-
Andrii Nakryiko authored
Add a set of tests to validate that stack traces captured from or in the presence of active uprobes and uretprobes are valid and complete. For this we use BPF program that are installed either on entry or exit of user function, plus deep-nested USDT. One of target funtions (target_1) is recursive to generate two different entries in the stack trace for the same uprobe/uretprobe, testing potential edge conditions. If there is no fixes, we get something like this for one of the scenarios: caller: 0x758fff - 0x7595ab target_1: 0x758fd5 - 0x758fff target_2: 0x758fca - 0x758fd5 target_3: 0x758fbf - 0x758fca target_4: 0x758fb3 - 0x758fbf ENTRY #0: 0x758fb3 (in target_4) ENTRY #1: 0x758fd3 (in target_2) ENTRY #2: 0x758ffd (in target_1) ENTRY #3: 0x7fffffffe000 ENTRY #4: 0x7fffffffe000 ENTRY #5: 0x6f8f39 ENTRY #6: 0x6fa6f0 ENTRY #7: 0x7f403f229590 Entry #3 and #4 (0x7fffffffe000) are uretprobe trampoline addresses which obscure actual target_1 and another target_1 invocations. Also note that between entry #0 and entry #1 we are missing an entry for target_3. With fixes, we get desired full stack traces: caller: 0x758fff - 0x7595ab target_1: 0x758fd5 - 0x758fff target_2: 0x758fca - 0x758fd5 target_3: 0x758fbf - 0x758fca target_4: 0x758fb3 - 0x758fbf ENTRY #0: 0x758fb7 (in target_4) ENTRY #1: 0x758fc8 (in target_3) ENTRY #2: 0x758fd3 (in target_2) ENTRY #3: 0x758ffd (in target_1) ENTRY #4: 0x758ff3 (in target_1) ENTRY #5: 0x75922c (in caller) ENTRY #6: 0x6f8f39 ENTRY #7: 0x6fa6f0 ENTRY #8: 0x7f986adc4cd0 Now there is a logical and complete sequence of function calls. Link: https://lore.kernel.org/all/20240522013845.1631305-5-andrii@kernel.org/Signed-off-by: Andrii Nakryiko <andrii@kernel.org> Acked-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Masami Hiramatsu (Google) <mhiramat@kernel.org>
637c26f9