-
Mike Isely authored
The pvrusb2 driver was getting had by this scenario: 1. Task A calls kthread_stop() for task B. 2. Before exiting, then Task B calls kthread_stop() for task C. The problem is, kthread_stop() wants to allocate an internal resource to itself (i.e. acquire a lock), which won't be released until kthread_stop() returns. But kthread_stop() won't return until task B is dead. But task B won't die until it finishes its call to kthread_stop() for task C, and that will block waiting on the resource already allocated inside task A. Deadlock. With the pvrusb2 driver, task A is the caller to pvr_exit(), task B is the control thread run inside of pvrusb2-context.c, and task C is any worker thread run inside of pvrusb2-hdw.c. This problem got introduced by the previous threading setup change, which was itself an attempt to fix a module tear-down race (which it actually did fix). The lesson here is that a task being waited on as part of a kthread_stop() simply cannot be allow to also issue a kthread_stop() - or we make sure not to issue the enclosing kthread_stop() until we know that the inner kthread_stop() has completed first. The solution for the pvrusb2 driver is some hackish code which changes the main control thread tear down into a two step process. This then makes it possible to delay issuing the kthread_stop() on the control thread until after we know that everything has been torn down first. (And yes, we really need that kthread_stop() because it's the only way to safely guarantee that a module-referencing kernel thread has safely returned back out of the module before we finally remove the module.) Signed-off-by: Mike Isely <isely@pobox.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@infradead.org>
18ecbb47