-
Cyrille Pitchen authored
commit 3b5394a3 upstream. This patch remove the micron_quad_enable() function which force the Quad SPI mode. However, once this mode is enabled, the Micron memory expect ALL commands to use the SPI 4-4-4 protocol. Hence a failure does occur when calling spi_nor_wait_till_ready() right after the update of the Enhanced Volatile Configuration Register (EVCR) in the micron_quad_enable() as the SPI controller driver is not aware about the protocol change. Since there is almost no performance increase using Fast Read 4-4-4 commands instead of Fast Read 1-1-4 commands, we rather keep on using the Extended SPI mode than enabling the Quad SPI mode. Let's take the example of the pretty standard use of 8 dummy cycles during Fast Read operations on 64KB erase sectors: Fast Read 1-1-4 requires 8 cycles for the command, then 24 cycles for the 3byte address followed by 8 dummy clock cycles and finally 65536*2 cycles for the read data; so 131112 clock cycles. On the other hand the Fast Read 4-4-4 would require 2 cycles for the command, then 6 cycles for the 3byte address followed by 8 dummy clock cycles and finally 65536*2 cycles for the read data. So 131088 clock cycles. The theorical bandwidth increase is 0.0%. Now using Fast Read operations on 512byte pages: Fast Read 1-1-4 needs 8+24+8+(512*2) = 1064 clock cycles whereas Fast Read 4-4-4 would requires 2+6+8+(512*2) = 1040 clock cycles. Hence the theorical bandwidth increase is 2.3%. Consecutive reads for non sequential pages is not a relevant use case so The Quad SPI mode is not worth it. mtd_speedtest seems to confirm these figures. Signed-off-by: Cyrille Pitchen <cyrille.pitchen@atmel.com> Fixes: 548cd3ab ("mtd: spi-nor: Add quad I/O support for Micron SPI NOR") Signed-off-by: Brian Norris <computersforpeace@gmail.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
800a0b8a