-
Steven Rostedt authored
In x86, when an NMI goes off, the CPU goes into an NMI context that prevents other NMIs to trigger on that CPU. If an NMI is suppose to trigger, it has to wait till the previous NMI leaves NMI context. At that time, the next NMI can trigger (note, only one more NMI will trigger, as only one can be latched at a time). The way x86 gets out of NMI context is by calling iret. The problem with this is that this causes problems if the NMI handle either triggers an exception, or a breakpoint. Both the exception and the breakpoint handlers will finish with an iret. If this happens while in NMI context, the CPU will leave NMI context and a new NMI may come in. As NMI handlers are not made to be re-entrant, this can cause havoc with the system, not to mention, the nested NMI will write all over the previous NMI's stack. Linus Torvalds proposed the following workaround to this problem: https://lkml.org/lkml/2010/7/14/264 "In fact, I wonder if we couldn't just do a software NMI disable instead? Hav ea per-cpu variable (in the _core_ percpu areas that get allocated statically) that points to the NMI stack frame, and just make the NMI code itself do something like NMI entry: - load percpu NMI stack frame pointer - if non-zero we know we're nested, and should ignore this NMI: - we're returning to kernel mode, so return immediately by using "popf/ret", which also keeps NMI's disabled in the hardware until the "real" NMI iret happens. - before the popf/iret, use the NMI stack pointer to make the NMI return stack be invalid and cause a fault - set the NMI stack pointer to the current stack pointer NMI exit (not the above "immediate exit because we nested"): clear the percpu NMI stack pointer Just do the iret. Now, the thing is, now the "iret" is atomic. If we had a nested NMI, we'll take a fault, and that re-does our "delayed" NMI - and NMI's will stay masked. And if we didn't have a nested NMI, that iret will now unmask NMI's, and everything is happy." I first tried to follow this advice but as I started implementing this code, a few gotchas showed up. One, is accessing per-cpu variables in the NMI handler. The problem is that per-cpu variables use the %gs register to get the variable for the given CPU. But as the NMI may happen in userspace, we must first perform a SWAPGS to get to it. The NMI handler already does this later in the code, but its too late as we have saved off all the registers and we don't want to do that for a disabled NMI. Peter Zijlstra suggested to keep all variables on the stack. This simplifies things greatly and it has the added benefit of cache locality. Two, faulting on the iret. I really wanted to make this work, but it was becoming very hacky, and I never got it to be stable. The iret already had a fault handler for userspace faulting with bad segment registers, and getting NMI to trigger a fault and detect it was very tricky. But for strange reasons, the system would usually take a double fault and crash. I never figured out why and decided to go with a simple "jmp" approach. The new approach I took also simplified things. Finally, the last problem with Linus's approach was to have the nested NMI handler do a ret instead of an iret to give the first NMI NMI-context again. The problem is that ret is much more limited than an iret. I couldn't figure out how to get the stack back where it belonged. I could have copied the current stack, pushed the return onto it, but my fear here is that there may be some place that writes data below the stack pointer. I know that is not something code should depend on, but I don't want to chance it. I may add this feature later, but for now, an NMI handler that loses NMI context will not get it back. Here's what is done: When an NMI comes in, the HW pushes the interrupt stack frame onto the per cpu NMI stack that is selected by the IST. A special location on the NMI stack holds a variable that is set when the first NMI handler runs. If this variable is set then we know that this is a nested NMI and we process the nested NMI code. There is still a race when this variable is cleared and an NMI comes in just before the first NMI does the return. For this case, if the variable is cleared, we also check if the interrupted stack is the NMI stack. If it is, then we process the nested NMI code. Why the two tests and not just test the interrupted stack? If the first NMI hits a breakpoint and loses NMI context, and then it hits another breakpoint and while processing that breakpoint we get a nested NMI. When processing a breakpoint, the stack changes to the breakpoint stack. If another NMI comes in here we can't rely on the interrupted stack to be the NMI stack. If the variable is not set and the interrupted task's stack is not the NMI stack, then we know this is the first NMI and we can process things normally. But in order to do so, we need to do a few things first. 1) Set the stack variable that tells us that we are in an NMI handler 2) Make two copies of the interrupt stack frame. One copy is used to return on iret The other is used to restore the first one if we have a nested NMI. This is what the stack will look like: +-------------------------+ | original SS | | original Return RSP | | original RFLAGS | | original CS | | original RIP | +-------------------------+ | temp storage for rdx | +-------------------------+ | NMI executing variable | +-------------------------+ | Saved SS | | Saved Return RSP | | Saved RFLAGS | | Saved CS | | Saved RIP | +-------------------------+ | copied SS | | copied Return RSP | | copied RFLAGS | | copied CS | | copied RIP | +-------------------------+ | pt_regs | +-------------------------+ The original stack frame contains what the HW put in when we entered the NMI. We store %rdx as a temp variable to use. Both the original HW stack frame and this %rdx storage will be clobbered by nested NMIs so we can not rely on them later in the first NMI handler. The next item is the special stack variable that is set when we execute the rest of the NMI handler. Then we have two copies of the interrupt stack. The second copy is modified by any nested NMIs to let the first NMI know that we triggered a second NMI (latched) and that we should repeat the NMI handler. If the first NMI hits an exception or breakpoint that takes it out of NMI context, if a second NMI comes in before the first one finishes, it will update the copied interrupt stack to point to a fix up location to trigger another NMI. When the first NMI calls iret, it will instead jump to the fix up location. This fix up location will copy the saved interrupt stack back to the copy and execute the nmi handler again. Note, the nested NMI knows enough to check if it preempted a previous NMI handler while it is in the fixup location. If it has, it will not modify the copied interrupt stack and will just leave as if nothing happened. As the NMI handle is about to execute again, there's no reason to latch now. To test all this, I forced the NMI handler to call iret and take itself out of NMI context. I also added assemble code to write to the serial to make sure that it hits the nested path as well as the fix up path. Everything seems to be working fine. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: H. Peter Anvin <hpa@linux.intel.com> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Paul Turner <pjt@google.com> Cc: Frederic Weisbecker <fweisbec@gmail.com> Cc: Mathieu Desnoyers <mathieu.desnoyers@efficios.com> Signed-off-by: Steven Rostedt <rostedt@goodmis.org>
3f3c8b8c