arch_timer.c 12.4 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
/*
 *  linux/arch/arm/kernel/arch_timer.c
 *
 *  Copyright (C) 2011 ARM Ltd.
 *  All Rights Reserved
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 */
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/smp.h>
#include <linux/cpu.h>
#include <linux/jiffies.h>
#include <linux/clockchips.h>
#include <linux/interrupt.h>
20
#include <linux/of_irq.h>
21 22
#include <linux/io.h>

23
#include <asm/delay.h>
24 25
#include <asm/localtimer.h>
#include <asm/arch_timer.h>
26
#include <asm/sched_clock.h>
27 28

static unsigned long arch_timer_rate;
29 30 31 32 33 34 35 36 37 38

enum ppi_nr {
	PHYS_SECURE_PPI,
	PHYS_NONSECURE_PPI,
	VIRT_PPI,
	HYP_PPI,
	MAX_TIMER_PPI
};

static int arch_timer_ppi[MAX_TIMER_PPI];
39 40

static struct clock_event_device __percpu **arch_timer_evt;
41
static struct delay_timer arch_delay_timer;
42

43 44
static bool arch_timer_use_virtual = true;

45 46 47 48 49 50 51 52 53 54 55 56
/*
 * Architected system timer support.
 */

#define ARCH_TIMER_CTRL_ENABLE		(1 << 0)
#define ARCH_TIMER_CTRL_IT_MASK		(1 << 1)
#define ARCH_TIMER_CTRL_IT_STAT		(1 << 2)

#define ARCH_TIMER_REG_CTRL		0
#define ARCH_TIMER_REG_FREQ		1
#define ARCH_TIMER_REG_TVAL		2

57 58 59 60 61 62 63 64 65
#define ARCH_TIMER_PHYS_ACCESS		0
#define ARCH_TIMER_VIRT_ACCESS		1

/*
 * These register accessors are marked inline so the compiler can
 * nicely work out which register we want, and chuck away the rest of
 * the code. At least it does so with a recent GCC (4.6.3).
 */
static inline void arch_timer_reg_write(const int access, const int reg, u32 val)
66
{
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
	if (access == ARCH_TIMER_PHYS_ACCESS) {
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			asm volatile("mcr p15, 0, %0, c14, c2, 1" : : "r" (val));
			break;
		case ARCH_TIMER_REG_TVAL:
			asm volatile("mcr p15, 0, %0, c14, c2, 0" : : "r" (val));
			break;
		}
	}

	if (access == ARCH_TIMER_VIRT_ACCESS) {
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			asm volatile("mcr p15, 0, %0, c14, c3, 1" : : "r" (val));
			break;
		case ARCH_TIMER_REG_TVAL:
			asm volatile("mcr p15, 0, %0, c14, c3, 0" : : "r" (val));
			break;
		}
87 88 89 90 91
	}

	isb();
}

92
static inline u32 arch_timer_reg_read(const int access, const int reg)
93
{
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
	u32 val = 0;

	if (access == ARCH_TIMER_PHYS_ACCESS) {
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			asm volatile("mrc p15, 0, %0, c14, c2, 1" : "=r" (val));
			break;
		case ARCH_TIMER_REG_TVAL:
			asm volatile("mrc p15, 0, %0, c14, c2, 0" : "=r" (val));
			break;
		case ARCH_TIMER_REG_FREQ:
			asm volatile("mrc p15, 0, %0, c14, c0, 0" : "=r" (val));
			break;
		}
	}
109

110 111 112 113 114 115 116 117 118
	if (access == ARCH_TIMER_VIRT_ACCESS) {
		switch (reg) {
		case ARCH_TIMER_REG_CTRL:
			asm volatile("mrc p15, 0, %0, c14, c3, 1" : "=r" (val));
			break;
		case ARCH_TIMER_REG_TVAL:
			asm volatile("mrc p15, 0, %0, c14, c3, 0" : "=r" (val));
			break;
		}
119 120 121 122 123
	}

	return val;
}

124
static inline cycle_t arch_timer_counter_read(const int access)
125
{
126 127 128 129 130 131 132 133 134 135
	cycle_t cval = 0;

	if (access == ARCH_TIMER_PHYS_ACCESS)
		asm volatile("mrrc p15, 0, %Q0, %R0, c14" : "=r" (cval));

	if (access == ARCH_TIMER_VIRT_ACCESS)
		asm volatile("mrrc p15, 1, %Q0, %R0, c14" : "=r" (cval));

	return cval;
}
136

137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
static inline cycle_t arch_counter_get_cntpct(void)
{
	return arch_timer_counter_read(ARCH_TIMER_PHYS_ACCESS);
}

static inline cycle_t arch_counter_get_cntvct(void)
{
	return arch_timer_counter_read(ARCH_TIMER_VIRT_ACCESS);
}

static irqreturn_t inline timer_handler(const int access,
					struct clock_event_device *evt)
{
	unsigned long ctrl;
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
152 153
	if (ctrl & ARCH_TIMER_CTRL_IT_STAT) {
		ctrl |= ARCH_TIMER_CTRL_IT_MASK;
154
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
155 156 157 158 159 160 161
		evt->event_handler(evt);
		return IRQ_HANDLED;
	}

	return IRQ_NONE;
}

162
static irqreturn_t arch_timer_handler_virt(int irq, void *dev_id)
163
{
164
	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;
165

166
	return timer_handler(ARCH_TIMER_VIRT_ACCESS, evt);
167 168
}

169
static irqreturn_t arch_timer_handler_phys(int irq, void *dev_id)
170
{
171 172 173 174 175 176 177 178
	struct clock_event_device *evt = *(struct clock_event_device **)dev_id;

	return timer_handler(ARCH_TIMER_PHYS_ACCESS, evt);
}

static inline void timer_set_mode(const int access, int mode)
{
	unsigned long ctrl;
179 180 181
	switch (mode) {
	case CLOCK_EVT_MODE_UNUSED:
	case CLOCK_EVT_MODE_SHUTDOWN:
182 183 184
		ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
		ctrl &= ~ARCH_TIMER_CTRL_ENABLE;
		arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
185 186 187 188 189 190
		break;
	default:
		break;
	}
}

191 192
static void arch_timer_set_mode_virt(enum clock_event_mode mode,
				     struct clock_event_device *clk)
193
{
194 195 196 197 198 199 200 201
	timer_set_mode(ARCH_TIMER_VIRT_ACCESS, mode);
}

static void arch_timer_set_mode_phys(enum clock_event_mode mode,
				     struct clock_event_device *clk)
{
	timer_set_mode(ARCH_TIMER_PHYS_ACCESS, mode);
}
202

203 204 205 206
static inline void set_next_event(const int access, unsigned long evt)
{
	unsigned long ctrl;
	ctrl = arch_timer_reg_read(access, ARCH_TIMER_REG_CTRL);
207 208
	ctrl |= ARCH_TIMER_CTRL_ENABLE;
	ctrl &= ~ARCH_TIMER_CTRL_IT_MASK;
209 210 211
	arch_timer_reg_write(access, ARCH_TIMER_REG_TVAL, evt);
	arch_timer_reg_write(access, ARCH_TIMER_REG_CTRL, ctrl);
}
212

213 214 215 216 217 218
static int arch_timer_set_next_event_virt(unsigned long evt,
					  struct clock_event_device *unused)
{
	set_next_event(ARCH_TIMER_VIRT_ACCESS, evt);
	return 0;
}
219

220 221 222 223
static int arch_timer_set_next_event_phys(unsigned long evt,
					  struct clock_event_device *unused)
{
	set_next_event(ARCH_TIMER_PHYS_ACCESS, evt);
224 225 226 227 228
	return 0;
}

static int __cpuinit arch_timer_setup(struct clock_event_device *clk)
{
229
	clk->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_C3STOP;
230 231
	clk->name = "arch_sys_timer";
	clk->rating = 450;
232 233 234 235 236 237 238 239 240 241 242
	if (arch_timer_use_virtual) {
		clk->irq = arch_timer_ppi[VIRT_PPI];
		clk->set_mode = arch_timer_set_mode_virt;
		clk->set_next_event = arch_timer_set_next_event_virt;
	} else {
		clk->irq = arch_timer_ppi[PHYS_SECURE_PPI];
		clk->set_mode = arch_timer_set_mode_phys;
		clk->set_next_event = arch_timer_set_next_event_phys;
	}

	clk->set_mode(CLOCK_EVT_MODE_SHUTDOWN, NULL);
243 244 245 246 247 248

	clockevents_config_and_register(clk, arch_timer_rate,
					0xf, 0x7fffffff);

	*__this_cpu_ptr(arch_timer_evt) = clk;

249 250 251 252 253 254 255
	if (arch_timer_use_virtual)
		enable_percpu_irq(arch_timer_ppi[VIRT_PPI], 0);
	else {
		enable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI], 0);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			enable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI], 0);
	}
256 257 258 259 260 261 262 263 264

	return 0;
}

static int arch_timer_available(void)
{
	unsigned long freq;

	if (arch_timer_rate == 0) {
265 266
		freq = arch_timer_reg_read(ARCH_TIMER_PHYS_ACCESS,
					   ARCH_TIMER_REG_FREQ);
267 268 269 270 271 272 273 274 275 276

		/* Check the timer frequency. */
		if (freq == 0) {
			pr_warn("Architected timer frequency not available\n");
			return -EINVAL;
		}

		arch_timer_rate = freq;
	}

277 278 279
	pr_info_once("Architected local timer running at %lu.%02luMHz (%s).\n",
		     arch_timer_rate / 1000000, (arch_timer_rate / 10000) % 100,
		     arch_timer_use_virtual ? "virt" : "phys");
280 281 282
	return 0;
}

283
static u32 notrace arch_counter_get_cntpct32(void)
284
{
285
	cycle_t cnt = arch_counter_get_cntpct();
286

287 288 289 290 291 292
	/*
	 * The sched_clock infrastructure only knows about counters
	 * with at most 32bits. Forget about the upper 24 bits for the
	 * time being...
	 */
	return (u32)cnt;
293 294
}

295 296
static u32 notrace arch_counter_get_cntvct32(void)
{
297
	cycle_t cnt = arch_counter_get_cntvct();
298 299 300 301 302 303

	/*
	 * The sched_clock infrastructure only knows about counters
	 * with at most 32bits. Forget about the upper 24 bits for the
	 * time being...
	 */
304
	return (u32)cnt;
305 306
}

307 308
static cycle_t arch_counter_read(struct clocksource *cs)
{
309 310 311 312
	/*
	 * Always use the physical counter for the clocksource.
	 * CNTHCTL.PL1PCTEN must be set to 1.
	 */
313 314 315
	return arch_counter_get_cntpct();
}

316
static unsigned long arch_timer_read_current_timer(void)
317
{
318
	return arch_counter_get_cntpct();
319 320
}

321 322 323 324 325 326 327 328 329
static cycle_t arch_counter_read_cc(const struct cyclecounter *cc)
{
	/*
	 * Always use the physical counter for the clocksource.
	 * CNTHCTL.PL1PCTEN must be set to 1.
	 */
	return arch_counter_get_cntpct();
}

330 331 332 333 334 335 336 337
static struct clocksource clocksource_counter = {
	.name	= "arch_sys_counter",
	.rating	= 400,
	.read	= arch_counter_read,
	.mask	= CLOCKSOURCE_MASK(56),
	.flags	= CLOCK_SOURCE_IS_CONTINUOUS,
};

338 339 340 341 342 343 344 345 346 347 348 349
static struct cyclecounter cyclecounter = {
	.read	= arch_counter_read_cc,
	.mask	= CLOCKSOURCE_MASK(56),
};

static struct timecounter timecounter;

struct timecounter *arch_timer_get_timecounter(void)
{
	return &timecounter;
}

350 351 352 353
static void __cpuinit arch_timer_stop(struct clock_event_device *clk)
{
	pr_debug("arch_timer_teardown disable IRQ%d cpu #%d\n",
		 clk->irq, smp_processor_id());
354 355 356 357 358 359 360 361 362 363

	if (arch_timer_use_virtual)
		disable_percpu_irq(arch_timer_ppi[VIRT_PPI]);
	else {
		disable_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI]);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			disable_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI]);
	}

	clk->set_mode(CLOCK_EVT_MODE_UNUSED, clk);
364 365 366 367 368 369 370
}

static struct local_timer_ops arch_timer_ops __cpuinitdata = {
	.setup	= arch_timer_setup,
	.stop	= arch_timer_stop,
};

371 372
static struct clock_event_device arch_timer_global_evt;

373
static int __init arch_timer_register(void)
374 375
{
	int err;
376
	int ppi;
377 378 379

	err = arch_timer_available();
	if (err)
380
		goto out;
381 382

	arch_timer_evt = alloc_percpu(struct clock_event_device *);
383 384 385 386
	if (!arch_timer_evt) {
		err = -ENOMEM;
		goto out;
	}
387 388

	clocksource_register_hz(&clocksource_counter, arch_timer_rate);
389 390 391 392
	cyclecounter.mult = clocksource_counter.mult;
	cyclecounter.shift = clocksource_counter.shift;
	timecounter_init(&timecounter, &cyclecounter,
			 arch_counter_get_cntpct());
393

394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411
	if (arch_timer_use_virtual) {
		ppi = arch_timer_ppi[VIRT_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_virt,
					 "arch_timer", arch_timer_evt);
	} else {
		ppi = arch_timer_ppi[PHYS_SECURE_PPI];
		err = request_percpu_irq(ppi, arch_timer_handler_phys,
					 "arch_timer", arch_timer_evt);
		if (!err && arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			ppi = arch_timer_ppi[PHYS_NONSECURE_PPI];
			err = request_percpu_irq(ppi, arch_timer_handler_phys,
						 "arch_timer", arch_timer_evt);
			if (err)
				free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
						arch_timer_evt);
		}
	}

412 413
	if (err) {
		pr_err("arch_timer: can't register interrupt %d (%d)\n",
414
		       ppi, err);
415 416 417 418
		goto out_free;
	}

	err = local_timer_register(&arch_timer_ops);
419 420 421 422 423 424 425 426 427 428
	if (err) {
		/*
		 * We couldn't register as a local timer (could be
		 * because we're on a UP platform, or because some
		 * other local timer is already present...). Try as a
		 * global timer instead.
		 */
		arch_timer_global_evt.cpumask = cpumask_of(0);
		err = arch_timer_setup(&arch_timer_global_evt);
	}
429 430 431
	if (err)
		goto out_free_irq;

432 433 434 435
	/* Use the architected timer for the delay loop. */
	arch_delay_timer.read_current_timer = &arch_timer_read_current_timer;
	arch_delay_timer.freq = arch_timer_rate;
	register_current_timer_delay(&arch_delay_timer);
436 437 438
	return 0;

out_free_irq:
439 440 441 442 443 444 445 446 447
	if (arch_timer_use_virtual)
		free_percpu_irq(arch_timer_ppi[VIRT_PPI], arch_timer_evt);
	else {
		free_percpu_irq(arch_timer_ppi[PHYS_SECURE_PPI],
				arch_timer_evt);
		if (arch_timer_ppi[PHYS_NONSECURE_PPI])
			free_percpu_irq(arch_timer_ppi[PHYS_NONSECURE_PPI],
					arch_timer_evt);
	}
448 449 450

out_free:
	free_percpu(arch_timer_evt);
451
out:
452 453
	return err;
}
454

455 456 457 458 459 460 461 462 463
static const struct of_device_id arch_timer_of_match[] __initconst = {
	{ .compatible	= "arm,armv7-timer",	},
	{},
};

int __init arch_timer_of_register(void)
{
	struct device_node *np;
	u32 freq;
464
	int i;
465 466 467 468 469 470 471 472 473 474 475

	np = of_find_matching_node(NULL, arch_timer_of_match);
	if (!np) {
		pr_err("arch_timer: can't find DT node\n");
		return -ENODEV;
	}

	/* Try to determine the frequency from the device tree or CNTFRQ */
	if (!of_property_read_u32(np, "clock-frequency", &freq))
		arch_timer_rate = freq;

476 477 478
	for (i = PHYS_SECURE_PPI; i < MAX_TIMER_PPI; i++)
		arch_timer_ppi[i] = irq_of_parse_and_map(np, i);

479 480
	of_node_put(np);

481 482 483 484 485 486 487 488 489 490 491 492 493
	/*
	 * If no interrupt provided for virtual timer, we'll have to
	 * stick to the physical timer. It'd better be accessible...
	 */
	if (!arch_timer_ppi[VIRT_PPI]) {
		arch_timer_use_virtual = false;

		if (!arch_timer_ppi[PHYS_SECURE_PPI] ||
		    !arch_timer_ppi[PHYS_NONSECURE_PPI]) {
			pr_warn("arch_timer: No interrupt available, giving up\n");
			return -EINVAL;
		}
	}
494

495
	return arch_timer_register();
496 497
}

498 499
int __init arch_timer_sched_clock_init(void)
{
500
	u32 (*cnt32)(void);
501 502 503 504 505 506
	int err;

	err = arch_timer_available();
	if (err)
		return err;

507 508 509 510 511 512
	if (arch_timer_use_virtual)
		cnt32 = arch_counter_get_cntvct32;
	else
		cnt32 = arch_counter_get_cntpct32;

	setup_sched_clock(cnt32, 32, arch_timer_rate);
513 514
	return 0;
}