-
Ard Biesheuvel authored
Commit 1756ddea ("pstore: Remove worst-case compression size logic") removed some clunky per-algorithm worst case size estimation routines on the basis that we can always store pstore records uncompressed, and these worst case estimations are about how much the size might inadvertently *increase* due to encapsulation overhead when the input cannot be compressed at all. So if compression results in a size increase, we just store the original data instead. However, it seems that the original code was misinterpreting these calculations as an estimation of how much uncompressed data might fit into a compressed buffer of a given size, and it was using the results to consume the input data in larger chunks than the pstore record size, relying on the compression to ensure that what ultimately gets stored fits into the available space. One result of this, as observed and reported by Linus, is that upgrading to a newer kernel that includes the given commit may result in pstore decompression errors reported in the kernel log. This is due to the fact that the existing records may unexpectedly decompress to a size that is larger than the pstore record size. Another potential problem caused by this change is that we may underutilize the fixed sized records on pstore backends such as ramoops. And on pstore backends with variable sized records such as EFI, we will end up creating many more entries than before to store the same amount of compressed data. So let's fix both issues, by bringing back the typical case estimation of how much ASCII text captured from the dmesg log might fit into a pstore record of a given size after compression. The original implementation used the computation given below for zlib: switch (size) { /* buffer range for efivars */ case 1000 ... 2000: cmpr = 56; break; case 2001 ... 3000: cmpr = 54; break; case 3001 ... 3999: cmpr = 52; break; /* buffer range for nvram, erst */ case 4000 ... 10000: cmpr = 45; break; default: cmpr = 60; break; } return (size * 100) / cmpr; We will use the previous worst-case of 60% for compression. For decompression go extra large (3x) so we make sure there's enough space for anything. While at it, rate limit the error message so we don't flood the log unnecessarily on systems that have accumulated a lot of pstore history. Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Eric Biggers <ebiggers@kernel.org> Cc: Kees Cook <keescook@chromium.org> Cc: Herbert Xu <herbert@gondor.apana.org.au> Signed-off-by: Ard Biesheuvel <ardb@kernel.org> Link: https://lore.kernel.org/r/20230830212238.135900-1-ardb@kernel.orgCo-developed-by: Kees Cook <keescook@chromium.org> Signed-off-by: Kees Cook <keescook@chromium.org>
94160062