci_bus *bus = dev->bus;

	if (!dev->pme_support)
		return false;

2930
	/* PME-capable in principle, but not from the target power state */
2931
	if (!pci_pme_capable(dev, pci_target_state(dev, true)))
2932 2933
		return false;

2934 2935 2936
	if (device_can_wakeup(&dev->dev))
		return true;

2937 2938 2939
	while (bus->parent) {
		struct pci_dev *bridge = bus->self;

2940
		if (device_can_wakeup(&bridge->dev))
2941 2942 2943 2944 2945 2946 2947
			return true;

		bus = bus->parent;
	}

	/* We have reached the root bus. */
	if (bus->bridge)
2948
		return device_can_wakeup(bus->bridge);
2949 2950 2951 2952 2953

	return false;
}
EXPORT_SYMBOL_GPL(pci_dev_run_wake);

2954
/**
2955
 * pci_dev_need_resume - Check if it is necessary to resume the device.
2956 2957
 * @pci_dev: Device to check.
 *
2958
 * Return 'true' if the device is not runtime-suspended or it has to be
2959
 * reconfigured due to wakeup settings difference between system and runtime
2960 2961
 * suspend, or the current power state of it is not suitable for the upcoming
 * (system-wide) transition.
2962
 */
2963
bool pci_dev_need_resume(struct pci_dev *pci_dev)
2964 2965
{
	struct device *dev = &pci_dev->dev;
2966 2967 2968
	pci_power_t target_state;

	if (!pm_runtime_suspended(dev) || platform_pci_need_resume(pci_dev))
2969
		return true;
2970

2971
	target_state = pci_target_state(pci_dev, device_may_wakeup(dev));
2972 2973 2974 2975 2976 2977

	/*
	 * If the earlier platform check has not triggered, D3cold is just power
	 * removal on top of D3hot, so no need to resume the device in that
	 * case.
	 */
2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996
	return target_state != pci_dev->current_state &&
		target_state != PCI_D3cold &&
		pci_dev->current_state != PCI_D3hot;
}

/**
 * pci_dev_adjust_pme - Adjust PME setting for a suspended device.
 * @pci_dev: Device to check.
 *
 * If the device is suspended and it is not configured for system wakeup,
 * disable PME for it to prevent it from waking up the system unnecessarily.
 *
 * Note that if the device's power state is D3cold and the platform check in
 * pci_dev_need_resume() has not triggered, the device's configuration need not
 * be changed.
 */
void pci_dev_adjust_pme(struct pci_dev *pci_dev)
{
	struct device *dev = &pci_dev->dev;
2997

2998 2999
	spin_lock_irq(&dev->power.lock);

3000 3001
	if (pm_runtime_suspended(dev) && !device_may_wakeup(dev) &&
	    pci_dev->current_state < PCI_D3cold)
3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027
		__pci_pme_active(pci_dev, false);

	spin_unlock_irq(&dev->power.lock);
}

/**
 * pci_dev_complete_resume - Finalize resume from system sleep for a device.
 * @pci_dev: Device to handle.
 *
 * If the device is runtime suspended and wakeup-capable, enable PME for it as
 * it might have been disabled during the prepare phase of system suspend if
 * the device was not configured for system wakeup.
 */
void pci_dev_complete_resume(struct pci_dev *pci_dev)
{
	struct device *dev = &pci_dev->dev;

	if (!pci_dev_run_wake(pci_dev))
		return;

	spin_lock_irq(&dev->power.lock);

	if (pm_runtime_suspended(dev) && pci_dev->current_state < PCI_D3cold)
		__pci_pme_active(pci_dev, true);

	spin_unlock_irq(&dev->power.lock);
3028 3029
}

3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045
/**
 * pci_choose_state - Choose the power state of a PCI device.
 * @dev: Target PCI device.
 * @state: Target state for the whole system.
 *
 * Returns PCI power state suitable for @dev and @state.
 */
pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
{
	if (state.event == PM_EVENT_ON)
		return PCI_D0;

	return pci_target_state(dev, false);
}
EXPORT_SYMBOL(pci_choose_state);

3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077
void pci_config_pm_runtime_get(struct pci_dev *pdev)
{
	struct device *dev = &pdev->dev;
	struct device *parent = dev->parent;

	if (parent)
		pm_runtime_get_sync(parent);
	pm_runtime_get_noresume(dev);
	/*
	 * pdev->current_state is set to PCI_D3cold during suspending,
	 * so wait until suspending completes
	 */
	pm_runtime_barrier(dev);
	/*
	 * Only need to resume devices in D3cold, because config
	 * registers are still accessible for devices suspended but
	 * not in D3cold.
	 */
	if (pdev->current_state == PCI_D3cold)
		pm_runtime_resume(dev);
}

void pci_config_pm_runtime_put(struct pci_dev *pdev)
{
	struct device *dev = &pdev->dev;
	struct device *parent = dev->parent;

	pm_runtime_put(dev);
	if (parent)
		pm_runtime_put_sync(parent);
}

3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091
static const struct dmi_system_id bridge_d3_blacklist[] = {
#ifdef CONFIG_X86
	{
		/*
		 * Gigabyte X299 root port is not marked as hotplug capable
		 * which allows Linux to power manage it.  However, this
		 * confuses the BIOS SMI handler so don't power manage root
		 * ports on that system.
		 */
		.ident = "X299 DESIGNARE EX-CF",
		.matches = {
			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co., Ltd."),
			DMI_MATCH(DMI_BOARD_NAME, "X299 DESIGNARE EX-CF"),
		},
3092 3093
	},
	{
3094 3095
		/*
		 * Downstream device is not accessible after putting a root port
3096
		 * into D3cold and back into D0 on Elo Continental Z2 board
3097
		 */
3098
		.ident = "Elo Continental Z2",
3099
		.matches = {
3100 3101 3102
			DMI_MATCH(DMI_BOARD_VENDOR, "Elo Touch Solutions"),
			DMI_MATCH(DMI_BOARD_NAME, "Geminilake"),
			DMI_MATCH(DMI_BOARD_VERSION, "Continental Z2"),
3103
		},
3104 3105 3106 3107 3108
	},
#endif
	{ }
};

3109 3110 3111 3112 3113
/**
 * pci_bridge_d3_possible - Is it possible to put the bridge into D3
 * @bridge: Bridge to check
 *
 * This function checks if it is possible to move the bridge to D3.
3114
 * Currently we only allow D3 for recent enough PCIe ports and Thunderbolt.
3115
 */
3116
bool pci_bridge_d3_possible(struct pci_dev *bridge)
3117 3118 3119 3120 3121 3122 3123 3124 3125 3126
{
	if (!pci_is_pcie(bridge))
		return false;

	switch (pci_pcie_type(bridge)) {
	case PCI_EXP_TYPE_ROOT_PORT:
	case PCI_EXP_TYPE_UPSTREAM:
	case PCI_EXP_TYPE_DOWNSTREAM:
		if (pci_bridge_d3_disable)
			return false;
3127 3128

		/*
3129
		 * Hotplug ports handled by firmware in System Management Mode
3130 3131
		 * may not be put into D3 by the OS (Thunderbolt on non-Macs).
		 */
3132
		if (bridge->is_hotplug_bridge && !pciehp_is_native(bridge))
3133 3134
			return false;

3135 3136 3137
		if (pci_bridge_d3_force)
			return true;

3138 3139 3140 3141
		/* Even the oldest 2010 Thunderbolt controller supports D3. */
		if (bridge->is_thunderbolt)
			return true;

3142 3143 3144 3145
		/* Platform might know better if the bridge supports D3 */
		if (platform_pci_bridge_d3(bridge))
			return true;

3146 3147 3148 3149 3150 3151 3152 3153
		/*
		 * Hotplug ports handled natively by the OS were not validated
		 * by vendors for runtime D3 at least until 2018 because there
		 * was no OS support.
		 */
		if (bridge->is_hotplug_bridge)
			return false;

3154 3155 3156
		if (dmi_check_system(bridge_d3_blacklist))
			return false;

3157 3158 3159 3160
		/*
		 * It should be safe to put PCIe ports from 2015 or newer
		 * to D3.
		 */
3161
		if (dmi_get_bios_year() >= 2015)
3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172
			return true;
		break;
	}

	return false;
}

static int pci_dev_check_d3cold(struct pci_dev *dev, void *data)
{
	bool *d3cold_ok = data;

3173 3174 3175 3176 3177 3178 3179 3180
	if (/* The device needs to be allowed to go D3cold ... */
	    dev->no_d3cold || !dev->d3cold_allowed ||

	    /* ... and if it is wakeup capable to do so from D3cold. */
	    (device_may_wakeup(&dev->dev) &&
	     !pci_pme_capable(dev, PCI_D3cold)) ||

	    /* If it is a bridge it must be allowed to go to D3. */
3181
	    !pci_power_manageable(dev))
3182

3183
		*d3cold_ok = false;
3184

3185
	return !*d3cold_ok;
3186 3187 3188 3189 3190 3191 3192 3193 3194 3195
}

/*
 * pci_bridge_d3_update - Update bridge D3 capabilities
 * @dev: PCI device which is changed
 *
 * Update upstream bridge PM capabilities accordingly depending on if the
 * device PM configuration was changed or the device is being removed.  The
 * change is also propagated upstream.
 */
3196
void pci_bridge_d3_update(struct pci_dev *dev)
3197
{
3198
	bool remove = !device_is_registered(&dev->dev);
3199 3200 3201 3202 3203 3204 3205 3206
	struct pci_dev *bridge;
	bool d3cold_ok = true;

	bridge = pci_upstream_bridge(dev);
	if (!bridge || !pci_bridge_d3_possible(bridge))
		return;

	/*
3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219
	 * If D3 is currently allowed for the bridge, removing one of its
	 * children won't change that.
	 */
	if (remove && bridge->bridge_d3)
		return;

	/*
	 * If D3 is currently allowed for the bridge and a child is added or
	 * changed, disallowance of D3 can only be caused by that child, so
	 * we only need to check that single device, not any of its siblings.
	 *
	 * If D3 is currently not allowed for the bridge, checking the device
	 * first may allow us to skip checking its siblings.
3220 3221 3222 3223
	 */
	if (!remove)
		pci_dev_check_d3cold(dev, &d3cold_ok);

3224 3225 3226 3227 3228 3229 3230
	/*
	 * If D3 is currently not allowed for the bridge, this may be caused
	 * either by the device being changed/removed or any of its siblings,
	 * so we need to go through all children to find out if one of them
	 * continues to block D3.
	 */
	if (d3cold_ok && !bridge->bridge_d3)
3231 3232 3233 3234 3235 3236
		pci_walk_bus(bridge->subordinate, pci_dev_check_d3cold,
			     &d3cold_ok);

	if (bridge->bridge_d3 != d3cold_ok) {
		bridge->bridge_d3 = d3cold_ok;
		/* Propagate change to upstream bridges */
3237
		pci_bridge_d3_update(bridge);
3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252
	}
}

/**
 * pci_d3cold_enable - Enable D3cold for device
 * @dev: PCI device to handle
 *
 * This function can be used in drivers to enable D3cold from the device
 * they handle.  It also updates upstream PCI bridge PM capabilities
 * accordingly.
 */
void pci_d3cold_enable(struct pci_dev *dev)
{
	if (dev->no_d3cold) {
		dev->no_d3cold = false;
3253
		pci_bridge_d3_update(dev);
3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269
	}
}
EXPORT_SYMBOL_GPL(pci_d3cold_enable);

/**
 * pci_d3cold_disable - Disable D3cold for device
 * @dev: PCI device to handle
 *
 * This function can be used in drivers to disable D3cold from the device
 * they handle.  It also updates upstream PCI bridge PM capabilities
 * accordingly.
 */
void pci_d3cold_disable(struct pci_dev *dev)
{
	if (!dev->no_d3cold) {
		dev->no_d3cold = true;
3270
		pci_bridge_d3_update(dev);
3271 3272 3273 3274
	}
}
EXPORT_SYMBOL_GPL(pci_d3cold_disable);

3275 3276 3277 3278 3279 3280 3281
/**
 * pci_pm_init - Initialize PM functions of given PCI device
 * @dev: PCI device to handle.
 */
void pci_pm_init(struct pci_dev *dev)
{
	int pm;
3282
	u16 status;
3283
	u16 pmc;
Linus Torvalds's avatar
Linus Torvalds committed
3284

3285
	pm_runtime_forbid(&dev->dev);
3286 3287
	pm_runtime_set_active(&dev->dev);
	pm_runtime_enable(&dev->dev);
3288
	device_enable_async_suspend(&dev->dev);
3289
	dev->wakeup_prepared = false;
3290

3291
	dev->pm_cap = 0;
3292
	dev->pme_support = 0;
3293

3294 3295 3296
	/* find PCI PM capability in list */
	pm = pci_find_capability(dev, PCI_CAP_ID_PM);
	if (!pm)
3297
		return;
3298 3299
	/* Check device's ability to generate PME# */
	pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
3300

3301
	if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
3302
		pci_err(dev, "unsupported PM cap regs version (%u)\n",
3303
			pmc & PCI_PM_CAP_VER_MASK);
3304
		return;
3305 3306
	}

3307
	dev->pm_cap = pm;
3308
	dev->d3hot_delay = PCI_PM_D3HOT_WAIT;
3309
	dev->d3cold_delay = PCI_PM_D3COLD_WAIT;
3310
	dev->bridge_d3 = pci_bridge_d3_possible(dev);
3311
	dev->d3cold_allowed = true;
3312 3313 3314 3315

	dev->d1_support = false;
	dev->d2_support = false;
	if (!pci_no_d1d2(dev)) {
3316
		if (pmc & PCI_PM_CAP_D1)
3317
			dev->d1_support = true;
3318
		if (pmc & PCI_PM_CAP_D2)
3319
			dev->d2_support = true;
3320 3321

		if (dev->d1_support || dev->d2_support)
3322
			pci_info(dev, "supports%s%s\n",
3323 3324
				   dev->d1_support ? " D1" : "",
				   dev->d2_support ? " D2" : "");
3325 3326 3327 3328
	}

	pmc &= PCI_PM_CAP_PME_MASK;
	if (pmc) {
3329
		pci_info(dev, "PME# supported from%s%s%s%s%s\n",
3330 3331 3332
			 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
			 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
			 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
3333
			 (pmc & PCI_PM_CAP_PME_D3hot) ? " D3hot" : "",
3334
			 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3335
		dev->pme_support = FIELD_GET(PCI_PM_CAP_PME_MASK, pmc);
3336
		dev->pme_poll = true;
3337 3338 3339 3340 3341 3342
		/*
		 * Make device's PM flags reflect the wake-up capability, but
		 * let the user space enable it to wake up the system as needed.
		 */
		device_set_wakeup_capable(&dev->dev, true);
		/* Disable the PME# generation functionality */
3343
		pci_pme_active(dev, false);
3344
	}
3345 3346 3347 3348

	pci_read_config_word(dev, PCI_STATUS, &status);
	if (status & PCI_STATUS_IMM_READY)
		dev->imm_ready = 1;
Linus Torvalds's avatar
Linus Torvalds committed
3349 3350
}

3351 3352
static unsigned long pci_ea_flags(struct pci_dev *dev, u8 prop)
{
3353
	unsigned long flags = IORESOURCE_PCI_FIXED | IORESOURCE_PCI_EA_BEI;
3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378

	switch (prop) {
	case PCI_EA_P_MEM:
	case PCI_EA_P_VF_MEM:
		flags |= IORESOURCE_MEM;
		break;
	case PCI_EA_P_MEM_PREFETCH:
	case PCI_EA_P_VF_MEM_PREFETCH:
		flags |= IORESOURCE_MEM | IORESOURCE_PREFETCH;
		break;
	case PCI_EA_P_IO:
		flags |= IORESOURCE_IO;
		break;
	default:
		return 0;
	}

	return flags;
}

static struct resource *pci_ea_get_resource(struct pci_dev *dev, u8 bei,
					    u8 prop)
{
	if (bei <= PCI_EA_BEI_BAR5 && prop <= PCI_EA_P_IO)
		return &dev->resource[bei];
3379 3380 3381 3382 3383 3384
#ifdef CONFIG_PCI_IOV
	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5 &&
		 (prop == PCI_EA_P_VF_MEM || prop == PCI_EA_P_VF_MEM_PREFETCH))
		return &dev->resource[PCI_IOV_RESOURCES +
				      bei - PCI_EA_BEI_VF_BAR0];
#endif
3385 3386 3387 3388 3389 3390 3391 3392 3393 3394
	else if (bei == PCI_EA_BEI_ROM)
		return &dev->resource[PCI_ROM_RESOURCE];
	else
		return NULL;
}

/* Read an Enhanced Allocation (EA) entry */
static int pci_ea_read(struct pci_dev *dev, int offset)
{
	struct resource *res;
3395
	const char *res_name;
3396 3397 3398
	int ent_size, ent_offset = offset;
	resource_size_t start, end;
	unsigned long flags;
3399
	u32 dw0, bei, base, max_offset;
3400 3401 3402 3403 3404 3405 3406
	u8 prop;
	bool support_64 = (sizeof(resource_size_t) >= 8);

	pci_read_config_dword(dev, ent_offset, &dw0);
	ent_offset += 4;

	/* Entry size field indicates DWORDs after 1st */
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3407
	ent_size = (FIELD_GET(PCI_EA_ES, dw0) + 1) << 2;
3408 3409 3410 3411

	if (!(dw0 & PCI_EA_ENABLE)) /* Entry not enabled */
		goto out;

Bjorn Helgaas's avatar
Bjorn Helgaas committed
3412 3413
	bei = FIELD_GET(PCI_EA_BEI, dw0);
	prop = FIELD_GET(PCI_EA_PP, dw0);
3414

3415 3416 3417 3418 3419
	/*
	 * If the Property is in the reserved range, try the Secondary
	 * Property instead.
	 */
	if (prop > PCI_EA_P_BRIDGE_IO && prop < PCI_EA_P_MEM_RESERVED)
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3420
		prop = FIELD_GET(PCI_EA_SP, dw0);
3421 3422 3423
	if (prop > PCI_EA_P_BRIDGE_IO)
		goto out;

3424
	res = pci_ea_get_resource(dev, bei, prop);
3425
	res_name = pci_resource_name(dev, bei);
3426
	if (!res) {
3427
		pci_err(dev, "Unsupported EA entry BEI: %u\n", bei);
3428 3429 3430 3431 3432
		goto out;
	}

	flags = pci_ea_flags(dev, prop);
	if (!flags) {
3433
		pci_err(dev, "Unsupported EA properties: %#x\n", prop);
3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482
		goto out;
	}

	/* Read Base */
	pci_read_config_dword(dev, ent_offset, &base);
	start = (base & PCI_EA_FIELD_MASK);
	ent_offset += 4;

	/* Read MaxOffset */
	pci_read_config_dword(dev, ent_offset, &max_offset);
	ent_offset += 4;

	/* Read Base MSBs (if 64-bit entry) */
	if (base & PCI_EA_IS_64) {
		u32 base_upper;

		pci_read_config_dword(dev, ent_offset, &base_upper);
		ent_offset += 4;

		flags |= IORESOURCE_MEM_64;

		/* entry starts above 32-bit boundary, can't use */
		if (!support_64 && base_upper)
			goto out;

		if (support_64)
			start |= ((u64)base_upper << 32);
	}

	end = start + (max_offset | 0x03);

	/* Read MaxOffset MSBs (if 64-bit entry) */
	if (max_offset & PCI_EA_IS_64) {
		u32 max_offset_upper;

		pci_read_config_dword(dev, ent_offset, &max_offset_upper);
		ent_offset += 4;

		flags |= IORESOURCE_MEM_64;

		/* entry too big, can't use */
		if (!support_64 && max_offset_upper)
			goto out;

		if (support_64)
			end += ((u64)max_offset_upper << 32);
	}

	if (end < start) {
3483
		pci_err(dev, "EA Entry crosses address boundary\n");
3484 3485 3486 3487
		goto out;
	}

	if (ent_size != ent_offset - offset) {
3488
		pci_err(dev, "EA Entry Size (%d) does not match length read (%d)\n",
3489 3490 3491 3492 3493 3494 3495 3496
			ent_size, ent_offset - offset);
		goto out;
	}

	res->name = pci_name(dev);
	res->start = start;
	res->end = end;
	res->flags = flags;
3497 3498

	if (bei <= PCI_EA_BEI_BAR5)
3499 3500
		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
			 res_name, res, prop);
3501
	else if (bei == PCI_EA_BEI_ROM)
3502 3503
		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
			 res_name, res, prop);
3504
	else if (bei >= PCI_EA_BEI_VF_BAR0 && bei <= PCI_EA_BEI_VF_BAR5)
3505 3506
		pci_info(dev, "%s %pR: from Enhanced Allocation, properties %#02x\n",
			 res_name, res, prop);
3507
	else
3508
		pci_info(dev, "BEI %d %pR: from Enhanced Allocation, properties %#02x\n",
3509 3510
			   bei, res, prop);

3511 3512 3513 3514
out:
	return offset + ent_size;
}

Colin Ian King's avatar
Colin Ian King committed
3515
/* Enhanced Allocation Initialization */
3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543
void pci_ea_init(struct pci_dev *dev)
{
	int ea;
	u8 num_ent;
	int offset;
	int i;

	/* find PCI EA capability in list */
	ea = pci_find_capability(dev, PCI_CAP_ID_EA);
	if (!ea)
		return;

	/* determine the number of entries */
	pci_bus_read_config_byte(dev->bus, dev->devfn, ea + PCI_EA_NUM_ENT,
					&num_ent);
	num_ent &= PCI_EA_NUM_ENT_MASK;

	offset = ea + PCI_EA_FIRST_ENT;

	/* Skip DWORD 2 for type 1 functions */
	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
		offset += 4;

	/* parse each EA entry */
	for (i = 0; i < num_ent; ++i)
		offset = pci_ea_read(dev, offset);
}

3544 3545 3546 3547 3548 3549
static void pci_add_saved_cap(struct pci_dev *pci_dev,
	struct pci_cap_saved_state *new_cap)
{
	hlist_add_head(&new_cap->next, &pci_dev->saved_cap_space);
}

3550
/**
3551
 * _pci_add_cap_save_buffer - allocate buffer for saving given
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3552
 *			      capability registers
3553 3554
 * @dev: the PCI device
 * @cap: the capability to allocate the buffer for
3555
 * @extended: Standard or Extended capability ID
3556 3557
 * @size: requested size of the buffer
 */
3558 3559
static int _pci_add_cap_save_buffer(struct pci_dev *dev, u16 cap,
				    bool extended, unsigned int size)
3560 3561 3562 3563
{
	int pos;
	struct pci_cap_saved_state *save_state;

3564 3565 3566 3567 3568
	if (extended)
		pos = pci_find_ext_capability(dev, cap);
	else
		pos = pci_find_capability(dev, cap);

3569
	if (!pos)
3570 3571 3572 3573 3574 3575
		return 0;

	save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
	if (!save_state)
		return -ENOMEM;

3576
	save_state->cap.cap_nr = cap;
3577
	save_state->cap.cap_extended = extended;
3578
	save_state->cap.size = size;
3579 3580 3581 3582 3583
	pci_add_saved_cap(dev, save_state);

	return 0;
}

3584 3585 3586 3587 3588 3589 3590 3591 3592 3593
int pci_add_cap_save_buffer(struct pci_dev *dev, char cap, unsigned int size)
{
	return _pci_add_cap_save_buffer(dev, cap, false, size);
}

int pci_add_ext_cap_save_buffer(struct pci_dev *dev, u16 cap, unsigned int size)
{
	return _pci_add_cap_save_buffer(dev, cap, true, size);
}

3594 3595 3596 3597 3598 3599 3600 3601
/**
 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
 * @dev: the PCI device
 */
void pci_allocate_cap_save_buffers(struct pci_dev *dev)
{
	int error;

3602 3603
	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
					PCI_EXP_SAVE_REGS * sizeof(u16));
3604
	if (error)
3605
		pci_err(dev, "unable to preallocate PCI Express save buffer\n");
3606 3607 3608

	error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
	if (error)
3609
		pci_err(dev, "unable to preallocate PCI-X save buffer\n");
3610

3611 3612 3613 3614 3615
	error = pci_add_ext_cap_save_buffer(dev, PCI_EXT_CAP_ID_LTR,
					    2 * sizeof(u16));
	if (error)
		pci_err(dev, "unable to allocate suspend buffer for LTR\n");

3616
	pci_allocate_vc_save_buffers(dev);
3617 3618
}

3619 3620 3621
void pci_free_cap_save_buffers(struct pci_dev *dev)
{
	struct pci_cap_saved_state *tmp;
3622
	struct hlist_node *n;
3623

3624
	hlist_for_each_entry_safe(tmp, n, &dev->saved_cap_space, next)
3625 3626 3627
		kfree(tmp);
}

Yu Zhao's avatar
Yu Zhao committed
3628
/**
3629
 * pci_configure_ari - enable or disable ARI forwarding
Yu Zhao's avatar
Yu Zhao committed
3630
 * @dev: the PCI device
3631 3632 3633
 *
 * If @dev and its upstream bridge both support ARI, enable ARI in the
 * bridge.  Otherwise, disable ARI in the bridge.
Yu Zhao's avatar
Yu Zhao committed
3634
 */
3635
void pci_configure_ari(struct pci_dev *dev)
Yu Zhao's avatar
Yu Zhao committed
3636 3637
{
	u32 cap;
3638
	struct pci_dev *bridge;
Yu Zhao's avatar
Yu Zhao committed
3639

3640
	if (pcie_ari_disabled || !pci_is_pcie(dev) || dev->devfn)
Yu Zhao's avatar
Yu Zhao committed
3641 3642
		return;

3643
	bridge = dev->bus->self;
3644
	if (!bridge)
3645 3646
		return;

3647
	pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);
Yu Zhao's avatar
Yu Zhao committed
3648 3649 3650
	if (!(cap & PCI_EXP_DEVCAP2_ARI))
		return;

3651 3652 3653 3654 3655 3656 3657 3658 3659
	if (pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI)) {
		pcie_capability_set_word(bridge, PCI_EXP_DEVCTL2,
					 PCI_EXP_DEVCTL2_ARI);
		bridge->ari_enabled = 1;
	} else {
		pcie_capability_clear_word(bridge, PCI_EXP_DEVCTL2,
					   PCI_EXP_DEVCTL2_ARI);
		bridge->ari_enabled = 0;
	}
Yu Zhao's avatar
Yu Zhao committed
3660 3661
}

3662 3663 3664
static bool pci_acs_flags_enabled(struct pci_dev *pdev, u16 acs_flags)
{
	int pos;
3665
	u16 cap, ctrl;
3666

3667
	pos = pdev->acs_cap;
3668 3669 3670
	if (!pos)
		return false;

3671 3672 3673 3674 3675 3676 3677 3678
	/*
	 * Except for egress control, capabilities are either required
	 * or only required if controllable.  Features missing from the
	 * capability field can therefore be assumed as hard-wired enabled.
	 */
	pci_read_config_word(pdev, pos + PCI_ACS_CAP, &cap);
	acs_flags &= (cap | PCI_ACS_EC);

3679 3680 3681 3682
	pci_read_config_word(pdev, pos + PCI_ACS_CTRL, &ctrl);
	return (ctrl & acs_flags) == acs_flags;
}

3683 3684 3685 3686 3687 3688 3689
/**
 * pci_acs_enabled - test ACS against required flags for a given device
 * @pdev: device to test
 * @acs_flags: required PCI ACS flags
 *
 * Return true if the device supports the provided flags.  Automatically
 * filters out flags that are not implemented on multifunction devices.
3690 3691 3692 3693 3694 3695 3696 3697
 *
 * Note that this interface checks the effective ACS capabilities of the
 * device rather than the actual capabilities.  For instance, most single
 * function endpoints are not required to support ACS because they have no
 * opportunity for peer-to-peer access.  We therefore return 'true'
 * regardless of whether the device exposes an ACS capability.  This makes
 * it much easier for callers of this function to ignore the actual type
 * or topology of the device when testing ACS support.
3698 3699 3700
 */
bool pci_acs_enabled(struct pci_dev *pdev, u16 acs_flags)
{
3701
	int ret;
3702 3703 3704 3705 3706

	ret = pci_dev_specific_acs_enabled(pdev, acs_flags);
	if (ret >= 0)
		return ret > 0;

3707 3708 3709 3710 3711
	/*
	 * Conventional PCI and PCI-X devices never support ACS, either
	 * effectively or actually.  The shared bus topology implies that
	 * any device on the bus can receive or snoop DMA.
	 */
3712 3713 3714
	if (!pci_is_pcie(pdev))
		return false;

3715 3716 3717
	switch (pci_pcie_type(pdev)) {
	/*
	 * PCI/X-to-PCIe bridges are not specifically mentioned by the spec,
3718
	 * but since their primary interface is PCI/X, we conservatively
3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741
	 * handle them as we would a non-PCIe device.
	 */
	case PCI_EXP_TYPE_PCIE_BRIDGE:
	/*
	 * PCIe 3.0, 6.12.1 excludes ACS on these devices.  "ACS is never
	 * applicable... must never implement an ACS Extended Capability...".
	 * This seems arbitrary, but we take a conservative interpretation
	 * of this statement.
	 */
	case PCI_EXP_TYPE_PCI_BRIDGE:
	case PCI_EXP_TYPE_RC_EC:
		return false;
	/*
	 * PCIe 3.0, 6.12.1.1 specifies that downstream and root ports should
	 * implement ACS in order to indicate their peer-to-peer capabilities,
	 * regardless of whether they are single- or multi-function devices.
	 */
	case PCI_EXP_TYPE_DOWNSTREAM:
	case PCI_EXP_TYPE_ROOT_PORT:
		return pci_acs_flags_enabled(pdev, acs_flags);
	/*
	 * PCIe 3.0, 6.12.1.2 specifies ACS capabilities that should be
	 * implemented by the remaining PCIe types to indicate peer-to-peer
3742
	 * capabilities, but only when they are part of a multifunction
3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753
	 * device.  The footnote for section 6.12 indicates the specific
	 * PCIe types included here.
	 */
	case PCI_EXP_TYPE_ENDPOINT:
	case PCI_EXP_TYPE_UPSTREAM:
	case PCI_EXP_TYPE_LEG_END:
	case PCI_EXP_TYPE_RC_END:
		if (!pdev->multifunction)
			break;

		return pci_acs_flags_enabled(pdev, acs_flags);
3754 3755
	}

3756
	/*
3757
	 * PCIe 3.0, 6.12.1.3 specifies no ACS capabilities are applicable
3758 3759
	 * to single function devices with the exception of downstream ports.
	 */
3760 3761 3762 3763
	return true;
}

/**
3764
 * pci_acs_path_enabled - test ACS flags from start to end in a hierarchy
3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791
 * @start: starting downstream device
 * @end: ending upstream device or NULL to search to the root bus
 * @acs_flags: required flags
 *
 * Walk up a device tree from start to end testing PCI ACS support.  If
 * any step along the way does not support the required flags, return false.
 */
bool pci_acs_path_enabled(struct pci_dev *start,
			  struct pci_dev *end, u16 acs_flags)
{
	struct pci_dev *pdev, *parent = start;

	do {
		pdev = parent;

		if (!pci_acs_enabled(pdev, acs_flags))
			return false;

		if (pci_is_root_bus(pdev->bus))
			return (end == NULL);

		parent = pdev->bus->self;
	} while (pdev != end);

	return true;
}

3792 3793 3794 3795 3796 3797 3798 3799
/**
 * pci_acs_init - Initialize ACS if hardware supports it
 * @dev: the PCI device
 */
void pci_acs_init(struct pci_dev *dev)
{
	dev->acs_cap = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);

3800 3801 3802 3803 3804 3805 3806
	/*
	 * Attempt to enable ACS regardless of capability because some Root
	 * Ports (e.g. those quirked with *_intel_pch_acs_*) do not have
	 * the standard ACS capability but still support ACS via those
	 * quirks.
	 */
	pci_enable_acs(dev);
3807 3808
}

3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827
/**
 * pci_rebar_find_pos - find position of resize ctrl reg for BAR
 * @pdev: PCI device
 * @bar: BAR to find
 *
 * Helper to find the position of the ctrl register for a BAR.
 * Returns -ENOTSUPP if resizable BARs are not supported at all.
 * Returns -ENOENT if no ctrl register for the BAR could be found.
 */
static int pci_rebar_find_pos(struct pci_dev *pdev, int bar)
{
	unsigned int pos, nbars, i;
	u32 ctrl;

	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_REBAR);
	if (!pos)
		return -ENOTSUPP;

	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3828
	nbars = FIELD_GET(PCI_REBAR_CTRL_NBAR_MASK, ctrl);
3829 3830 3831 3832 3833

	for (i = 0; i < nbars; i++, pos += 8) {
		int bar_idx;

		pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3834
		bar_idx = FIELD_GET(PCI_REBAR_CTRL_BAR_IDX, ctrl);
3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859
		if (bar_idx == bar)
			return pos;
	}

	return -ENOENT;
}

/**
 * pci_rebar_get_possible_sizes - get possible sizes for BAR
 * @pdev: PCI device
 * @bar: BAR to query
 *
 * Get the possible sizes of a resizable BAR as bitmask defined in the spec
 * (bit 0=1MB, bit 19=512GB). Returns 0 if BAR isn't resizable.
 */
u32 pci_rebar_get_possible_sizes(struct pci_dev *pdev, int bar)
{
	int pos;
	u32 cap;

	pos = pci_rebar_find_pos(pdev, bar);
	if (pos < 0)
		return 0;

	pci_read_config_dword(pdev, pos + PCI_REBAR_CAP, &cap);
3860
	cap = FIELD_GET(PCI_REBAR_CAP_SIZES, cap);
3861 3862 3863

	/* Sapphire RX 5600 XT Pulse has an invalid cap dword for BAR 0 */
	if (pdev->vendor == PCI_VENDOR_ID_ATI && pdev->device == 0x731f &&
3864 3865
	    bar == 0 && cap == 0x700)
		return 0x3f00;
3866

3867
	return cap;
3868
}
3869
EXPORT_SYMBOL(pci_rebar_get_possible_sizes);
3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888

/**
 * pci_rebar_get_current_size - get the current size of a BAR
 * @pdev: PCI device
 * @bar: BAR to set size to
 *
 * Read the size of a BAR from the resizable BAR config.
 * Returns size if found or negative error code.
 */
int pci_rebar_get_current_size(struct pci_dev *pdev, int bar)
{
	int pos;
	u32 ctrl;

	pos = pci_rebar_find_pos(pdev, bar);
	if (pos < 0)
		return pos;

	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3889
	return FIELD_GET(PCI_REBAR_CTRL_BAR_SIZE, ctrl);
3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911
}

/**
 * pci_rebar_set_size - set a new size for a BAR
 * @pdev: PCI device
 * @bar: BAR to set size to
 * @size: new size as defined in the spec (0=1MB, 19=512GB)
 *
 * Set the new size of a BAR as defined in the spec.
 * Returns zero if resizing was successful, error code otherwise.
 */
int pci_rebar_set_size(struct pci_dev *pdev, int bar, int size)
{
	int pos;
	u32 ctrl;

	pos = pci_rebar_find_pos(pdev, bar);
	if (pos < 0)
		return pos;

	pci_read_config_dword(pdev, pos + PCI_REBAR_CTRL, &ctrl);
	ctrl &= ~PCI_REBAR_CTRL_BAR_SIZE;
Bjorn Helgaas's avatar
Bjorn Helgaas committed
3912
	ctrl |= FIELD_PREP(PCI_REBAR_CTRL_BAR_SIZE, size);
3913 3914 3915 3916
	pci_write_config_dword(pdev, pos + PCI_REBAR_CTRL, ctrl);
	return 0;
}

3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935
/**
 * pci_enable_atomic_ops_to_root - enable AtomicOp requests to root port
 * @dev: the PCI device
 * @cap_mask: mask of desired AtomicOp sizes, including one or more of:
 *	PCI_EXP_DEVCAP2_ATOMIC_COMP32
 *	PCI_EXP_DEVCAP2_ATOMIC_COMP64
 *	PCI_EXP_DEVCAP2_ATOMIC_COMP128
 *
 * Return 0 if all upstream bridges support AtomicOp routing, egress
 * blocking is disabled on all upstream ports, and the root port supports
 * the requested completion capabilities (32-bit, 64-bit and/or 128-bit
 * AtomicOp completion), or negative otherwise.
 */
int pci_enable_atomic_ops_to_root(struct pci_dev *dev, u32 cap_mask)
{
	struct pci_bus *bus = dev->bus;
	struct pci_dev *bridge;
	u32 cap, ctl2;

3936 3937 3938 3939 3940 3941 3942 3943
	/*
	 * Per PCIe r5.0, sec 9.3.5.10, the AtomicOp Requester Enable bit
	 * in Device Control 2 is reserved in VFs and the PF value applies
	 * to all associated VFs.
	 */
	if (dev->is_virtfn)
		return -EINVAL;

3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983
	if (!pci_is_pcie(dev))
		return -EINVAL;

	/*
	 * Per PCIe r4.0, sec 6.15, endpoints and root ports may be
	 * AtomicOp requesters.  For now, we only support endpoints as
	 * requesters and root ports as completers.  No endpoints as
	 * completers, and no peer-to-peer.
	 */

	switch (pci_pcie_type(dev)) {
	case PCI_EXP_TYPE_ENDPOINT:
	case PCI_EXP_TYPE_LEG_END:
	case PCI_EXP_TYPE_RC_END:
		break;
	default:
		return -EINVAL;
	}

	while (bus->parent) {
		bridge = bus->self;

		pcie_capability_read_dword(bridge, PCI_EXP_DEVCAP2, &cap);

		switch (pci_pcie_type(bridge)) {
		/* Ensure switch ports support AtomicOp routing */
		case PCI_EXP_TYPE_UPSTREAM:
		case PCI_EXP_TYPE_DOWNSTREAM:
			if (!(cap & PCI_EXP_DEVCAP2_ATOMIC_ROUTE))
				return -EINVAL;
			break;

		/* Ensure root port supports all the sizes we care about */
		case PCI_EXP_TYPE_ROOT_PORT:
			if ((cap & cap_mask) != cap_mask)
				return -EINVAL;
			break;
		}

		/* Ensure upstream ports don't block AtomicOps on egress */
3984
		if (pci_pcie_type(bridge) == PCI_EXP_TYPE_UPSTREAM) {
3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999
			pcie_capability_read_dword(bridge, PCI_EXP_DEVCTL2,
						   &ctl2);
			if (ctl2 & PCI_EXP_DEVCTL2_ATOMIC_EGRESS_BLOCK)
				return -EINVAL;
		}

		bus = bus->parent;
	}

	pcie_capability_set_word(dev, PCI_EXP_DEVCTL2,
				 PCI_EXP_DEVCTL2_ATOMIC_REQ);
	return 0;
}
EXPORT_SYMBOL(pci_enable_atomic_ops_to_root);

4000 4001 4002
/**
 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
 * @dev: the PCI device
4003
 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTC, 4=INTD)
4004 4005 4006
 *
 * Perform INTx swizzling for a device behind one level of bridge.  This is
 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
4007 4008 4009
 * behind bridges on add-in cards.  For devices with ARI enabled, the slot
 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
 * the PCI Express Base Specification, Revision 2.1)
4010
 */
4011
u8 pci_swizzle_interrupt_pin(const struct pci_dev *dev, u8 pin)
4012
{
4013 4014 4015 4016 4017 4018 4019 4020
	int slot;

	if (pci_ari_enabled(dev->bus))
		slot = 0;
	else
		slot = PCI_SLOT(dev->devfn);

	return (((pin - 1) + slot) % 4) + 1;
4021 4022
}

Ryan Desfosses's avatar
Ryan Desfosses committed
4023
int pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
Linus Torvalds's avatar
Linus Torvalds committed
4024 4025 4026
{
	u8 pin;

4027
	pin = dev->pin;
Linus Torvalds's avatar
Linus Torvalds committed
4028 4029
	if (!pin)
		return -1;
4030

4031
	while (!pci_is_root_bus(dev->bus)) {
4032
		pin = pci_swizzle_interrupt_pin(dev, pin);
Linus Torvalds's avatar
Linus Torvalds committed
4033 4034 4035 4036 4037 4038
		dev = dev->bus->self;
	}
	*bridge = dev;
	return pin;
}

4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050
/**
 * pci_common_swizzle - swizzle INTx all the way to root bridge
 * @dev: the PCI device
 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
 *
 * Perform INTx swizzling for a device.  This traverses through all PCI-to-PCI
 * bridges all the way up to a PCI root bus.
 */
u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
{
	u8 pin = *pinp;

4051
	while (!pci_is_root_bus(dev->bus)) {
4052 4053 4054 4055 4056 4057
		pin = pci_swizzle_interrupt_pin(dev, pin);
		dev = dev->bus->self;
	}
	*pinp = pin;
	return PCI_SLOT(dev->devfn);
}
4058
EXPORT_SYMBOL_GPL(pci_common_swizzle);
4059

Linus Torvalds's avatar
Linus Torvalds committed
4060
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4061 4062 4063 4064
 * pci_release_region - Release a PCI bar
 * @pdev: PCI device whose resources were previously reserved by
 *	  pci_request_region()
 * @bar: BAR to release
Linus Torvalds's avatar
Linus Torvalds committed
4065
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4066 4067 4068
 * Releases the PCI I/O and memory resources previously reserved by a
 * successful call to pci_request_region().  Call this function only
 * after all use of the PCI regions has ceased.
Linus Torvalds's avatar
Linus Torvalds committed
4069 4070 4071
 */
void pci_release_region(struct pci_dev *pdev, int bar)
{
4072 4073
	struct pci_devres *dr;

Linus Torvalds's avatar
Linus Torvalds committed
4074 4075 4076 4077 4078 4079 4080 4081
	if (pci_resource_len(pdev, bar) == 0)
		return;
	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
		release_region(pci_resource_start(pdev, bar),
				pci_resource_len(pdev, bar));
	else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
		release_mem_region(pci_resource_start(pdev, bar),
				pci_resource_len(pdev, bar));
4082 4083 4084 4085

	dr = find_pci_dr(pdev);
	if (dr)
		dr->region_mask &= ~(1 << bar);
Linus Torvalds's avatar
Linus Torvalds committed
4086
}
4087
EXPORT_SYMBOL(pci_release_region);
Linus Torvalds's avatar
Linus Torvalds committed
4088 4089

/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4090 4091 4092 4093 4094
 * __pci_request_region - Reserved PCI I/O and memory resource
 * @pdev: PCI device whose resources are to be reserved
 * @bar: BAR to be reserved
 * @res_name: Name to be associated with resource.
 * @exclusive: whether the region access is exclusive or not
Linus Torvalds's avatar
Linus Torvalds committed
4095
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4096 4097 4098 4099
 * Mark the PCI region associated with PCI device @pdev BAR @bar as
 * being reserved by owner @res_name.  Do not access any
 * address inside the PCI regions unless this call returns
 * successfully.
Linus Torvalds's avatar
Linus Torvalds committed
4100
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4101 4102 4103
 * If @exclusive is set, then the region is marked so that userspace
 * is explicitly not allowed to map the resource via /dev/mem or
 * sysfs MMIO access.
4104
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4105 4106
 * Returns 0 on success, or %EBUSY on error.  A warning
 * message is also printed on failure.
Linus Torvalds's avatar
Linus Torvalds committed
4107
 */
Ryan Desfosses's avatar
Ryan Desfosses committed
4108 4109
static int __pci_request_region(struct pci_dev *pdev, int bar,
				const char *res_name, int exclusive)
Linus Torvalds's avatar
Linus Torvalds committed
4110
{
4111 4112
	struct pci_devres *dr;

Linus Torvalds's avatar
Linus Torvalds committed
4113 4114
	if (pci_resource_len(pdev, bar) == 0)
		return 0;
4115

Linus Torvalds's avatar
Linus Torvalds committed
4116 4117 4118 4119
	if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
		if (!request_region(pci_resource_start(pdev, bar),
			    pci_resource_len(pdev, bar), res_name))
			goto err_out;
Ryan Desfosses's avatar
Ryan Desfosses committed
4120
	} else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
4121 4122 4123
		if (!__request_mem_region(pci_resource_start(pdev, bar),
					pci_resource_len(pdev, bar), res_name,
					exclusive))
Linus Torvalds's avatar
Linus Torvalds committed
4124 4125
			goto err_out;
	}
4126 4127 4128 4129 4130

	dr = find_pci_dr(pdev);
	if (dr)
		dr->region_mask |= 1 << bar;

Linus Torvalds's avatar
Linus Torvalds committed
4131 4132 4133
	return 0;

err_out:
4134
	pci_warn(pdev, "BAR %d: can't reserve %pR\n", bar,
4135
		 &pdev->resource[bar]);
Linus Torvalds's avatar
Linus Torvalds committed
4136 4137 4138
	return -EBUSY;
}

4139
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4140 4141 4142 4143
 * pci_request_region - Reserve PCI I/O and memory resource
 * @pdev: PCI device whose resources are to be reserved
 * @bar: BAR to be reserved
 * @res_name: Name to be associated with resource
4144
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4145 4146 4147 4148
 * Mark the PCI region associated with PCI device @pdev BAR @bar as
 * being reserved by owner @res_name.  Do not access any
 * address inside the PCI regions unless this call returns
 * successfully.
4149
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4150 4151
 * Returns 0 on success, or %EBUSY on error.  A warning
 * message is also printed on failure.
4152 4153 4154 4155 4156
 */
int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
{
	return __pci_request_region(pdev, bar, res_name, 0);
}
4157
EXPORT_SYMBOL(pci_request_region);
4158

4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170
/**
 * pci_release_selected_regions - Release selected PCI I/O and memory resources
 * @pdev: PCI device whose resources were previously reserved
 * @bars: Bitmask of BARs to be released
 *
 * Release selected PCI I/O and memory resources previously reserved.
 * Call this function only after all use of the PCI regions has ceased.
 */
void pci_release_selected_regions(struct pci_dev *pdev, int bars)
{
	int i;

4171
	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4172 4173 4174
		if (bars & (1 << i))
			pci_release_region(pdev, i);
}
4175
EXPORT_SYMBOL(pci_release_selected_regions);
4176

4177
static int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
Ryan Desfosses's avatar
Ryan Desfosses committed
4178
					  const char *res_name, int excl)
4179 4180 4181
{
	int i;

4182
	for (i = 0; i < PCI_STD_NUM_BARS; i++)
4183
		if (bars & (1 << i))
4184
			if (__pci_request_region(pdev, i, res_name, excl))
4185 4186 4187 4188
				goto err_out;
	return 0;

err_out:
Ryan Desfosses's avatar
Ryan Desfosses committed
4189
	while (--i >= 0)
4190 4191 4192 4193 4194
		if (bars & (1 << i))
			pci_release_region(pdev, i);

	return -EBUSY;
}
Linus Torvalds's avatar
Linus Torvalds committed
4195

4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207

/**
 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
 * @pdev: PCI device whose resources are to be reserved
 * @bars: Bitmask of BARs to be requested
 * @res_name: Name to be associated with resource
 */
int pci_request_selected_regions(struct pci_dev *pdev, int bars,
				 const char *res_name)
{
	return __pci_request_selected_regions(pdev, bars, res_name, 0);
}
4208
EXPORT_SYMBOL(pci_request_selected_regions);
4209

Ryan Desfosses's avatar
Ryan Desfosses committed
4210 4211
int pci_request_selected_regions_exclusive(struct pci_dev *pdev, int bars,
					   const char *res_name)
4212 4213 4214 4215
{
	return __pci_request_selected_regions(pdev, bars, res_name,
			IORESOURCE_EXCLUSIVE);
}
4216
EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
4217

Linus Torvalds's avatar
Linus Torvalds committed
4218
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4219 4220 4221
 * pci_release_regions - Release reserved PCI I/O and memory resources
 * @pdev: PCI device whose resources were previously reserved by
 *	  pci_request_regions()
Linus Torvalds's avatar
Linus Torvalds committed
4222
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4223 4224 4225
 * Releases all PCI I/O and memory resources previously reserved by a
 * successful call to pci_request_regions().  Call this function only
 * after all use of the PCI regions has ceased.
Linus Torvalds's avatar
Linus Torvalds committed
4226 4227 4228 4229
 */

void pci_release_regions(struct pci_dev *pdev)
{
4230
	pci_release_selected_regions(pdev, (1 << PCI_STD_NUM_BARS) - 1);
Linus Torvalds's avatar
Linus Torvalds committed
4231
}
4232
EXPORT_SYMBOL(pci_release_regions);
Linus Torvalds's avatar
Linus Torvalds committed
4233 4234

/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4235 4236 4237
 * pci_request_regions - Reserve PCI I/O and memory resources
 * @pdev: PCI device whose resources are to be reserved
 * @res_name: Name to be associated with resource.
Linus Torvalds's avatar
Linus Torvalds committed
4238
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4239 4240 4241 4242
 * Mark all PCI regions associated with PCI device @pdev as
 * being reserved by owner @res_name.  Do not access any
 * address inside the PCI regions unless this call returns
 * successfully.
Linus Torvalds's avatar
Linus Torvalds committed
4243
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4244 4245
 * Returns 0 on success, or %EBUSY on error.  A warning
 * message is also printed on failure.
Linus Torvalds's avatar
Linus Torvalds committed
4246
 */
4247
int pci_request_regions(struct pci_dev *pdev, const char *res_name)
Linus Torvalds's avatar
Linus Torvalds committed
4248
{
4249 4250
	return pci_request_selected_regions(pdev,
			((1 << PCI_STD_NUM_BARS) - 1), res_name);
Linus Torvalds's avatar
Linus Torvalds committed
4251
}
4252
EXPORT_SYMBOL(pci_request_regions);
Linus Torvalds's avatar
Linus Torvalds committed
4253

4254
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4255 4256 4257
 * pci_request_regions_exclusive - Reserve PCI I/O and memory resources
 * @pdev: PCI device whose resources are to be reserved
 * @res_name: Name to be associated with resource.
4258
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4259 4260 4261
 * Mark all PCI regions associated with PCI device @pdev as being reserved
 * by owner @res_name.  Do not access any address inside the PCI regions
 * unless this call returns successfully.
4262
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4263 4264
 * pci_request_regions_exclusive() will mark the region so that /dev/mem
 * and the sysfs MMIO access will not be allowed.
4265
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4266 4267
 * Returns 0 on success, or %EBUSY on error.  A warning message is also
 * printed on failure.
4268 4269 4270 4271
 */
int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
{
	return pci_request_selected_regions_exclusive(pdev,
4272
				((1 << PCI_STD_NUM_BARS) - 1), res_name);
4273
}
4274
EXPORT_SYMBOL(pci_request_regions_exclusive);
4275

4276 4277
/*
 * Record the PCI IO range (expressed as CPU physical address + size).
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4278
 * Return a negative value if an error has occurred, zero otherwise
4279
 */
4280 4281
int pci_register_io_range(struct fwnode_handle *fwnode, phys_addr_t addr,
			resource_size_t	size)
4282
{
4283
	int ret = 0;
4284
#ifdef PCI_IOBASE
4285
	struct logic_pio_hwaddr *range;
4286

4287 4288
	if (!size || addr + size < addr)
		return -EINVAL;
4289 4290

	range = kzalloc(sizeof(*range), GFP_ATOMIC);
4291 4292
	if (!range)
		return -ENOMEM;
4293

4294
	range->fwnode = fwnode;
4295
	range->size = size;
4296 4297
	range->hw_start = addr;
	range->flags = LOGIC_PIO_CPU_MMIO;
4298

4299 4300 4301
	ret = logic_pio_register_range(range);
	if (ret)
		kfree(range);
4302 4303 4304 4305

	/* Ignore duplicates due to deferred probing */
	if (ret == -EEXIST)
		ret = 0;
4306 4307
#endif

4308
	return ret;
4309 4310 4311 4312 4313
}

phys_addr_t pci_pio_to_address(unsigned long pio)
{
#ifdef PCI_IOBASE
4314 4315
	if (pio < MMIO_UPPER_LIMIT)
		return logic_pio_to_hwaddr(pio);
4316 4317
#endif

4318
	return (phys_addr_t) OF_BAD_ADDR;
4319
}
4320
EXPORT_SYMBOL_GPL(pci_pio_to_address);
4321 4322 4323 4324

unsigned long __weak pci_address_to_pio(phys_addr_t address)
{
#ifdef PCI_IOBASE
4325
	return logic_pio_trans_cpuaddr(address);
4326 4327 4328 4329 4330 4331 4332 4333
#else
	if (address > IO_SPACE_LIMIT)
		return (unsigned long)-1;

	return (unsigned long) address;
#endif
}

4334
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4335 4336 4337
 * pci_remap_iospace - Remap the memory mapped I/O space
 * @res: Resource describing the I/O space
 * @phys_addr: physical address of range to be mapped
4338
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4339 4340 4341 4342
 * Remap the memory mapped I/O space described by the @res and the CPU
 * physical address @phys_addr into virtual address space.  Only
 * architectures that have memory mapped IO functions defined (and the
 * PCI_IOBASE value defined) should call this function.
4343
 */
4344
#ifndef pci_remap_iospace
4345
int pci_remap_iospace(const struct resource *res, phys_addr_t phys_addr)
4346 4347 4348 4349 4350 4351 4352 4353 4354 4355
{
#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;

	if (!(res->flags & IORESOURCE_IO))
		return -EINVAL;

	if (res->end > IO_SPACE_LIMIT)
		return -EINVAL;

4356 4357
	return vmap_page_range(vaddr, vaddr + resource_size(res), phys_addr,
			       pgprot_device(PAGE_KERNEL));
4358
#else
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4359 4360 4361 4362
	/*
	 * This architecture does not have memory mapped I/O space,
	 * so this function should never be called
	 */
4363 4364 4365 4366
	WARN_ONCE(1, "This architecture does not support memory mapped I/O\n");
	return -ENODEV;
#endif
}
4367
EXPORT_SYMBOL(pci_remap_iospace);
4368
#endif
4369

4370
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4371 4372
 * pci_unmap_iospace - Unmap the memory mapped I/O space
 * @res: resource to be unmapped
4373
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4374 4375 4376
 * Unmap the CPU virtual address @res from virtual address space.  Only
 * architectures that have memory mapped IO functions defined (and the
 * PCI_IOBASE value defined) should call this function.
4377 4378 4379 4380 4381 4382
 */
void pci_unmap_iospace(struct resource *res)
{
#if defined(PCI_IOBASE) && defined(CONFIG_MMU)
	unsigned long vaddr = (unsigned long)PCI_IOBASE + res->start;

4383
	vunmap_range(vaddr, vaddr + resource_size(res));
4384 4385
#endif
}
4386
EXPORT_SYMBOL(pci_unmap_iospace);
4387

4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425
static void devm_pci_unmap_iospace(struct device *dev, void *ptr)
{
	struct resource **res = ptr;

	pci_unmap_iospace(*res);
}

/**
 * devm_pci_remap_iospace - Managed pci_remap_iospace()
 * @dev: Generic device to remap IO address for
 * @res: Resource describing the I/O space
 * @phys_addr: physical address of range to be mapped
 *
 * Managed pci_remap_iospace().  Map is automatically unmapped on driver
 * detach.
 */
int devm_pci_remap_iospace(struct device *dev, const struct resource *res,
			   phys_addr_t phys_addr)
{
	const struct resource **ptr;
	int error;

	ptr = devres_alloc(devm_pci_unmap_iospace, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return -ENOMEM;

	error = pci_remap_iospace(res, phys_addr);
	if (error) {
		devres_free(ptr);
	} else	{
		*ptr = res;
		devres_add(dev, ptr);
	}

	return error;
}
EXPORT_SYMBOL(devm_pci_remap_iospace);

4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467
/**
 * devm_pci_remap_cfgspace - Managed pci_remap_cfgspace()
 * @dev: Generic device to remap IO address for
 * @offset: Resource address to map
 * @size: Size of map
 *
 * Managed pci_remap_cfgspace().  Map is automatically unmapped on driver
 * detach.
 */
void __iomem *devm_pci_remap_cfgspace(struct device *dev,
				      resource_size_t offset,
				      resource_size_t size)
{
	void __iomem **ptr, *addr;

	ptr = devres_alloc(devm_ioremap_release, sizeof(*ptr), GFP_KERNEL);
	if (!ptr)
		return NULL;

	addr = pci_remap_cfgspace(offset, size);
	if (addr) {
		*ptr = addr;
		devres_add(dev, ptr);
	} else
		devres_free(ptr);

	return addr;
}
EXPORT_SYMBOL(devm_pci_remap_cfgspace);

/**
 * devm_pci_remap_cfg_resource - check, request region and ioremap cfg resource
 * @dev: generic device to handle the resource for
 * @res: configuration space resource to be handled
 *
 * Checks that a resource is a valid memory region, requests the memory
 * region and ioremaps with pci_remap_cfgspace() API that ensures the
 * proper PCI configuration space memory attributes are guaranteed.
 *
 * All operations are managed and will be undone on driver detach.
 *
 * Returns a pointer to the remapped memory or an ERR_PTR() encoded error code
4468
 * on failure. Usage example::
4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489
 *
 *	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 *	base = devm_pci_remap_cfg_resource(&pdev->dev, res);
 *	if (IS_ERR(base))
 *		return PTR_ERR(base);
 */
void __iomem *devm_pci_remap_cfg_resource(struct device *dev,
					  struct resource *res)
{
	resource_size_t size;
	const char *name;
	void __iomem *dest_ptr;

	BUG_ON(!dev);

	if (!res || resource_type(res) != IORESOURCE_MEM) {
		dev_err(dev, "invalid resource\n");
		return IOMEM_ERR_PTR(-EINVAL);
	}

	size = resource_size(res);
4490 4491 4492 4493 4494 4495 4496 4497

	if (res->name)
		name = devm_kasprintf(dev, GFP_KERNEL, "%s %s", dev_name(dev),
				      res->name);
	else
		name = devm_kstrdup(dev, dev_name(dev), GFP_KERNEL);
	if (!name)
		return IOMEM_ERR_PTR(-ENOMEM);
4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514

	if (!devm_request_mem_region(dev, res->start, size, name)) {
		dev_err(dev, "can't request region for resource %pR\n", res);
		return IOMEM_ERR_PTR(-EBUSY);
	}

	dest_ptr = devm_pci_remap_cfgspace(dev, res->start, size);
	if (!dest_ptr) {
		dev_err(dev, "ioremap failed for resource %pR\n", res);
		devm_release_mem_region(dev, res->start, size);
		dest_ptr = IOMEM_ERR_PTR(-ENOMEM);
	}

	return dest_ptr;
}
EXPORT_SYMBOL(devm_pci_remap_cfg_resource);

4515 4516 4517 4518 4519 4520 4521 4522 4523 4524
static void __pci_set_master(struct pci_dev *dev, bool enable)
{
	u16 old_cmd, cmd;

	pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
	if (enable)
		cmd = old_cmd | PCI_COMMAND_MASTER;
	else
		cmd = old_cmd & ~PCI_COMMAND_MASTER;
	if (cmd != old_cmd) {
4525
		pci_dbg(dev, "%s bus mastering\n",
4526 4527 4528 4529 4530
			enable ? "enabling" : "disabling");
		pci_write_config_word(dev, PCI_COMMAND, cmd);
	}
	dev->is_busmaster = enable;
}
4531

4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543
/**
 * pcibios_setup - process "pci=" kernel boot arguments
 * @str: string used to pass in "pci=" kernel boot arguments
 *
 * Process kernel boot arguments.  This is the default implementation.
 * Architecture specific implementations can override this as necessary.
 */
char * __weak __init pcibios_setup(char *str)
{
	return str;
}

4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555
/**
 * pcibios_set_master - enable PCI bus-mastering for device dev
 * @dev: the PCI device to enable
 *
 * Enables PCI bus-mastering for the device.  This is the default
 * implementation.  Architecture specific implementations can override
 * this if necessary.
 */
void __weak pcibios_set_master(struct pci_dev *dev)
{
	u8 lat;

4556 4557 4558 4559
	/* The latency timer doesn't apply to PCIe (either Type 0 or Type 1) */
	if (pci_is_pcie(dev))
		return;

4560 4561 4562 4563 4564 4565 4566
	pci_read_config_byte(dev, PCI_LATENCY_TIMER, &lat);
	if (lat < 16)
		lat = (64 <= pcibios_max_latency) ? 64 : pcibios_max_latency;
	else if (lat > pcibios_max_latency)
		lat = pcibios_max_latency;
	else
		return;
4567

4568 4569 4570
	pci_write_config_byte(dev, PCI_LATENCY_TIMER, lat);
}

Linus Torvalds's avatar
Linus Torvalds committed
4571 4572 4573 4574 4575 4576 4577
/**
 * pci_set_master - enables bus-mastering for device dev
 * @dev: the PCI device to enable
 *
 * Enables bus-mastering on the device and calls pcibios_set_master()
 * to do the needed arch specific settings.
 */
4578
void pci_set_master(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
4579
{
4580
	__pci_set_master(dev, true);
Linus Torvalds's avatar
Linus Torvalds committed
4581 4582
	pcibios_set_master(dev);
}
4583
EXPORT_SYMBOL(pci_set_master);
Linus Torvalds's avatar
Linus Torvalds committed
4584

4585 4586 4587 4588 4589 4590 4591 4592
/**
 * pci_clear_master - disables bus-mastering for device dev
 * @dev: the PCI device to disable
 */
void pci_clear_master(struct pci_dev *dev)
{
	__pci_set_master(dev, false);
}
4593
EXPORT_SYMBOL(pci_clear_master);
4594

Linus Torvalds's avatar
Linus Torvalds committed
4595
/**
4596 4597
 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
 * @dev: the PCI device for which MWI is to be enabled
Linus Torvalds's avatar
Linus Torvalds committed
4598
 *
4599 4600
 * Helper function for pci_set_mwi.
 * Originally copied from drivers/net/acenic.c.
Linus Torvalds's avatar
Linus Torvalds committed
4601 4602 4603 4604
 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
 *
 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 */
Tejun Heo's avatar
Tejun Heo committed
4605
int pci_set_cacheline_size(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
4606 4607 4608 4609
{
	u8 cacheline_size;

	if (!pci_cache_line_size)
Tejun Heo's avatar
Tejun Heo committed
4610
		return -EINVAL;
Linus Torvalds's avatar
Linus Torvalds committed
4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625

	/* Validate current setting: the PCI_CACHE_LINE_SIZE must be
	   equal to or multiple of the right value. */
	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
	if (cacheline_size >= pci_cache_line_size &&
	    (cacheline_size % pci_cache_line_size) == 0)
		return 0;

	/* Write the correct value. */
	pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
	/* Read it back. */
	pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
	if (cacheline_size == pci_cache_line_size)
		return 0;

4626
	pci_dbg(dev, "cache line size of %d is not supported\n",
4627
		   pci_cache_line_size << 2);
Linus Torvalds's avatar
Linus Torvalds committed
4628 4629 4630

	return -EINVAL;
}
Tejun Heo's avatar
Tejun Heo committed
4631 4632
EXPORT_SYMBOL_GPL(pci_set_cacheline_size);

Linus Torvalds's avatar
Linus Torvalds committed
4633 4634 4635 4636
/**
 * pci_set_mwi - enables memory-write-invalidate PCI transaction
 * @dev: the PCI device for which MWI is enabled
 *
Randy Dunlap's avatar
Randy Dunlap committed
4637
 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
Linus Torvalds's avatar
Linus Torvalds committed
4638 4639 4640
 *
 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 */
Ryan Desfosses's avatar
Ryan Desfosses committed
4641
int pci_set_mwi(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
4642
{
4643 4644 4645
#ifdef PCI_DISABLE_MWI
	return 0;
#else
Linus Torvalds's avatar
Linus Torvalds committed
4646 4647 4648
	int rc;
	u16 cmd;

4649
	rc = pci_set_cacheline_size(dev);
Linus Torvalds's avatar
Linus Torvalds committed
4650 4651 4652 4653
	if (rc)
		return rc;

	pci_read_config_word(dev, PCI_COMMAND, &cmd);
Ryan Desfosses's avatar
Ryan Desfosses committed
4654
	if (!(cmd & PCI_COMMAND_INVALIDATE)) {
4655
		pci_dbg(dev, "enabling Mem-Wr-Inval\n");
Linus Torvalds's avatar
Linus Torvalds committed
4656 4657 4658 4659
		cmd |= PCI_COMMAND_INVALIDATE;
		pci_write_config_word(dev, PCI_COMMAND, cmd);
	}
	return 0;
4660
#endif
Linus Torvalds's avatar
Linus Torvalds committed
4661
}
4662
EXPORT_SYMBOL(pci_set_mwi);
Linus Torvalds's avatar
Linus Torvalds committed
4663

4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684
/**
 * pcim_set_mwi - a device-managed pci_set_mwi()
 * @dev: the PCI device for which MWI is enabled
 *
 * Managed pci_set_mwi().
 *
 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 */
int pcim_set_mwi(struct pci_dev *dev)
{
	struct pci_devres *dr;

	dr = find_pci_dr(dev);
	if (!dr)
		return -ENOMEM;

	dr->mwi = 1;
	return pci_set_mwi(dev);
}
EXPORT_SYMBOL(pcim_set_mwi);

Randy Dunlap's avatar
Randy Dunlap committed
4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695
/**
 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
 * @dev: the PCI device for which MWI is enabled
 *
 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
 * Callers are not required to check the return value.
 *
 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
 */
int pci_try_set_mwi(struct pci_dev *dev)
{
4696 4697 4698 4699 4700
#ifdef PCI_DISABLE_MWI
	return 0;
#else
	return pci_set_mwi(dev);
#endif
Randy Dunlap's avatar
Randy Dunlap committed
4701
}
4702
EXPORT_SYMBOL(pci_try_set_mwi);
Randy Dunlap's avatar
Randy Dunlap committed
4703

Linus Torvalds's avatar
Linus Torvalds committed
4704 4705 4706 4707 4708 4709
/**
 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
 * @dev: the PCI device to disable
 *
 * Disables PCI Memory-Write-Invalidate transaction on the device
 */
Ryan Desfosses's avatar
Ryan Desfosses committed
4710
void pci_clear_mwi(struct pci_dev *dev)
Linus Torvalds's avatar
Linus Torvalds committed
4711
{
4712
#ifndef PCI_DISABLE_MWI
Linus Torvalds's avatar
Linus Torvalds committed
4713 4714 4715 4716 4717 4718 4719
	u16 cmd;

	pci_read_config_word(dev, PCI_COMMAND, &cmd);
	if (cmd & PCI_COMMAND_INVALIDATE) {
		cmd &= ~PCI_COMMAND_INVALIDATE;
		pci_write_config_word(dev, PCI_COMMAND, cmd);
	}
4720
#endif
Linus Torvalds's avatar
Linus Torvalds committed
4721
}
4722
EXPORT_SYMBOL(pci_clear_mwi);
Linus Torvalds's avatar
Linus Torvalds committed
4723

4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740
/**
 * pci_disable_parity - disable parity checking for device
 * @dev: the PCI device to operate on
 *
 * Disable parity checking for device @dev
 */
void pci_disable_parity(struct pci_dev *dev)
{
	u16 cmd;

	pci_read_config_word(dev, PCI_COMMAND, &cmd);
	if (cmd & PCI_COMMAND_PARITY) {
		cmd &= ~PCI_COMMAND_PARITY;
		pci_write_config_word(dev, PCI_COMMAND, cmd);
	}
}

4741 4742
/**
 * pci_intx - enables/disables PCI INTx for device dev
Randy Dunlap's avatar
Randy Dunlap committed
4743 4744
 * @pdev: the PCI device to operate on
 * @enable: boolean: whether to enable or disable PCI INTx
4745
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4746
 * Enables/disables PCI INTx for device @pdev
4747
 */
Ryan Desfosses's avatar
Ryan Desfosses committed
4748
void pci_intx(struct pci_dev *pdev, int enable)
4749 4750 4751 4752 4753
{
	u16 pci_command, new;

	pci_read_config_word(pdev, PCI_COMMAND, &pci_command);

Ryan Desfosses's avatar
Ryan Desfosses committed
4754
	if (enable)
4755
		new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
Ryan Desfosses's avatar
Ryan Desfosses committed
4756
	else
4757 4758 4759
		new = pci_command | PCI_COMMAND_INTX_DISABLE;

	if (new != pci_command) {
4760 4761
		struct pci_devres *dr;

4762
		pci_write_config_word(pdev, PCI_COMMAND, new);
4763 4764 4765 4766 4767 4768

		dr = find_pci_dr(pdev);
		if (dr && !dr->restore_intx) {
			dr->restore_intx = 1;
			dr->orig_intx = !enable;
		}
4769 4770
	}
}
4771
EXPORT_SYMBOL_GPL(pci_intx);
4772

4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819
static bool pci_check_and_set_intx_mask(struct pci_dev *dev, bool mask)
{
	struct pci_bus *bus = dev->bus;
	bool mask_updated = true;
	u32 cmd_status_dword;
	u16 origcmd, newcmd;
	unsigned long flags;
	bool irq_pending;

	/*
	 * We do a single dword read to retrieve both command and status.
	 * Document assumptions that make this possible.
	 */
	BUILD_BUG_ON(PCI_COMMAND % 4);
	BUILD_BUG_ON(PCI_COMMAND + 2 != PCI_STATUS);

	raw_spin_lock_irqsave(&pci_lock, flags);

	bus->ops->read(bus, dev->devfn, PCI_COMMAND, 4, &cmd_status_dword);

	irq_pending = (cmd_status_dword >> 16) & PCI_STATUS_INTERRUPT;

	/*
	 * Check interrupt status register to see whether our device
	 * triggered the interrupt (when masking) or the next IRQ is
	 * already pending (when unmasking).
	 */
	if (mask != irq_pending) {
		mask_updated = false;
		goto done;
	}

	origcmd = cmd_status_dword;
	newcmd = origcmd & ~PCI_COMMAND_INTX_DISABLE;
	if (mask)
		newcmd |= PCI_COMMAND_INTX_DISABLE;
	if (newcmd != origcmd)
		bus->ops->write(bus, dev->devfn, PCI_COMMAND, 2, newcmd);

done:
	raw_spin_unlock_irqrestore(&pci_lock, flags);

	return mask_updated;
}

/**
 * pci_check_and_mask_intx - mask INTx on pending interrupt
4820
 * @dev: the PCI device to operate on
4821
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4822 4823
 * Check if the device dev has its INTx line asserted, mask it and return
 * true in that case. False is returned if no interrupt was pending.
4824 4825 4826 4827 4828 4829 4830 4831
 */
bool pci_check_and_mask_intx(struct pci_dev *dev)
{
	return pci_check_and_set_intx_mask(dev, true);
}
EXPORT_SYMBOL_GPL(pci_check_and_mask_intx);

/**
4832
 * pci_check_and_unmask_intx - unmask INTx if no interrupt is pending
4833
 * @dev: the PCI device to operate on
4834
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4835 4836 4837
 * Check if the device dev has its INTx line asserted, unmask it if not and
 * return true. False is returned and the mask remains active if there was
 * still an interrupt pending.
4838 4839 4840 4841 4842 4843 4844
 */
bool pci_check_and_unmask_intx(struct pci_dev *dev)
{
	return pci_check_and_set_intx_mask(dev, false);
}
EXPORT_SYMBOL_GPL(pci_check_and_unmask_intx);

4845
/**
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4846
 * pci_wait_for_pending_transaction - wait for pending transaction
4847 4848 4849 4850 4851
 * @dev: the PCI device to operate on
 *
 * Return 0 if transaction is pending 1 otherwise.
 */
int pci_wait_for_pending_transaction(struct pci_dev *dev)
4852
{
4853 4854
	if (!pci_is_pcie(dev))
		return 1;
Yu Zhao's avatar
Yu Zhao committed
4855

4856 4857
	return pci_wait_for_pending(dev, pci_pcie_cap(dev) + PCI_EXP_DEVSTA,
				    PCI_EXP_DEVSTA_TRPND);
4858 4859 4860
}
EXPORT_SYMBOL(pci_wait_for_pending_transaction);

Christoph Hellwig's avatar
Christoph Hellwig committed
4861 4862
/**
 * pcie_flr - initiate a PCIe function level reset
Bjorn Helgaas's avatar
Bjorn Helgaas committed
4863
 * @dev: device to reset
Christoph Hellwig's avatar
Christoph Hellwig committed
4864
 *
4865 4866
 * Initiate a function level reset unconditionally on @dev without
 * checking any flags and DEVCAP
Christoph Hellwig's avatar
Christoph Hellwig committed
4867
 */
4868
int pcie_flr(struct pci_dev *dev)
Christoph Hellwig's avatar
Christoph Hellwig committed
4869
{
4870
	if (!pci_wait_for_pending_transaction(dev))
4871
		pci_err(dev, "timed out waiting for pending transaction; performing function level reset anyway\n");
Yu Zhao's avatar
Yu Zhao committed
4872

4873
	pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_BCR_FLR);
4874

4875 4876 4877
	if (dev->imm_ready)
		return 0;

4878 4879 4880 4881 4882 4883 4884 4885
	/*
	 * Per PCIe r4.0, sec 6.6.2, a device must complete an FLR within
	 * 100ms, but may silently discard requests while the FLR is in
	 * progress.  Wait 100ms before trying to access the device.
	 */
	msleep(100);

	return pci_dev_wait(dev, "FLR", PCIE_RESET_READY_POLL_MS);
4886
}
Christoph Hellwig's avatar
Christoph Hellwig committed
4887
EXPORT_SYMBOL_GPL(pcie_flr);
4888

4889 4890 4891
/**
 * pcie_reset_flr - initiate a PCIe function level reset
 * @dev: device to reset
4892
 * @probe: if true, return 0 if device can be reset this way
4893 4894 4895
 *
 * Initiate a function level reset on @dev.
 */
4896
int pcie_reset_flr(struct pci_dev *dev, bool probe)
4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910
{
	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
		return -ENOTTY;

	if (!(dev->devcap & PCI_EXP_DEVCAP_FLR))
		return -ENOTTY;

	if (probe)
		return 0;

	return pcie_flr(dev);
}
EXPORT_SYMBOL_GPL(pcie_reset_flr);

4911
static int pci_af_flr(struct pci_dev *dev, bool probe)
4912
{
Yu Zhao's avatar
Yu Zhao committed
4913
	int pos;
4914 4915
	u8 cap;

Yu Zhao's avatar
Yu Zhao committed
4916 4917
	pos = pci_find_capability(dev, PCI_CAP_ID_AF);
	if (!pos)
4918
		return -ENOTTY;
Yu Zhao's avatar
Yu Zhao committed
4919

4920 4921 4922
	if (dev->dev_flags & PCI_DEV_FLAGS_NO_FLR_RESET)
		return -ENOTTY;

Yu Zhao's avatar
Yu Zhao committed
4923
	pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
4924 4925 4926 4927 4928 4929
	if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
		return -ENOTTY;

	if (probe)
		return 0;

4930 4931
	/*
	 * Wait for Transaction Pending bit to clear.  A word-aligned test
4932
	 * is used, so we use the control offset rather than status and shift
4933 4934
	 * the test bit to match.
	 */
4935
	if (!pci_wait_for_pending(dev, pos + PCI_AF_CTRL,
4936
				 PCI_AF_STATUS_TP << 8))
4937
		pci_err(dev, "timed out waiting for pending transaction; performing AF function level reset anyway\n");
4938

Yu Zhao's avatar
Yu Zhao committed
4939
	pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
4940

4941 4942 4943
	if (dev->imm_ready)
		return 0;

4944 4945 4946 4947 4948 4949 4950 4951 4952
	/*
	 * Per Advanced Capabilities for Conventional PCI ECN, 13 April 2006,
	 * updated 27 July 2006; a device must complete an FLR within
	 * 100ms, but may silently discard requests while the FLR is in
	 * progress.  Wait 100ms before trying to access the device.
	 */
	msleep(100);

	return pci_dev_wait(dev, "AF_FLR", PCIE_RESET_READY_POLL_MS);
4953 4954
}

4955 4956 4957
/**
 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
 * @dev: Device to reset.
4958
 * @probe: if true, return 0 if the device can be reset this way.
4959 4960 4961 4962 4963 4964 4965 4966
 *
 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
 * unset, it will be reinitialized internally when going from PCI_D3hot to
 * PCI_D0.  If that's the case and the device is not in a low-power state
 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
 *
 * NOTE: This causes the caller to sleep for twice the device power transition
 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
4967
 * by default (i.e. unless the @dev's d3hot_delay field has a different value).
4968 4969
 * Moreover, only devices in D0 can be reset by this function.
 */
4970
static int pci_pm_reset(struct pci_dev *dev, bool probe)
4971
{
4972 4973
	u16 csr;

4974
	if (!dev->pm_cap || dev->dev_flags & PCI_DEV_FLAGS_NO_PM_RESET)
4975
		return -ENOTTY;
4976

4977 4978 4979
	pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
	if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
		return -ENOTTY;
4980

4981 4982
	if (probe)
		return 0;
4983

4984 4985 4986 4987 4988 4989
	if (dev->current_state != PCI_D0)
		return -EINVAL;

	csr &= ~PCI_PM_CTRL_STATE_MASK;
	csr |= PCI_D3hot;
	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4990
	pci_dev_d3_sleep(dev);
4991 4992 4993 4994

	csr &= ~PCI_PM_CTRL_STATE_MASK;
	csr |= PCI_D0;
	pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
4995
	pci_dev_d3_sleep(dev);
4996

4997
	return pci_dev_wait(dev, "PM D3hot->D0", PCIE_RESET_READY_POLL_MS);
4998
}
4999

5000
/**
5001
 * pcie_wait_for_link_status - Wait for link status change
5002
 * @pdev: Device whose link to wait for.
5003 5004
 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE.
 * @active: Waiting for active or inactive?
5005
 *
5006
 * Return 0 if successful, or -ETIMEDOUT if status has not changed within
5007
 * PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
5008
 */
5009 5010
static int pcie_wait_for_link_status(struct pci_dev *pdev,
				     bool use_lt, bool active)
5011
{
5012
	u16 lnksta_mask, lnksta_match;
5013 5014 5015
	unsigned long end_jiffies;
	u16 lnksta;

5016 5017 5018
	lnksta_mask = use_lt ? PCI_EXP_LNKSTA_LT : PCI_EXP_LNKSTA_DLLLA;
	lnksta_match = active ? lnksta_mask : 0;

5019 5020 5021
	end_jiffies = jiffies + msecs_to_jiffies(PCIE_LINK_RETRAIN_TIMEOUT_MS);
	do {
		pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
5022
		if ((lnksta & lnksta_mask) == lnksta_match)
5023
			return 0;
5024 5025
		msleep(1);
	} while (time_before(jiffies, end_jiffies));
5026 5027

	return -ETIMEDOUT;
5028 5029 5030 5031 5032
}

/**
 * pcie_retrain_link - Request a link retrain and wait for it to complete
 * @pdev: Device whose link to retrain.
5033 5034 5035 5036 5037
 * @use_lt: Use the LT bit if TRUE, or the DLLLA bit if FALSE, for status.
 *
 * Retrain completion status is retrieved from the Link Status Register
 * according to @use_lt.  It is not verified whether the use of the DLLLA
 * bit is valid.
5038
 *
5039
 * Return 0 if successful, or -ETIMEDOUT if training has not completed
5040 5041
 * within PCIE_LINK_RETRAIN_TIMEOUT_MS milliseconds.
 */
5042
int pcie_retrain_link(struct pci_dev *pdev, bool use_lt)
5043
{
5044
	int rc;
5045

5046 5047 5048 5049 5050 5051 5052 5053 5054 5055
	/*
	 * Ensure the updated LNKCTL parameters are used during link
	 * training by checking that there is no ongoing link training to
	 * avoid LTSSM race as recommended in Implementation Note at the
	 * end of PCIe r6.0.1 sec 7.5.3.7.
	 */
	rc = pcie_wait_for_link_status(pdev, use_lt, !use_lt);
	if (rc)
		return rc;

5056
	pcie_capability_set_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5057 5058 5059 5060 5061 5062
	if (pdev->clear_retrain_link) {
		/*
		 * Due to an erratum in some devices the Retrain Link bit
		 * needs to be cleared again manually to allow the link
		 * training to succeed.
		 */
5063
		pcie_capability_clear_word(pdev, PCI_EXP_LNKCTL, PCI_EXP_LNKCTL_RL);
5064 5065
	}

5066
	return pcie_wait_for_link_status(pdev, use_lt, !use_lt);
5067 5068
}

5069
/**
5070
 * pcie_wait_for_link_delay - Wait until link is active or inactive
5071 5072
 * @pdev: Bridge device
 * @active: waiting for active or inactive?
5073
 * @delay: Delay to wait after link has become active (in ms)
5074 5075 5076
 *
 * Use this to wait till link becomes active or inactive.
 */
5077 5078
static bool pcie_wait_for_link_delay(struct pci_dev *pdev, bool active,
				     int delay)
5079
{
5080
	int rc;
5081

5082 5083
	/*
	 * Some controllers might not implement link active reporting. In this
5084
	 * case, we wait for 1000 ms + any delay requested by the caller.
5085 5086
	 */
	if (!pdev->link_active_reporting) {
5087
		msleep(PCIE_LINK_RETRAIN_TIMEOUT_MS + delay);
5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101
		return true;
	}

	/*
	 * PCIe r4.0 sec 6.6.1, a component must enter LTSSM Detect within 20ms,
	 * after which we should expect an link active if the reset was
	 * successful. If so, software must wait a minimum 100ms before sending
	 * configuration requests to devices downstream this port.
	 *
	 * If the link fails to activate, either the device was physically
	 * removed or the link is permanently failed.
	 */
	if (active)
		msleep(20);
5102 5103 5104 5105 5106 5107 5108
	rc = pcie_wait_for_link_status(pdev, false, active);
	if (active) {
		if (rc)
			rc = pcie_failed_link_retrain(pdev);
		if (rc)
			return false;

5109
		msleep(delay);
5110 5111
		return true;
	}
5112

5113 5114
	if (rc)
		return false;
5115

5116
	return true;
5117
}
5118

5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130
/**
 * pcie_wait_for_link - Wait until link is active or inactive
 * @pdev: Bridge device
 * @active: waiting for active or inactive?
 *
 * Use this to wait till link becomes active or inactive.
 */
bool pcie_wait_for_link(struct pci_dev *pdev, bool active)
{
	return pcie_wait_for_link_delay(pdev, active, 100);
}

5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156
/*
 * Find maximum D3cold delay required by all the devices on the bus.  The
 * spec says 100 ms, but firmware can lower it and we allow drivers to
 * increase it as well.
 *
 * Called with @pci_bus_sem locked for reading.
 */
static int pci_bus_max_d3cold_delay(const struct pci_bus *bus)
{
	const struct pci_dev *pdev;
	int min_delay = 100;
	int max_delay = 0;

	list_for_each_entry(pdev, &bus->devices, bus_list) {
		if (pdev->d3cold_delay < min_delay)
			min_delay = pdev->d3cold_delay;
		if (pdev->d3cold_delay > max_delay)
			max_delay = pdev->d3cold_delay;
	}

	return max(min_delay, max_delay);
}

/**
 * pci_bridge_wait_for_secondary_bus - Wait for secondary bus to be accessible
 * @dev: PCI bridge
5157
 * @reset_type: reset type in human-readable form
5158 5159
 *
 * Handle necessary delays before access to the devices on the secondary
5160 5161
 * side of the bridge are permitted after D3cold to D0 transition
 * or Conventional Reset.
5162 5163 5164 5165
 *
 * For PCIe this means the delays in PCIe 5.0 section 6.6.1. For
 * conventional PCI it means Tpvrh + Trhfa specified in PCI 3.0 section
 * 4.3.2.
5166 5167 5168
 *
 * Return 0 on success or -ENOTTY if the first device on the secondary bus
 * failed to become accessible.
5169
 */
5170
int pci_bridge_wait_for_secondary_bus(struct pci_dev *dev, char *reset_type)
5171 5172 5173 5174 5175
{
	struct pci_dev *child;
	int delay;

	if (pci_dev_is_disconnected(dev))
5176
		return 0;
5177

5178
	if (!pci_is_bridge(dev))
5179
		return 0;
5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190

	down_read(&pci_bus_sem);

	/*
	 * We only deal with devices that are present currently on the bus.
	 * For any hot-added devices the access delay is handled in pciehp
	 * board_added(). In case of ACPI hotplug the firmware is expected
	 * to configure the devices before OS is notified.
	 */
	if (!dev->subordinate || list_empty(&dev->subordinate->devices)) {
		up_read(&pci_bus_sem);
5191
		return 0;
5192 5193 5194 5195 5196 5197
	}

	/* Take d3cold_delay requirements into account */
	delay = pci_bus_max_d3cold_delay(dev->subordinate);
	if (!delay) {
		up_read(&pci_bus_sem);
5198
		return 0;
5199 5200 5201 5202 5203 5204 5205 5206
	}

	child = list_first_entry(&dev->subordinate->devices, struct pci_dev,
				 bus_list);
	up_read(&pci_bus_sem);

	/*
	 * Conventional PCI and PCI-X we need to wait Tpvrh + Trhfa before
5207
	 * accessing the device after reset (that is 1000 ms + 100 ms).
5208 5209 5210 5211
	 */
	if (!pci_is_pcie(dev)) {
		pci_dbg(dev, "waiting %d ms for secondary bus\n", 1000 + delay);
		msleep(1000 + delay);
5212
		return 0;
5213 5214 5215 5216 5217 5218 5219 5220 5221 5222
	}

	/*
	 * For PCIe downstream and root ports that do not support speeds
	 * greater than 5 GT/s need to wait minimum 100 ms. For higher
	 * speeds (gen3) we need to wait first for the data link layer to
	 * become active.
	 *
	 * However, 100 ms is the minimum and the PCIe spec says the
	 * software must allow at least 1s before it can determine that the
5223 5224 5225
	 * device that did not respond is a broken device. Also device can
	 * take longer than that to respond if it indicates so through Request
	 * Retry Status completions.
5226
	 *
5227 5228
	 * Therefore we wait for 100 ms and check for the device presence
	 * until the timeout expires.
5229 5230
	 */
	if (!pcie_downstream_port(dev))
5231
		return 0;
5232

5233
	if (pcie_get_speed_cap(dev) <= PCIE_SPEED_5_0GT) {
5234 5235
		u16 status;

5236 5237
		pci_dbg(dev, "waiting %d ms for downstream link\n", delay);
		msleep(delay);
5238 5239 5240 5241 5242 5243 5244 5245 5246 5247

		if (!pci_dev_wait(child, reset_type, PCI_RESET_WAIT - delay))
			return 0;

		/*
		 * If the port supports active link reporting we now check
		 * whether the link is active and if not bail out early with
		 * the assumption that the device is not present anymore.
		 */
		if (!dev->link_active_reporting)
5248
			return -ENOTTY;
5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263

		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &status);
		if (!(status & PCI_EXP_LNKSTA_DLLLA))
			return -ENOTTY;

		return pci_dev_wait(child, reset_type,
				    PCIE_RESET_READY_POLL_MS - PCI_RESET_WAIT);
	}

	pci_dbg(dev, "waiting %d ms for downstream link, after activation\n",
		delay);
	if (!pcie_wait_for_link_delay(dev, true, delay)) {
		/* Did not train, no need to wait any further */
		pci_info(dev, "Data Link Layer Link Active not set in 1000 msec\n");
		return -ENOTTY;
5264 5265
	}

5266 5267
	return pci_dev_wait(child, reset_type,
			    PCIE_RESET_READY_POLL_MS - delay);
5268 5269
}

5270
void pci_reset_secondary_bus(struct pci_dev *dev)
Yu Zhao's avatar
Yu Zhao committed
5271 5272
{
	u16 ctrl;
5273 5274 5275 5276

	pci_read_config_word(dev, PCI_BRIDGE_CONTROL, &ctrl);
	ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
Bjorn Helgaas's avatar
Bjorn Helgaas committed
5277

5278 5279
	/*
	 * PCI spec v3.0 7.6.4.2 requires minimum Trst of 1ms.  Double
5280
	 * this to 2ms to ensure that we meet the minimum requirement.
5281 5282
	 */
	msleep(2);
5283 5284 5285 5286

	ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
	pci_write_config_word(dev, PCI_BRIDGE_CONTROL, ctrl);
}
5287

5288 5289 5290 5291 5292
void __weak pcibios_reset_secondary_bus(struct pci_dev *dev)
{
	pci_reset_secondary_bus(dev);
}

5293
/**
5294
 * pci_bridge_secondary_bus_reset - Reset the secondary bus on a PCI bridge.
5295 5296 5297 5298 5299
 * @dev: Bridge device
 *
 * Use the bridge control register to assert reset on the secondary bus.
 * Devices on the secondary bus are left in power-on state.
 */
5300
int pci_bridge_secondary_bus_reset(struct pci_dev *dev)
5301 5302
{
	pcibios_reset_secondary_bus(dev);
5303

5304
	return pci_bridge_wait_for_secondary_bus(dev, "bus reset");
5305
}
5306
EXPORT_SYMBOL_GPL(pci_bridge_secondary_bus_reset);
5307

5308
static int pci_parent_bus_reset(struct pci_dev *dev, bool probe)
5309
{
Yu Zhao's avatar
Yu Zhao committed
5310 5311
	struct pci_dev *pdev;

5312 5313
	if (pci_is_root_bus(dev->bus) || dev->subordinate ||
	    !dev->bus->self || dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
Yu Zhao's avatar
Yu Zhao committed
5314 5315 5316 5317 5318 5319 5320 5321 5322
		return -ENOTTY;

	list_for_each_entry(pdev, &dev->bus->devices, bus_list)
		if (pdev != dev)
			return -ENOTTY;

	if (probe)
		return 0;

5323
	return pci_bridge_secondary_bus_reset(dev->bus->self);
Yu Zhao's avatar
Yu Zhao committed
5324 5325
}

5326
static int pci_reset_hotplug_slot(struct hotplug_slot *hotplug, bool probe)
5327 5328 5329
{
	int rc = -ENOTTY;

5330
	if (!hotplug || !try_module_get(hotplug->owner))
5331 5332 5333 5334 5335
		return rc;

	if (hotplug->ops->reset_slot)
		rc = hotplug->ops->reset_slot(hotplug, probe);

5336
	module_put(hotplug->owner);
5337 5338 5339 5340

	return rc;
}

5341
static int pci_dev_reset_slot_function(struct pci_dev *dev, bool probe)
5342
{
5343
	if (dev->multifunction || dev->subordinate || !dev->slot ||
5344
	    dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET)
5345 5346 5347 5348 5349
		return -ENOTTY;

	return pci_reset_hotplug_slot(dev->slot->hotplug, probe);
}

5350
static int pci_reset_bus_function(struct pci_dev *dev, bool probe)
5351 5352 5353 5354 5355 5356 5357 5358 5359
{
	int rc;

	rc = pci_dev_reset_slot_function(dev, probe);
	if (rc != -ENOTTY)
		return rc;
	return pci_parent_bus_reset(dev, probe);
}

5360
void pci_dev_lock(struct pci_dev *dev)
5361 5362 5363
{
	/* block PM suspend, driver probe, etc. */
	device_lock(&dev->dev);
5364
	pci_cfg_access_lock(dev);
5365
}
5366
EXPORT_SYMBOL_GPL(pci_dev_lock);
5367

5368
/* Return 1 on successful lock, 0 on contention */
5369
int pci_dev_trylock(struct pci_dev *dev)
5370
{
5371 5372
	if (device_trylock(&dev->dev)) {
		if (pci_cfg_access_trylock(dev))
5373
			return 1;
5374
		device_unlock(&dev->dev);
5375 5376 5377 5378
	}

	return 0;
}
5379
EXPORT_SYMBOL_GPL(pci_dev_trylock);
5380

5381
void pci_dev_unlock(struct pci_dev *dev)
5382 5383
{
	pci_cfg_access_unlock(dev);
5384
	device_unlock(&dev->dev);
5385
}
5386
EXPORT_SYMBOL_GPL(pci_dev_unlock);
5387

5388
static void pci_dev_save_and_disable(struct pci_dev *dev)
5389 5390
{
	const struct pci_error_handlers *err_handler =
5391
			dev->driver ? dev->driver->err_handler : NULL;
5392

5393
	/*
5394 5395 5396
	 * dev->driver->err_handler->reset_prepare() is protected against
	 * races with ->remove() by the device lock, which must be held by
	 * the caller.
5397
	 */
5398 5399
	if (err_handler && err_handler->reset_prepare)
		err_handler->reset_prepare(dev);
5400

5401 5402 5403 5404 5405 5406 5407
	/*
	 * Wake-up device prior to save.  PM registers default to D0 after
	 * reset and a simple register restore doesn't reliably return
	 * to a non-D0 state anyway.
	 */
	pci_set_power_state(dev, PCI_D0);

5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420
	pci_save_state(dev);
	/*
	 * Disable the device by clearing the Command register, except for
	 * INTx-disable which is set.  This not only disables MMIO and I/O port
	 * BARs, but also prevents the device from being Bus Master, preventing
	 * DMA from the device including MSI/MSI-X interrupts.  For PCI 2.3
	 * compliant devices, INTx-disable prevents legacy interrupts.
	 */
	pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
}

static void pci_dev_restore(struct pci_dev *dev)
{
5421
	const struct pci_error_handlers *err_handler =
5422
			dev->driver ? dev->driver->err_handler : NULL;
5423

5424 5425
	pci_restore_state(dev);

5426
	/*
5427 5428 5429
	 * dev->driver->err_handler->reset_done() is protected against
	 * races with ->remove() by the device lock, which must be held by
	 * the caller.
5430 5431 5432
	 */
	if (err_handler && err_handler->reset_done)
		err_handler->reset_done(dev);
5433
}
5434

5435 5436 5437 5438
/* dev->reset_methods[] is a 0-terminated list of indices into this array */
static const struct pci_reset_fn_method pci_reset_fn_methods[] = {
	{ },
	{ pci_dev_specific_reset, .name = "device_specific" },
5439
	{ pci_dev_acpi_reset, .name = "acpi" },
5440 5441 5442 5443 5444 5445
	{ pcie_reset_flr, .name = "flr" },
	{ pci_af_flr, .name = "af_flr" },
	{ pci_pm_reset, .name = "pm" },
	{ pci_reset_bus_function, .name = "bus" },
};

5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516
static ssize_t reset_method_show(struct device *dev,
				 struct device_attribute *attr, char *buf)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	ssize_t len = 0;
	int i, m;

	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
		m = pdev->reset_methods[i];
		if (!m)
			break;

		len += sysfs_emit_at(buf, len, "%s%s", len ? " " : "",
				     pci_reset_fn_methods[m].name);
	}

	if (len)
		len += sysfs_emit_at(buf, len, "\n");

	return len;
}

static int reset_method_lookup(const char *name)
{
	int m;

	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
		if (sysfs_streq(name, pci_reset_fn_methods[m].name))
			return m;
	}

	return 0;	/* not found */
}

static ssize_t reset_method_store(struct device *dev,
				  struct device_attribute *attr,
				  const char *buf, size_t count)
{
	struct pci_dev *pdev = to_pci_dev(dev);
	char *options, *name;
	int m, n;
	u8 reset_methods[PCI_NUM_RESET_METHODS] = { 0 };

	if (sysfs_streq(buf, "")) {
		pdev->reset_methods[0] = 0;
		pci_warn(pdev, "All device reset methods disabled by user");
		return count;
	}

	if (sysfs_streq(buf, "default")) {
		pci_init_reset_methods(pdev);
		return count;
	}

	options = kstrndup(buf, count, GFP_KERNEL);
	if (!options)
		return -ENOMEM;

	n = 0;
	while ((name = strsep(&options, " ")) != NULL) {
		if (sysfs_streq(name, ""))
			continue;

		name = strim(name);

		m = reset_method_lookup(name);
		if (!m) {
			pci_err(pdev, "Invalid reset method '%s'", name);
			goto error;
		}

5517
		if (pci_reset_fn_methods[m].reset_fn(pdev, PCI_RESET_PROBE)) {
5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532
			pci_err(pdev, "Unsupported reset method '%s'", name);
			goto error;
		}

		if (n == PCI_NUM_RESET_METHODS - 1) {
			pci_err(pdev, "Too many reset methods\n");
			goto error;
		}

		reset_methods[n++] = m;
	}

	reset_methods[n] = 0;

	/* Warn if dev-specific supported but not highest priority */
5533
	if (pci_reset_fn_methods[1].reset_fn(pdev, PCI_RESET_PROBE) == 0 &&
5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567
	    reset_methods[0] != 1)
		pci_warn(pdev, "Device-specific reset disabled/de-prioritized by user");
	memcpy(pdev->reset_methods, reset_methods, sizeof(pdev->reset_methods));
	kfree(options);
	return count;

error:
	/* Leave previous methods unchanged */
	kfree(options);
	return -EINVAL;
}
static DEVICE_ATTR_RW(reset_method);

static struct attribute *pci_dev_reset_method_attrs[] = {
	&dev_attr_reset_method.attr,
	NULL,
};

static umode_t pci_dev_reset_method_attr_is_visible(struct kobject *kobj,
						    struct attribute *a, int n)
{
	struct pci_dev *pdev = to_pci_dev(kobj_to_dev(kobj));

	if (!pci_reset_supported(pdev))
		return 0;

	return a->mode;
}

const struct attribute_group pci_dev_reset_method_attr_group = {
	.attrs = pci_dev_reset_method_attrs,
	.is_visible = pci_dev_reset_method_attr_is_visible,
};

5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578
/**
 * __pci_reset_function_locked - reset a PCI device function while holding
 * the @dev mutex lock.
 * @dev: PCI device to reset
 *
 * Some devices allow an individual function to be reset without affecting
 * other functions in the same device.  The PCI device must be responsive
 * to PCI config space in order to use this function.
 *
 * The device function is presumed to be unused and the caller is holding
 * the device mutex lock when this function is called.
Bjorn Helgaas's avatar
Bjorn Helgaas committed
5579
 *
5580 5581 5582 5583 5584 5585 5586 5587 5588 5589
 * Resetting the device will make the contents of PCI configuration space
 * random, so any caller of this must be prepared to reinitialise the
 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
 * etc.
 *
 * Returns 0 if the device function was successfully reset or negative if the
 * device doesn't support resetting a single function.
 */
int __pci_reset_function_locked(struct pci_dev *dev)
{
5590
	int i, m, rc;
5591 5592 5593

	might_sleep();

5594
	/*
5595 5596
	 * A reset method returns -ENOTTY if it doesn't support this device and
	 * we should try the next method.
5597
	 *
5598 5599 5600
	 * If it returns 0 (success), we're finished.  If it returns any other
	 * error, we're also finished: this indicates that further reset
	 * mechanisms might be broken on the device.
5601
	 */
5602 5603 5604 5605 5606
	for (i = 0; i < PCI_NUM_RESET_METHODS; i++) {
		m = dev->reset_methods[i];
		if (!m)
			return -ENOTTY;

5607
		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_DO_RESET);
5608 5609
		if (!rc)
			return 0;
5610 5611
		if (rc != -ENOTTY)
			return rc;
5612
	}
5613 5614

	return -ENOTTY;
5615 5616 5617
}
EXPORT_SYMBOL_GPL(__pci_reset_function_locked);

5618
/**
5619 5620 5621
 * pci_init_reset_methods - check whether device can be safely reset
 * and store supported reset mechanisms.
 * @dev: PCI device to check for reset mechanisms
5622 5623
 *
 * Some devices allow an individual function to be reset without affecting
5624 5625
 * other functions in the same device.  The PCI device must be in D0-D3hot
 * state.
5626
 *
5627 5628
 * Stores reset mechanisms supported by device in reset_methods byte array
 * which is a member of struct pci_dev.
5629
 */
5630
void pci_init_reset_methods(struct pci_dev *dev)
5631
{
5632 5633 5634
	int m, i, rc;

	BUILD_BUG_ON(ARRAY_SIZE(pci_reset_fn_methods) != PCI_NUM_RESET_METHODS);
5635 5636 5637

	might_sleep();

5638 5639
	i = 0;
	for (m = 1; m < PCI_NUM_RESET_METHODS; m++) {
5640
		rc = pci_reset_fn_methods[m].reset_fn(dev, PCI_RESET_PROBE);
5641 5642 5643 5644 5645
		if (!rc)
			dev->reset_methods[i++] = m;
		else if (rc != -ENOTTY)
			break;
	}
5646

5647
	dev->reset_methods[i] = 0;
5648 5649
}

5650
/**
Yu Zhao's avatar
Yu Zhao committed
5651 5652
 * pci_reset_function - quiesce and reset a PCI device function
 * @dev: PCI device to reset
5653 5654 5655 5656 5657 5658 5659
 *
 * Some devices allow an individual function to be reset without affecting
 * other functions in the same device.  The PCI device must be responsive
 * to PCI config space in order to use this function.
 *
 * This function does not just reset the PCI portion of a device, but
 * clears all the state associated with the device.  This function differs
5660 5661
 * from __pci_reset_function_locked() in that it saves and restores device state
 * over the reset and takes the PCI device lock.
5662
 *
Yu Zhao's avatar
Yu Zhao committed
5663
 * Returns 0 if the device function was successfully reset or negative if the
5664 5665 5666 5667
 * device doesn't support resetting a single function.
 */
int pci_reset_function(struct pci_dev *dev)
{
Yu Zhao's avatar
Yu Zhao committed
5668
	int rc;
5669

5670
	if (!pci_reset_supported(dev))
5671
		return -ENOTTY;
5672

5673
	pci_dev_lock(dev);
5674
	pci_dev_save_and_disable(dev);
5675

5676
	rc = __pci_reset_function_locked(dev);
5677

5678
	pci_dev_restore(dev);
5679
	pci_dev_unlock(dev);
5680

Yu Zhao's avatar
Yu Zhao committed
5681
	return rc;
5682 5683 5684
}
EXPORT_SYMBOL_GPL(pci_reset_function);

5685 5686 5687 5688 5689 5690 5691 5692 5693 5694
/**
 * pci_reset_function_locked - quiesce and reset a PCI device function
 * @dev: PCI device to reset
 *
 * Some devices allow an individual function to be reset without affecting
 * other functions in the same device.  The PCI device must be responsive
 * to PCI config space in order to use this function.
 *
 * This function does not just reset the PCI portion of a device, but
 * clears all the state associated with the device.  This function differs
5695
 * from __pci_reset_function_locked() in that it saves and restores device state
5696 5697 5698 5699 5700 5701 5702 5703 5704 5705
 * over the reset.  It also differs from pci_reset_function() in that it
 * requires the PCI device lock to be held.
 *
 * Returns 0 if the device function was successfully reset or negative if the
 * device doesn't support resetting a single function.
 */
int pci_reset_function_locked(struct pci_dev *dev)
{
	int rc;

5706
	if (!pci_reset_supported(dev))
5707
		return -ENOTTY;
5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718

	pci_dev_save_and_disable(dev);

	rc = __pci_reset_function_locked(dev);

	pci_dev_restore(dev);

	return rc;
}
EXPORT_SYMBOL_GPL(pci_reset_function_locked);

5719 5720 5721 5722 5723 5724 5725 5726 5727 5728
/**
 * pci_try_reset_function - quiesce and reset a PCI device function
 * @dev: PCI device to reset
 *
 * Same as above, except return -EAGAIN if unable to lock device.
 */
int pci_try_reset_function(struct pci_dev *dev)
{
	int rc;

5729
	if (!pci_reset_supported(dev))
5730
		return -ENOTTY;
5731

5732 5733
	if (!pci_dev_trylock(dev))
		return -EAGAIN;
5734

5735
	pci_dev_save_and_disable(dev);
5736
	rc = __pci_reset_function_locked(dev);
5737
	pci_dev_restore(dev);
5738
	pci_dev_unlock(dev);
5739 5740 5741 5742 5743

	return rc;
}
EXPORT_SYMBOL_GPL(pci_try_reset_function);

5744
/* Do any devices on or below this bus prevent a bus reset? */
5745
static bool pci_bus_resettable(struct pci_bus *bus)
5746 5747 5748
{
	struct pci_dev *dev;

5749 5750 5751 5752

	if (bus->self && (bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
		return false;

5753 5754
	list_for_each_entry(dev, &bus->devices, bus_list) {
		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5755
		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5756 5757 5758 5759 5760 5761
			return false;
	}

	return true;
}

5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785
/* Lock devices from the top of the tree down */
static void pci_bus_lock(struct pci_bus *bus)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		pci_dev_lock(dev);
		if (dev->subordinate)
			pci_bus_lock(dev->subordinate);
	}
}

/* Unlock devices from the bottom of the tree up */
static void pci_bus_unlock(struct pci_bus *bus)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		if (dev->subordinate)
			pci_bus_unlock(dev->subordinate);
		pci_dev_unlock(dev);
	}
}

5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811
/* Return 1 on successful lock, 0 on contention */
static int pci_bus_trylock(struct pci_bus *bus)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		if (!pci_dev_trylock(dev))
			goto unlock;
		if (dev->subordinate) {
			if (!pci_bus_trylock(dev->subordinate)) {
				pci_dev_unlock(dev);
				goto unlock;
			}
		}
	}
	return 1;

unlock:
	list_for_each_entry_continue_reverse(dev, &bus->devices, bus_list) {
		if (dev->subordinate)
			pci_bus_unlock(dev->subordinate);
		pci_dev_unlock(dev);
	}
	return 0;
}

5812
/* Do any devices on or below this slot prevent a bus reset? */
5813
static bool pci_slot_resettable(struct pci_slot *slot)
5814 5815 5816
{
	struct pci_dev *dev;

5817 5818 5819 5820
	if (slot->bus->self &&
	    (slot->bus->self->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET))
		return false;

5821 5822 5823 5824
	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
		if (!dev->slot || dev->slot != slot)
			continue;
		if (dev->dev_flags & PCI_DEV_FLAGS_NO_BUS_RESET ||
5825
		    (dev->subordinate && !pci_bus_resettable(dev->subordinate)))
5826 5827 5828 5829 5830 5831
			return false;
	}

	return true;
}

5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859
/* Lock devices from the top of the tree down */
static void pci_slot_lock(struct pci_slot *slot)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
		if (!dev->slot || dev->slot != slot)
			continue;
		pci_dev_lock(dev);
		if (dev->subordinate)
			pci_bus_lock(dev->subordinate);
	}
}

/* Unlock devices from the bottom of the tree up */
static void pci_slot_unlock(struct pci_slot *slot)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
		if (!dev->slot || dev->slot != slot)
			continue;
		if (dev->subordinate)
			pci_bus_unlock(dev->subordinate);
		pci_dev_unlock(dev);
	}
}

5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890
/* Return 1 on successful lock, 0 on contention */
static int pci_slot_trylock(struct pci_slot *slot)
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
		if (!dev->slot || dev->slot != slot)
			continue;
		if (!pci_dev_trylock(dev))
			goto unlock;
		if (dev->subordinate) {
			if (!pci_bus_trylock(dev->subordinate)) {
				pci_dev_unlock(dev);
				goto unlock;
			}
		}
	}
	return 1;

unlock:
	list_for_each_entry_continue_reverse(dev,
					     &slot->bus->devices, bus_list) {
		if (!dev->slot || dev->slot != slot)
			continue;
		if (dev->subordinate)
			pci_bus_unlock(dev->subordinate);
		pci_dev_unlock(dev);
	}
	return 0;
}

5891 5892 5893 5894 5895
/*
 * Save and disable devices from the top of the tree down while holding
 * the @dev mutex lock for the entire tree.
 */
static void pci_bus_save_and_disable_locked(struct pci_bus *bus)
5896 5897 5898 5899 5900 5901
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		pci_dev_save_and_disable(dev);
		if (dev->subordinate)
5902
			pci_bus_save_and_disable_locked(dev->subordinate);
5903 5904 5905 5906
	}
}

/*
5907 5908 5909
 * Restore devices from top of the tree down while holding @dev mutex lock
 * for the entire tree.  Parent bridges need to be restored before we can
 * get to subordinate devices.
5910
 */
5911
static void pci_bus_restore_locked(struct pci_bus *bus)
5912 5913 5914 5915 5916 5917
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &bus->devices, bus_list) {
		pci_dev_restore(dev);
		if (dev->subordinate)
5918
			pci_bus_restore_locked(dev->subordinate);
5919 5920 5921
	}
}

5922 5923 5924 5925 5926
/*
 * Save and disable devices from the top of the tree down while holding
 * the @dev mutex lock for the entire tree.
 */
static void pci_slot_save_and_disable_locked(struct pci_slot *slot)
5927 5928 5929 5930 5931 5932 5933 5934
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
		if (!dev->slot || dev->slot != slot)
			continue;
		pci_dev_save_and_disable(dev);
		if (dev->subordinate)
5935
			pci_bus_save_and_disable_locked(dev->subordinate);
5936 5937 5938 5939
	}
}

/*
5940 5941 5942
 * Restore devices from top of the tree down while holding @dev mutex lock
 * for the entire tree.  Parent bridges need to be restored before we can
 * get to subordinate devices.
5943
 */
5944
static void pci_slot_restore_locked(struct pci_slot *slot)
5945 5946 5947 5948 5949 5950 5951 5952
{
	struct pci_dev *dev;

	list_for_each_entry(dev, &slot->bus->devices, bus_list) {
		if (!dev->slot || dev->slot != slot)
			continue;
		pci_dev_restore(dev);
		if (dev->subordinate)
5953
			pci_bus_restore_locked(dev->subordinate);
5954 5955 5956
	}
}

5957
static int pci_slot_reset(struct pci_slot *slot, bool probe)
5958 5959 5960
{
	int rc;

5961
	if (!slot || !pci_slot_resettable(slot))
5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976
		return -ENOTTY;

	if (!probe)
		pci_slot_lock(slot);

	might_sleep();

	rc = pci_reset_hotplug_slot(slot->hotplug, probe);

	if (!probe)
		pci_slot_unlock(slot);

	return rc;
}

5977 5978 5979 5980 5981 5982 5983 5984
/**
 * pci_probe_reset_slot - probe whether a PCI slot can be reset
 * @slot: PCI slot to probe
 *
 * Return 0 if slot can be reset, negative if a slot reset is not supported.
 */
int pci_probe_reset_slot(struct pci_slot *slot)
{
5985
	return pci_slot_reset(slot, PCI_RESET_PROBE);
5986 5987 5988
}
EXPORT_SYMBOL_GPL(pci_probe_reset_slot);

5989
/**
5990
 * __pci_reset_slot - Try to reset a PCI slot
5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001
 * @slot: PCI slot to reset
 *
 * A PCI bus may host multiple slots, each slot may support a reset mechanism
 * independent of other slots.  For instance, some slots may support slot power
 * control.  In the case of a 1:1 bus to slot architecture, this function may
 * wrap the bus reset to avoid spurious slot related events such as hotplug.
 * Generally a slot reset should be attempted before a bus reset.  All of the
 * function of the slot and any subordinate buses behind the slot are reset
 * through this function.  PCI config space of all devices in the slot and
 * behind the slot is saved before and restored after reset.
 *
6002 6003
 * Same as above except return -EAGAIN if the slot cannot be locked
 */
6004
static int __pci_reset_slot(struct pci_slot *slot)
6005 6006 6007
{
	int rc;

6008
	rc = pci_slot_reset(slot, PCI_RESET_PROBE);
6009 6010 6011 6012
	if (rc)
		return rc;

	if (pci_slot_trylock(slot)) {
6013
		pci_slot_save_and_disable_locked(slot);
6014
		might_sleep();
6015
		rc = pci_reset_hotplug_slot(slot->hotplug, PCI_RESET_DO_RESET);
6016
		pci_slot_restore_locked(slot);
6017 6018 6019 6020 6021 6022 6023
		pci_slot_unlock(slot);
	} else
		rc = -EAGAIN;

	return rc;
}

6024
static int pci_bus_reset(struct pci_bus *bus, bool probe)
6025
{
6026 6027
	int ret;

6028
	if (!bus->self || !pci_bus_resettable(bus))
6029 6030 6031 6032 6033 6034 6035 6036 6037
		return -ENOTTY;

	if (probe)
		return 0;

	pci_bus_lock(bus);

	might_sleep();

6038
	ret = pci_bridge_secondary_bus_reset(bus->self);
6039 6040 6041

	pci_bus_unlock(bus);

6042
	return ret;
6043 6044
}

6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069
/**
 * pci_bus_error_reset - reset the bridge's subordinate bus
 * @bridge: The parent device that connects to the bus to reset
 *
 * This function will first try to reset the slots on this bus if the method is
 * available. If slot reset fails or is not available, this will fall back to a
 * secondary bus reset.
 */
int pci_bus_error_reset(struct pci_dev *bridge)
{
	struct pci_bus *bus = bridge->subordinate;
	struct pci_slot *slot;

	if (!bus)
		return -ENOTTY;

	mutex_lock(&pci_slot_mutex);
	if (list_empty(&bus->slots))
		goto bus_reset;

	list_for_each_entry(slot, &bus->slots, list)
		if (pci_probe_reset_slot(slot))
			goto bus_reset;

	list_for_each_entry(slot, &bus->slots, list)
6070
		if (pci_slot_reset(slot, PCI_RESET_DO_RESET))
6071 6072 6073 6074 6075 6076
			goto bus_reset;

	mutex_unlock(&pci_slot_mutex);
	return 0;
bus_reset:
	mutex_unlock(&pci_slot_mutex);
6077
	return pci_bus_reset(bridge->subordinate, PCI_RESET_DO_RESET);
6078 6079
}

6080 6081 6082 6083 6084 6085 6086 6087
/**
 * pci_probe_reset_bus - probe whether a PCI bus can be reset
 * @bus: PCI bus to probe
 *
 * Return 0 if bus can be reset, negative if a bus reset is not supported.
 */
int pci_probe_reset_bus(struct pci_bus *bus)
{
6088
	return pci_bus_reset(bus, PCI_RESET_PROBE);
6089 6090 6091
}
EXPORT_SYMBOL_GPL(pci_probe_reset_bus);

6092
/**
6093
 * __pci_reset_bus - Try to reset a PCI bus
6094 6095
 * @bus: top level PCI bus to reset
 *
6096
 * Same as above except return -EAGAIN if the bus cannot be locked
6097
 */
6098
static int __pci_reset_bus(struct pci_bus *bus)
6099 6100 6101
{
	int rc;

6102
	rc = pci_bus_reset(bus, PCI_RESET_PROBE);
6103 6104 6105
	if (rc)
		return rc;

6106
	if (pci_bus_trylock(bus)) {
6107
		pci_bus_save_and_disable_locked(bus);
6108
		might_sleep();
6109
		rc = pci_bridge_secondary_bus_reset(bus->self);
6110
		pci_bus_restore_locked(bus);
6111 6112 6113
		pci_bus_unlock(bus);
	} else
		rc = -EAGAIN;
6114 6115 6116 6117

	return rc;
}

6118
/**
6119
 * pci_reset_bus - Try to reset a PCI bus
6120
 * @pdev: top level PCI device to reset via slot/bus
6121 6122 6123
 *
 * Same as above except return -EAGAIN if the bus cannot be locked
 */
6124
int pci_reset_bus(struct pci_dev *pdev)
6125
{
6126
	return (!pci_probe_reset_slot(pdev->slot)) ?
6127
	    __pci_reset_slot(pdev->slot) : __pci_reset_bus(pdev->bus);
6128
}
6129
EXPORT_SYMBOL_GPL(pci_reset_bus);
6130

6131 6132 6133 6134
/**
 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
 * @dev: PCI device to query
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
6135 6136
 * Returns mmrbc: maximum designed memory read count in bytes or
 * appropriate error value.
6137 6138 6139
 */
int pcix_get_max_mmrbc(struct pci_dev *dev)
{
6140
	int cap;
6141 6142 6143 6144 6145 6146
	u32 stat;

	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
	if (!cap)
		return -EINVAL;

6147
	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
6148 6149
		return -EINVAL;

Bjorn Helgaas's avatar
Bjorn Helgaas committed
6150
	return 512 << FIELD_GET(PCI_X_STATUS_MAX_READ, stat);
6151 6152 6153 6154 6155 6156 6157
}
EXPORT_SYMBOL(pcix_get_max_mmrbc);

/**
 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
 * @dev: PCI device to query
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
6158 6159
 * Returns mmrbc: maximum memory read count in bytes or appropriate error
 * value.
6160 6161 6162
 */
int pcix_get_mmrbc(struct pci_dev *dev)
{
6163
	int cap;
6164
	u16 cmd;
6165 6166 6167 6168 6169

	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
	if (!cap)
		return -EINVAL;

6170 6171
	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
		return -EINVAL;
6172

Bjorn Helgaas's avatar
Bjorn Helgaas committed
6173
	return 512 << FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6174 6175 6176 6177 6178 6179 6180 6181 6182
}
EXPORT_SYMBOL(pcix_get_mmrbc);

/**
 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
 * @dev: PCI device to query
 * @mmrbc: maximum memory read count in bytes
 *    valid values are 512, 1024, 2048, 4096
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
6183
 * If possible sets maximum memory read byte count, some bridges have errata
6184 6185 6186 6187
 * that prevent this.
 */
int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
{
6188
	int cap;
6189 6190
	u32 stat, v, o;
	u16 cmd;
6191

6192
	if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
6193
		return -EINVAL;
6194 6195 6196 6197 6198

	v = ffs(mmrbc) - 10;

	cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
	if (!cap)
6199
		return -EINVAL;
6200

6201 6202
	if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
		return -EINVAL;
6203

Bjorn Helgaas's avatar
Bjorn Helgaas committed
6204
	if (v > FIELD_GET(PCI_X_STATUS_MAX_READ, stat))
6205 6206
		return -E2BIG;

6207 6208
	if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
		return -EINVAL;
6209

Bjorn Helgaas's avatar
Bjorn Helgaas committed
6210
	o = FIELD_GET(PCI_X_CMD_MAX_READ, cmd);
6211
	if (o != v) {
6212
		if (v > o && (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
6213 6214 6215
			return -EIO;

		cmd &= ~PCI_X_CMD_MAX_READ;
Bjorn Helgaas's avatar
Bjorn Helgaas committed
6216
		cmd |= FIELD_PREP(PCI_X_CMD_MAX_READ, v);
6217 6218
		if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
			return -EIO;
6219
	}
6220
	return 0;
6221 6222 6223 6224 6225 6226 6227
}
EXPORT_SYMBOL(pcix_set_mmrbc);

/**
 * pcie_get_readrq - get PCI Express read request size
 * @dev: PCI device to query
 *
Bjorn Helgaas's avatar
Bjorn Helgaas committed
6228
 * Returns maximum memory read request in bytes or appropriate error value.
6229 6230 6231 6232 6233
 */
int pcie_get_readrq(struct pci_dev *dev)
{
	u16 ctl;

6234
	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6235

Bjorn Helgaas's avatar
Bjorn Helgaas committed
6236
	return 128 << FIELD_GET(PCI_EXP_DEVCTL_READRQ, ctl);
6237 6238 6239 6240 6241 6242
}
EXPORT_SYMBOL(pcie_get_readrq);

/**
 * pcie_set_readrq - set PCI Express maximum memory read request
 * @dev: PCI device to query
6243
 * @rq: maximum memory read count in bytes
6244 6245
 *    valid values are 128, 256, 512, 1024, 2048, 4096
 *
6246
 * If possible sets maximum memory read request in bytes
6247 6248 6249
 */
int pcie_set_readrq(struct pci_dev *dev, int rq)
{
6250
	u16 v;
6251
	int ret;
6252
	struct pci_host_bridge *bridge = pci_find_host_bridge(dev->bus);
6253

6254
	if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
6255
		return -EINVAL;
6256

6257
	/*
Bjorn Helgaas's avatar
Bjorn Helgaas committed
6258 6259 6260
	 * If using the "performance" PCIe config, we clamp the read rq
	 * size to the max packet size to keep the host bridge from
	 * generating requests larger than we can cope with.
6261 6262 6263 6264 6265 6266 6267 6268
	 */
	if (pcie_bus_config == PCIE_BUS_PERFORMANCE) {
		int mps = pcie_get_mps(dev);

		if (mps < rq)
			rq = mps;
	}

Bjorn Helgaas's avatar
Bjorn Helgaas committed
6269
	v = FIELD_PREP(PCI_EXP_DEVCTL_READRQ, ffs(rq) - 8);
6270

6271 6272 6273 6274 6275 6276 6277 6278 6279
	if (bridge->no_inc_mrrs) {
		int max_mrrs = pcie_get_readrq(dev);

		if (rq > max_mrrs) {
			pci_info(dev, "can't set Max_Read_Request_Size to %d; max is %d\n", rq, max_mrrs);
			return -EINVAL;
		}
	}

6280
	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6281
						  PCI_EXP_DEVCTL_READRQ, v);
6282 6283

	return pcibios_err_to_errno(ret);
6284 6285 6286
}
EXPORT_SYMBOL(pcie_set_readrq);

6287 6288 6289 6290 6291 6292 6293 6294 6295 6296
/**
 * pcie_get_mps - get PCI Express maximum payload size
 * @dev: PCI device to query
 *
 * Returns maximum payload size in bytes
 */
int pcie_get_mps(struct pci_dev *dev)
{
	u16 ctl;

6297
	pcie_capability_read_word(dev, PCI_EXP_DEVCTL, &ctl);
6298

Bjorn Helgaas's avatar
Bjorn Helgaas committed
6299
	return 128 << FIELD_GET(PCI_EXP_DEVCTL_PAYLOAD, ctl);
6300
}
6301
EXPORT_SYMBOL(pcie_get_mps);
6302 6303 6304 6305

/**
 * pcie_set_mps - set PCI Express maximum payload size
 * @dev: PCI device to query
6306
 * @mps: maximum payload size in bytes
6307 6308 6309 6310 6311 6312
 *    valid values are 128, 256, 512, 1024, 2048, 4096
 *
 * If possible sets maximum payload size
 */
int pcie_set_mps(struct pci_dev *dev, int mps)
{
6313
	u16 v;
6314
	int ret;
6315 6316

	if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
6317
		return -EINVAL;
6318 6319

	v = ffs(mps) - 8;
6320
	if (v > dev->pcie_mpss)
6321
		return -EINVAL;
Bjorn Helgaas's avatar
Bjorn Helgaas committed
6322
	v = FIELD_PREP(PCI_EXP_DEVCTL_PAYLOAD, v);
6323

6324
	ret = pcie_capability_clear_and_set_word(dev, PCI_EXP_DEVCTL,
6325
						  PCI_EXP_DEVCTL_PAYLOAD, v);
6326 6327

	return pcibios_err_to_errno(ret);
6328
}
6329
EXPORT_SYMBOL(pcie_set_mps);
6330

6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365
static enum pci_bus_speed to_pcie_link_speed(u16 lnksta)
{
	return pcie_link_speed[FIELD_GET(PCI_EXP_LNKSTA_CLS, lnksta)];
}

int pcie_link_speed_mbps(struct pci_dev *pdev)
{
	u16 lnksta;
	int err;

	err = pcie_capability_read_word(pdev, PCI_EXP_LNKSTA, &lnksta);
	if (err)
		return err;

	switch (to_pcie_link_speed(lnksta)) {
	case PCIE_SPEED_2_5GT:
		return 2500;
	case PCIE_SPEED_5_0GT:
		return 5000;
	case PCIE_SPEED_8_0GT:
		return 8000;
	case PCIE_SPEED_16_0GT:
		return 16000;
	case PCIE_SPEED_32_0GT:
		return 32000;
	case PCIE_SPEED_64_0GT:
		return 64000;
	default:
		break;
	}

	return -EINVAL;
}
EXPORT_SYMBOL(pcie_link_speed_mbps);

6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398
/**
 * pcie_bandwidth_available - determine minimum link settings of a PCIe
 *			      device and its bandwidth limitation
 * @dev: PCI device to query
 * @limiting_dev: storage for device causing the bandwidth limitation
 * @speed: storage for speed of limiting device
 * @width: storage for width of limiting device
 *
 * Walk up the PCI device chain and find the point where the minimum
 * bandwidth is available.  Return the bandwidth available there and (if
 * limiting_dev, speed, and width pointers are supplied) information about
 * that point.  The bandwidth returned is in Mb/s, i.e., megabits/second of
 * raw bandwidth.
 */
u32 pcie_bandwidth_available(struct pci_dev *dev, struct pci_dev **limiting_dev,
			     enum pci_bus_speed *speed,
			     enum pcie_link_width *width)
{
	u16 lnksta;
	enum pci_bus_speed next_speed;
	enum pcie_link_width next_width;
	u32 bw, next_bw;

	if (speed)
		*speed = PCI_SPEED_UNKNOWN;
	if (width)
		*width = PCIE_LNK_WIDTH_UNKNOWN;

	bw = 0;

	while (dev) {
		pcie_capability_read_word(dev, PCI_EXP_LNKSTA, &lnksta);

6399
		next_speed = to_pcie_link_speed(lnksta);
6400
		next_width = FIELD_GET(PCI_EXP_LNKSTA_NLW, lnksta);
6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422

		next_bw = next_width * PCIE_SPEED2MBS_ENC(next_speed);

		/* Check if current device limits the total bandwidth */
		if (!bw || next_bw <= bw) {
			bw = next_bw;

			if (limiting_dev)
				*limiting_dev = dev;
			if (speed)
				*speed = next_speed;
			if (width)
				*width = next_width;
		}

		dev = pci_upstream_bridge(dev);
	}

	return bw;
}
EXPORT_SYMBOL(pcie_bandwidth_available);

6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434
/**
 * pcie_get_speed_cap - query for the PCI device's link speed capability
 * @dev: PCI device to query
 *
 * Query the PCI device speed capability.  Return the maximum link speed
 * supported by the device.
 */
enum pci_bus_speed pcie_get_speed_cap(struct pci_dev *dev)
{
	u32 lnkcap2, lnkcap;

	/*
6435 6436 6437 6438 6439 6440 6441
	 * Link Capabilities 2 was added in PCIe r3.0, sec 7.8.18.  The
	 * implementation note there recommends using the Supported Link
	 * Speeds Vector in Link Capabilities 2 when supported.
	 *
	 * Without Link Capabilities 2, i.e., prior to PCIe r3.0, software
	 * should use the Supported Link Speeds field in Link Capabilities,
	 * where only 2.5 GT/s and 5.0 GT/s speeds were defined.
6442 6443
	 */
	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP2, &lnkcap2);
6444 6445 6446 6447

	/* PCIe r3.0-compliant */
	if (lnkcap2)
		return PCIE_LNKCAP2_SLS2SPEED(lnkcap2);
6448 6449

	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
6450 6451 6452 6453
	if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_5_0GB)
		return PCIE_SPEED_5_0GT;
	else if ((lnkcap & PCI_EXP_LNKCAP_SLS) == PCI_EXP_LNKCAP_SLS_2_5GB)
		return PCIE_SPEED_2_5GT;
6454 6455 6456

	return PCI_SPEED_UNKNOWN;
}
6457
EXPORT_SYMBOL(pcie_get_speed_cap);
6458

6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471
/**
 * pcie_get_width_cap - query for the PCI device's link width capability
 * @dev: PCI device to query
 *
 * Query the PCI device width capability.  Return the maximum link width
 * supported by the device.
 */
enum pcie_link_width pcie_get_width_cap(struct pci_dev *dev)
{
	u32 lnkcap;

	pcie_capability_read_dword(dev, PCI_EXP_LNKCAP, &lnkcap);
	if (lnkcap)
6472
		return FIELD_GET(PCI_EXP_LNKCAP_MLW, lnkcap);
6473 6474 6475

	return PCIE_LNK_WIDTH_UNKNOWN;
}
6476
EXPORT_SYMBOL(pcie_get_width_cap);
6477

6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499
/**
 * pcie_bandwidth_capable - calculate a PCI device's link bandwidth capability
 * @dev: PCI device
 * @speed: storage for link speed
 * @width: storage for link width
 *
 * Calculate a PCI device's link bandwidth by querying for its link speed
 * and width, multiplying them, and applying encoding overhead.  The result
 * is in Mb/s, i.e., megabits/second of raw bandwidth.
 */
u32 pcie_bandwidth_capable(struct pci_dev *dev, enum pci_bus_speed *speed,
			   enum pcie_link_width *width)
{
	*speed = pcie_get_speed_cap(dev);
	*width = pcie_get_width_cap(dev);

	if (*speed == PCI_SPEED_UNKNOWN || *width == PCIE_LNK_WIDTH_UNKNOWN)
		return 0;

	return *width * PCIE_SPEED2MBS_ENC(*speed);
}

6500
/**
6501
 * __pcie_print_link_status - Report the PCI device's link speed and width
6502
 * @dev: PCI device to query
6503
 * @verbose: Print info even when enough bandwidth is available
6504
 *
6505 6506 6507 6508
 * If the available bandwidth at the device is less than the device is
 * capable of, report the device's maximum possible bandwidth and the
 * upstream link that limits its performance.  If @verbose, always print
 * the available bandwidth, even if the device isn't constrained.
6509
 */
6510
void __pcie_print_link_status(struct pci_dev *dev, bool verbose)
6511 6512 6513 6514 6515 6516 6517 6518 6519
{
	enum pcie_link_width width, width_cap;
	enum pci_bus_speed speed, speed_cap;
	struct pci_dev *limiting_dev = NULL;
	u32 bw_avail, bw_cap;

	bw_cap = pcie_bandwidth_capable(dev, &speed_cap, &width_cap);
	bw_avail = pcie_bandwidth_available(dev, &limiting_dev, &speed, &width);

6520
	if (bw_avail >= bw_cap && verbose)
6521
		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth (%s x%d link)\n",
6522
			 bw_cap / 1000, bw_cap % 1000,
6523
			 pci_speed_string(speed_cap), width_cap);
6524
	else if (bw_avail < bw_cap)
6525
		pci_info(dev, "%u.%03u Gb/s available PCIe bandwidth, limited by %s x%d link at %s (capable of %u.%03u Gb/s with %s x%d link)\n",
6526
			 bw_avail / 1000, bw_avail % 1000,
6527
			 pci_speed_string(speed), width,
6528 6529
			 limiting_dev ? pci_name(limiting_dev) : "<unknown>",
			 bw_cap / 1000, bw_cap % 1000,
6530
			 pci_speed_string(speed_cap), width_cap);
6531
}
6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542

/**
 * pcie_print_link_status - Report the PCI device's link speed and width
 * @dev: PCI device to query
 *
 * Report the available bandwidth at the device.
 */
void pcie_print_link_status(struct pci_dev *dev)
{
	__pcie_print_link_status(dev, true);
}
6543 6544
EXPORT_SYMBOL(pcie_print_link_status);

6545 6546
/**
 * pci_select_bars - Make BAR mask from the type of resource
6547
 * @dev: the PCI device for which BAR mask is made
6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559
 * @flags: resource type mask to be selected
 *
 * This helper routine makes bar mask from the type of resource.
 */
int pci_select_bars(struct pci_dev *dev, unsigned long flags)
{
	int i, bars = 0;
	for (i = 0; i < PCI_NUM_RESOURCES; i++)
		if (pci_resource_flags(dev, i) & flags)
			bars |= (1 << i);
	return bars;
}
6560
EXPORT_SYMBOL(pci_select_bars);
6561

6562 6563 6564 6565 6566 6567 6568 6569 6570
/* Some architectures require additional programming to enable VGA */
static arch_set_vga_state_t arch_set_vga_state;

void __init pci_register_set_vga_state(arch_set_vga_state_t func)
{
	arch_set_vga_state = func;	/* NULL disables */
}

static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
Ryan Desfosses's avatar
Ryan Desfosses committed
6571
				  unsigned int command_bits, u32 flags)
6572 6573 6574
{
	if (arch_set_vga_state)
		return arch_set_vga_state(dev, decode, command_bits,
6575
						flags);
6576 6577 6578
	return 0;
}

6579 6580
/**
 * pci_set_vga_state - set VGA decode state on device and parents if requested
6581 6582 6583
 * @dev: the PCI device
 * @decode: true = enable decoding, false = disable decoding
 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
6584
 * @flags: traverse ancestors and change bridges
6585
 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
6586 6587
 */
int pci_set_vga_state(struct pci_dev *dev, bool decode,
6588
		      unsigned int command_bits, u32 flags)
6589 6590 6591 6592
{
	struct pci_bus *bus;
	struct pci_dev *bridge;
	u16 cmd;
6593
	int rc;
6594

6595
	WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) && (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
6596

6597
	/* ARCH specific VGA enables */
6598
	rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
6599 6600 6601
	if (rc)
		return rc;

6602 6603
	if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
		pci_read_config_word(dev, PCI_COMMAND, &cmd);
6604
		if (decode)
6605 6606 6607 6608 6609
			cmd |= command_bits;
		else
			cmd &= ~command_bits;
		pci_write_config_word(dev, PCI_COMMAND, cmd);
	}
6610

6611
	if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
6612 6613 6614 6615 6616 6617 6618 6619
		return 0;

	bus = dev->bus;
	while (bus) {
		bridge = bus->self;
		if (bridge) {
			pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
					     &cmd);
6620
			if (decode)
6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631
				cmd |= PCI_BRIDGE_CTL_VGA;
			else
				cmd &= ~PCI_BRIDGE_CTL_VGA;
			pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
					      cmd);
		}
		bus = bus->parent;
	}
	return 0;
}

6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649
#ifdef CONFIG_ACPI
bool pci_pr3_present(struct pci_dev *pdev)
{
	struct acpi_device *adev;

	if (acpi_disabled)
		return false;

	adev = ACPI_COMPANION(&pdev->dev);
	if (!adev)
		return false;

	return adev->power.flags.power_resources &&
		acpi_has_method(adev->handle, "_PR3");
}
EXPORT_SYMBOL_GPL(pci_pr3_present);
#endif

6650 6651 6652
/**
 * pci_add_dma_alias - Add a DMA devfn alias for a device
 * @dev: the PCI device for which alias is added
6653 6654
 * @devfn_from: alias slot and function
 * @nr_devfns: number of subsequent devfns to alias
6655
 *
6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668
 * This helper encodes an 8-bit devfn as a bit number in dma_alias_mask
 * which is used to program permissible bus-devfn source addresses for DMA
 * requests in an IOMMU.  These aliases factor into IOMMU group creation
 * and are useful for devices generating DMA requests beyond or different
 * from their logical bus-devfn.  Examples include device quirks where the
 * device simply uses the wrong devfn, as well as non-transparent bridges
 * where the alias may be a proxy for devices in another domain.
 *
 * IOMMU group creation is performed during device discovery or addition,
 * prior to any potential DMA mapping and therefore prior to driver probing
 * (especially for userspace assigned devices where IOMMU group definition
 * cannot be left as a userspace activity).  DMA aliases should therefore
 * be configured via quirks, such as the PCI fixup header quirk.
6669
 */
6670 6671
void pci_add_dma_alias(struct pci_dev *dev, u8 devfn_from,
		       unsigned int nr_devfns)
6672
{
6673 6674
	int devfn_to;

6675
	nr_devfns = min(nr_devfns, (unsigned int)MAX_NR_DEVFNS - devfn_from);
6676 6677
	devfn_to = devfn_from + nr_devfns - 1;

6678
	if (!dev->dma_alias_mask)
6679
		dev->dma_alias_mask = bitmap_zalloc(MAX_NR_DEVFNS, GFP_KERNEL);
6680
	if (!dev->dma_alias_mask) {
6681
		pci_warn(dev, "Unable to allocate DMA alias mask\n");
6682 6683 6684
		return;
	}

6685 6686 6687 6688 6689 6690 6691 6692 6693
	bitmap_set(dev->dma_alias_mask, devfn_from, nr_devfns);

	if (nr_devfns == 1)
		pci_info(dev, "Enabling fixed DMA alias to %02x.%d\n",
				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from));
	else if (nr_devfns > 1)
		pci_info(dev, "Enabling fixed DMA alias for devfn range from %02x.%d to %02x.%d\n",
				PCI_SLOT(devfn_from), PCI_FUNC(devfn_from),
				PCI_SLOT(devfn_to), PCI_FUNC(devfn_to));
6694 6695
}

6696 6697 6698 6699 6700
bool pci_devs_are_dma_aliases(struct pci_dev *dev1, struct pci_dev *dev2)
{
	return (dev1->dma_alias_mask &&
		test_bit(dev2->devfn, dev1->dma_alias_mask)) ||
	       (dev2->dma_alias_mask &&
6701 6702 6703
		test_bit(dev1->devfn, dev2->dma_alias_mask)) ||
	       pci_real_dma_dev(dev1) == dev2 ||
	       pci_real_dma_dev(dev2) == dev1;
6704 6705
}

6706 6707 6708 6709
bool pci_device_is_present(struct pci_dev *pdev)
{
	u32 v;

6710 6711
	/* Check PF if pdev is a VF, since VF Vendor/Device IDs are 0xffff */
	pdev = pci_physfn(pdev);
6712 6713
	if (pci_dev_is_disconnected(pdev))
		return false;
6714 6715 6716 6717
	return pci_bus_read_dev_vendor_id(pdev->bus, pdev->devfn, &v, 0);
}
EXPORT_SYMBOL_GPL(pci_device_is_present);

6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728
void pci_ignore_hotplug(struct pci_dev *dev)
{
	struct pci_dev *bridge = dev->bus->self;

	dev->ignore_hotplug = 1;
	/* Propagate the "ignore hotplug" setting to the parent bridge. */
	if (bridge)
		bridge->ignore_hotplug = 1;
}
EXPORT_SYMBOL_GPL(pci_ignore_hotplug);

6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743
/**
 * pci_real_dma_dev - Get PCI DMA device for PCI device
 * @dev: the PCI device that may have a PCI DMA alias
 *
 * Permits the platform to provide architecture-specific functionality to
 * devices needing to alias DMA to another PCI device on another PCI bus. If
 * the PCI device is on the same bus, it is recommended to use
 * pci_add_dma_alias(). This is the default implementation. Architecture
 * implementations can override this.
 */
struct pci_dev __weak *pci_real_dma_dev(struct pci_dev *dev)
{
	return dev;
}

6744 6745 6746 6747 6748
resource_size_t __weak pcibios_default_alignment(void)
{
	return 0;
}

6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760
/*
 * Arches that don't want to expose struct resource to userland as-is in
 * sysfs and /proc can implement their own pci_resource_to_user().
 */
void __weak pci_resource_to_user(const struct pci_dev *dev, int bar,
				 const struct resource *rsrc,
				 resource_size_t *start, resource_size_t *end)
{
	*start = rsrc->start;
	*end = rsrc->end;
}

6761
static char *resource_alignment_param;
6762
static DEFINE_SPINLOCK(resource_alignment_lock);
6763 6764 6765 6766

/**
 * pci_specified_resource_alignment - get resource alignment specified by user.
 * @dev: the PCI device to get
6767
 * @resize: whether or not to change resources' size when reassigning alignment
6768 6769 6770 6771
 *
 * RETURNS: Resource alignment if it is specified.
 *          Zero if it is not specified.
 */
6772 6773
static resource_size_t pci_specified_resource_alignment(struct pci_dev *dev,
							bool *resize)
6774
{
6775
	int align_order, count;
6776
	resource_size_t align = pcibios_default_alignment();
6777 6778
	const char *p;
	int ret;
6779 6780 6781

	spin_lock(&resource_alignment_lock);
	p = resource_alignment_param;
6782
	if (!p || !*p)
6783 6784
		goto out;
	if (pci_has_flag(PCI_PROBE_ONLY)) {
6785
		align = 0;
6786 6787 6788 6789
		pr_info_once("PCI: Ignoring requested alignments (PCI_PROBE_ONLY)\n");
		goto out;
	}

6790 6791 6792
	while (*p) {
		count = 0;
		if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
6793
		    p[count] == '@') {
6794
			p += count + 1;
6795 6796 6797 6798 6799
			if (align_order > 63) {
				pr_err("PCI: Invalid requested alignment (order %d)\n",
				       align_order);
				align_order = PAGE_SHIFT;
			}
6800
		} else {
6801
			align_order = PAGE_SHIFT;
6802
		}
6803 6804 6805 6806

		ret = pci_dev_str_match(dev, p, &p);
		if (ret == 1) {
			*resize = true;
6807
			align = 1ULL << align_order;
6808 6809 6810 6811 6812
			break;
		} else if (ret < 0) {
			pr_err("PCI: Can't parse resource_alignment parameter: %s\n",
			       p);
			break;
6813
		}
6814

6815 6816 6817 6818 6819 6820
		if (*p != ';' && *p != ',') {
			/* End of param or invalid format */
			break;
		}
		p++;
	}
6821
out:
6822 6823 6824 6825
	spin_unlock(&resource_alignment_lock);
	return align;
}

6826
static void pci_request_resource_alignment(struct pci_dev *dev, int bar,
6827
					   resource_size_t align, bool resize)
6828 6829
{
	struct resource *r = &dev->resource[bar];
6830
	const char *r_name = pci_resource_name(dev, bar);
6831 6832 6833 6834 6835 6836
	resource_size_t size;

	if (!(r->flags & IORESOURCE_MEM))
		return;

	if (r->flags & IORESOURCE_PCI_FIXED) {
6837 6838
		pci_info(dev, "%s %pR: ignoring requested alignment %#llx\n",
			 r_name, r, (unsigned long long)align);
6839 6840 6841 6842
		return;
	}

	size = resource_size(r);
6843 6844
	if (size >= align)
		return;
6845

6846
	/*
6847 6848
	 * Increase the alignment of the resource.  There are two ways we
	 * can do this:
6849
	 *
6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871
	 * 1) Increase the size of the resource.  BARs are aligned on their
	 *    size, so when we reallocate space for this resource, we'll
	 *    allocate it with the larger alignment.  This also prevents
	 *    assignment of any other BARs inside the alignment region, so
	 *    if we're requesting page alignment, this means no other BARs
	 *    will share the page.
	 *
	 *    The disadvantage is that this makes the resource larger than
	 *    the hardware BAR, which may break drivers that compute things
	 *    based on the resource size, e.g., to find registers at a
	 *    fixed offset before the end of the BAR.
	 *
	 * 2) Retain the resource size, but use IORESOURCE_STARTALIGN and
	 *    set r->start to the desired alignment.  By itself this
	 *    doesn't prevent other BARs being put inside the alignment
	 *    region, but if we realign *every* resource of every device in
	 *    the system, none of them will share an alignment region.
	 *
	 * When the user has requested alignment for only some devices via
	 * the "pci=resource_alignment" argument, "resize" is true and we
	 * use the first method.  Otherwise we assume we're aligning all
	 * devices and we use the second.
6872
	 */
6873

6874 6875
	pci_info(dev, "%s %pR: requesting alignment to %#llx\n",
		 r_name, r, (unsigned long long)align);
6876

6877 6878 6879 6880 6881 6882 6883 6884 6885
	if (resize) {
		r->start = 0;
		r->end = align - 1;
	} else {
		r->flags &= ~IORESOURCE_SIZEALIGN;
		r->flags |= IORESOURCE_STARTALIGN;
		r->start = align;
		r->end = r->start + size - 1;
	}
6886
	r->flags |= IORESOURCE_UNSET;
6887 6888
}

6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899
/*
 * This function disables memory decoding and releases memory resources
 * of the device specified by kernel's boot parameter 'pci=resource_alignment='.
 * It also rounds up size to specified alignment.
 * Later on, the kernel will assign page-aligned memory resource back
 * to the device.
 */
void pci_reassigndev_resource_alignment(struct pci_dev *dev)
{
	int i;
	struct resource *r;
6900
	resource_size_t align;
6901
	u16 command;
6902
	bool resize = false;
6903

6904 6905 6906 6907 6908 6909 6910 6911 6912
	/*
	 * VF BARs are read-only zero according to SR-IOV spec r1.1, sec
	 * 3.4.1.11.  Their resources are allocated from the space
	 * described by the VF BARx register in the PF's SR-IOV capability.
	 * We can't influence their alignment here.
	 */
	if (dev->is_virtfn)
		return;

Yinghai Lu's avatar
Yinghai Lu committed
6913
	/* check if specified PCI is target device to reassign */
6914
	align = pci_specified_resource_alignment(dev, &resize);
Yinghai Lu's avatar
Yinghai Lu committed
6915
	if (!align)
6916 6917 6918 6919
		return;

	if (dev->hdr_type == PCI_HEADER_TYPE_NORMAL &&
	    (dev->class >> 8) == PCI_CLASS_BRIDGE_HOST) {
6920
		pci_warn(dev, "Can't reassign resources to host bridge\n");
6921 6922 6923 6924 6925 6926 6927
		return;
	}

	pci_read_config_word(dev, PCI_COMMAND, &command);
	command &= ~PCI_COMMAND_MEMORY;
	pci_write_config_word(dev, PCI_COMMAND, command);

6928
	for (i = 0; i <= PCI_ROM_RESOURCE; i++)
6929
		pci_request_resource_alignment(dev, i, align, resize);
6930

6931 6932
	/*
	 * Need to disable bridge's resource window,
6933 6934 6935
	 * to enable the kernel to reassign new resource
	 * window later on.
	 */
6936
	if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
6937 6938 6939 6940
		for (i = PCI_BRIDGE_RESOURCES; i < PCI_NUM_RESOURCES; i++) {
			r = &dev->resource[i];
			if (!(r->flags & IORESOURCE_MEM))
				continue;
6941
			r->flags |= IORESOURCE_UNSET;
6942 6943 6944 6945 6946 6947 6948
			r->end = resource_size(r) - 1;
			r->start = 0;
		}
		pci_disable_bridge_window(dev);
	}
}

6949
static ssize_t resource_alignment_show(const struct bus_type *bus, char *buf)
6950
{
6951
	size_t count = 0;
6952 6953

	spin_lock(&resource_alignment_lock);
6954
	if (resource_alignment_param)
6955
		count = sysfs_emit(buf, "%s\n", resource_alignment_param);
6956 6957 6958 6959 6960
	spin_unlock(&resource_alignment_lock);

	return count;
}

6961
static ssize_t resource_alignment_store(const struct bus_type *bus,
6962 6963
					const char *buf, size_t count)
{
6964 6965 6966 6967
	char *param, *old, *end;

	if (count >= (PAGE_SIZE - 1))
		return -EINVAL;
6968

6969
	param = kstrndup(buf, count, GFP_KERNEL);
6970 6971 6972
	if (!param)
		return -ENOMEM;

6973 6974 6975 6976
	end = strchr(param, '\n');
	if (end)
		*end = '\0';

6977
	spin_lock(&resource_alignment_lock);
6978 6979 6980 6981 6982 6983 6984
	old = resource_alignment_param;
	if (strlen(param)) {
		resource_alignment_param = param;
	} else {
		kfree(param);
		resource_alignment_param = NULL;
	}
6985
	spin_unlock(&resource_alignment_lock);
6986 6987 6988

	kfree(old);

6989
	return count;
6990 6991
}

6992
static BUS_ATTR_RW(resource_alignment);
6993 6994 6995 6996 6997 6998 6999 7000

static int __init pci_resource_alignment_sysfs_init(void)
{
	return bus_create_file(&pci_bus_type,
					&bus_attr_resource_alignment);
}
late_initcall(pci_resource_alignment_sysfs_init);

Bill Pemberton's avatar
Bill Pemberton committed
7001
static void pci_no_domains(void)
7002 7003 7004 7005 7006 7007
{
#ifdef CONFIG_PCI_DOMAINS
	pci_domains_supported = 0;
#endif
}

7008
#ifdef CONFIG_PCI_DOMAINS_GENERIC
7009 7010
static DEFINE_IDA(pci_domain_nr_static_ida);
static DEFINE_IDA(pci_domain_nr_dynamic_ida);
7011

7012
static void of_pci_reserve_static_domain_nr(void)
7013
{
7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027
	struct device_node *np;
	int domain_nr;

	for_each_node_by_type(np, "pci") {
		domain_nr = of_get_pci_domain_nr(np);
		if (domain_nr < 0)
			continue;
		/*
		 * Permanently allocate domain_nr in dynamic_ida
		 * to prevent it from dynamic allocation.
		 */
		ida_alloc_range(&pci_domain_nr_dynamic_ida,
				domain_nr, domain_nr, GFP_KERNEL);
	}
7028
}
7029

7030
static int of_pci_bus_find_domain_nr(struct device *parent)
7031
{
7032 7033
	static bool static_domains_reserved = false;
	int domain_nr;
7034

7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052
	/* On the first call scan device tree for static allocations. */
	if (!static_domains_reserved) {
		of_pci_reserve_static_domain_nr();
		static_domains_reserved = true;
	}

	if (parent) {
		/*
		 * If domain is in DT, allocate it in static IDA.  This
		 * prevents duplicate static allocations in case of errors
		 * in DT.
		 */
		domain_nr = of_get_pci_domain_nr(parent->of_node);
		if (domain_nr >= 0)
			return ida_alloc_range(&pci_domain_nr_static_ida,
					       domain_nr, domain_nr,
					       GFP_KERNEL);
	}
Bjorn Helgaas's avatar
Bjorn Helgaas committed
7053

7054
	/*
7055 7056 7057 7058
	 * If domain was not specified in DT, choose a free ID from dynamic
	 * allocations. All domain numbers from DT are permanently in
	 * dynamic allocations to prevent assigning them to other DT nodes
	 * without static domain.
7059
	 */
7060 7061
	return ida_alloc(&pci_domain_nr_dynamic_ida, GFP_KERNEL);
}
7062

7063 7064 7065 7066 7067 7068 7069 7070 7071 7072
static void of_pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
{
	if (bus->domain_nr < 0)
		return;

	/* Release domain from IDA where it was allocated. */
	if (of_get_pci_domain_nr(parent->of_node) == bus->domain_nr)
		ida_free(&pci_domain_nr_static_ida, bus->domain_nr);
	else
		ida_free(&pci_domain_nr_dynamic_ida, bus->domain_nr);
7073
}
7074 7075 7076

int pci_bus_find_domain_nr(struct pci_bus *bus, struct device *parent)
{
7077 7078
	return acpi_disabled ? of_pci_bus_find_domain_nr(parent) :
			       acpi_pci_bus_find_domain_nr(bus);
7079
}
7080 7081 7082 7083 7084 7085 7086

void pci_bus_release_domain_nr(struct pci_bus *bus, struct device *parent)
{
	if (!acpi_disabled)
		return;
	of_pci_bus_release_domain_nr(bus, parent);
}
7087
#endif
7088

7089
/**
7090
 * pci_ext_cfg_avail - can we access extended PCI config space?
7091 7092 7093 7094 7095
 *
 * Returns 1 if we can access PCI extended config space (offsets
 * greater than 0xff). This is the default implementation. Architecture
 * implementations can override this.
 */
7096
int __weak pci_ext_cfg_avail(void)
7097 7098 7099 7100
{
	return 1;
}

7101 7102 7103 7104 7105
void __weak pci_fixup_cardbus(struct pci_bus *bus)
{
}
EXPORT_SYMBOL(pci_fixup_cardbus);

Al Viro's avatar
Al Viro committed
7106
static int __init pci_setup(char *str)
Linus Torvalds's avatar
Linus Torvalds committed
7107 7108 7109 7110 7111 7112
{
	while (str) {
		char *k = strchr(str, ',');
		if (k)
			*k++ = 0;
		if (*str && (str = pcibios_setup(str)) && *str) {
7113 7114
			if (!strcmp(str, "nomsi")) {
				pci_no_msi();
7115 7116 7117
			} else if (!strncmp(str, "noats", 5)) {
				pr_info("PCIe: ATS is disabled\n");
				pcie_ats_disabled = true;
Randy Dunlap's avatar
Randy Dunlap committed
7118 7119
			} else if (!strcmp(str, "noaer")) {
				pci_no_aer();
7120 7121
			} else if (!strcmp(str, "earlydump")) {
				pci_early_dump = true;
7122 7123
			} else if (!strncmp(str, "realloc=", 8)) {
				pci_realloc_get_opt(str + 8);
7124
			} else if (!strncmp(str, "realloc", 7)) {
7125
				pci_realloc_get_opt("on");
7126 7127
			} else if (!strcmp(str, "nodomains")) {
				pci_no_domains();
7128 7129
			} else if (!strncmp(str, "noari", 5)) {
				pcie_ari_disabled = true;
7130 7131 7132 7133
			} else if (!strncmp(str, "cbiosize=", 9)) {
				pci_cardbus_io_size = memparse(str + 9, &str);
			} else if (!strncmp(str, "cbmemsize=", 10)) {
				pci_cardbus_mem_size = memparse(str + 10, &str);
7134
			} else if (!strncmp(str, "resource_alignment=", 19)) {
7135
				resource_alignment_param = str + 19;
7136 7137
			} else if (!strncmp(str, "ecrc=", 5)) {
				pcie_ecrc_get_policy(str + 5);
7138 7139
			} else if (!strncmp(str, "hpiosize=", 9)) {
				pci_hotplug_io_size = memparse(str + 9, &str);
7140 7141 7142 7143
			} else if (!strncmp(str, "hpmmiosize=", 11)) {
				pci_hotplug_mmio_size = memparse(str + 11, &str);
			} else if (!strncmp(str, "hpmmioprefsize=", 15)) {
				pci_hotplug_mmio_pref_size = memparse(str + 15, &str);
7144
			} else if (!strncmp(str, "hpmemsize=", 10)) {
7145 7146
				pci_hotplug_mmio_size = memparse(str + 10, &str);
				pci_hotplug_mmio_pref_size = pci_hotplug_mmio_size;
7147 7148 7149 7150 7151
			} else if (!strncmp(str, "hpbussize=", 10)) {
				pci_hotplug_bus_size =
					simple_strtoul(str + 10, &str, 0);
				if (pci_hotplug_bus_size > 0xff)
					pci_hotplug_bus_size = DEFAULT_HOTPLUG_BUS_SIZE;
7152 7153
			} else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
				pcie_bus_config = PCIE_BUS_TUNE_OFF;
7154 7155 7156 7157
			} else if (!strncmp(str, "pcie_bus_safe", 13)) {
				pcie_bus_config = PCIE_BUS_SAFE;
			} else if (!strncmp(str, "pcie_bus_perf", 13)) {
				pcie_bus_config = PCIE_BUS_PERFORMANCE;
7158 7159
			} else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
				pcie_bus_config = PCIE_BUS_PEER2PEER;
7160 7161
			} else if (!strncmp(str, "pcie_scan_all", 13)) {
				pci_add_flags(PCI_SCAN_ALL_PCIE_DEVS);
7162
			} else if (!strncmp(str, "disable_acs_redir=", 18)) {
7163
				disable_acs_redir_param = str + 18;
7164
			} else {
7165
				pr_err("PCI: Unknown option `%s'\n", str);
7166
			}
Linus Torvalds's avatar
Linus Torvalds committed
7167 7168 7169
		}
		str = k;
	}
7170
	return 0;
Linus Torvalds's avatar
Linus Torvalds committed
7171
}
7172
early_param("pci", pci_setup);
7173 7174

/*
7175 7176 7177 7178 7179 7180 7181
 * 'resource_alignment_param' and 'disable_acs_redir_param' are initialized
 * in pci_setup(), above, to point to data in the __initdata section which
 * will be freed after the init sequence is complete. We can't allocate memory
 * in pci_setup() because some architectures do not have any memory allocation
 * service available during an early_param() call. So we allocate memory and
 * copy the variable here before the init section is freed.
 *
7182 7183 7184
 */
static int __init pci_realloc_setup_params(void)
{
7185 7186
	resource_alignment_param = kstrdup(resource_alignment_param,
					   GFP_KERNEL);
7187 7188 7189 7190 7191
	disable_acs_redir_param = kstrdup(disable_acs_redir_param, GFP_KERNEL);

	return 0;
}
pure_initcall(pci_realloc_setup_params);