-
Rusty Russell authored
For CONFIG_KALLSYMS, we keep two symbol tables and two string tables. There's one full copy, marked SHF_ALLOC and laid out at the end of the module's init section. There's also a cut-down version that only contains core symbols and strings, and lives in the module's core section. After module init (and before we free the module memory), we switch the mod->symtab, mod->num_symtab and mod->strtab to point to the core versions. We do this under the module_mutex. However, kallsyms doesn't take the module_mutex: it uses preempt_disable() and rcu tricks to walk through the modules, because it's used in the oops path. It's also used in /proc/kallsyms. There's nothing atomic about the change of these variables, so we can get the old (larger!) num_symtab and the new symtab pointer; in fact this is what I saw when trying to reproduce. By grouping these variables together, we can use a carefully-dereferenced pointer to ensure we always get one or the other (the free of the module init section is already done in an RCU callback, so that's safe). We allocate the init one at the end of the module init section, and keep the core one inside the struct module itself (it could also have been allocated at the end of the module core, but that's probably overkill). Reported-by: Weilong Chen <chenweilong@huawei.com> Bugzilla: https://bugzilla.kernel.org/show_bug.cgi?id=111541 Cc: stable@kernel.org Signed-off-by: Rusty Russell <rusty@rustcorp.com.au>
8244062e