• Nicholas Piggin's avatar
    ARM: mm: add missing pud_page define to 2-level page tables · 972472c7
    Nicholas Piggin authored
    Patch series "huge vmalloc mappings", v13.
    
    The kernel virtual mapping layer grew support for mapping memory with >
    PAGE_SIZE ptes with commit 0ddab1d2 ("lib/ioremap.c: add huge I/O
    map capability interfaces"), and implemented support for using those
    huge page mappings with ioremap.
    
    According to the submission, the use-case is mapping very large
    non-volatile memory devices, which could be GB or TB:
    
      https://lore.kernel.org/lkml/1425404664-19675-1-git-send-email-toshi.kani@hp.com/
    
    The benefit is said to be in the overhead of maintaining the mapping,
    perhaps both in memory overhead and setup / teardown time.  Memory
    overhead for the mapping with a 4kB page and 8 byte page table is 2GB
    per TB of mapping, down to 4MB / TB with 2MB pages.
    
    The same huge page vmap infrastructure can be quite easily adapted and
    used for mapping vmalloc memory pages without more complexity for arch
    or core vmap code.  However unlike ioremap, vmalloc page table overhead
    is not a real problem, so the advantage to justify this is performance.
    
    Several of the most structures in the kernel (e.g., vfs and network hash
    tables) are allocated with vmalloc on NUMA machines, in order to
    distribute access bandwidth over the machine.  Mapping these with larger
    pages can improve TLB usage significantly, for example this reduces TLB
    misses by nearly 30x on a `git diff` workload on a 2-node POWER9 (59,800
    -> 2,100) and reduces CPU cycles by 0.54%, due to vfs hashes being
    allocated with 2MB pages.
    
    [ Other numbers?
      - The difference is even larger in a guest due to more costly TLB
        misses.
      - Eric Dumazet was keen on the network hash performance possibilities.
      - Other archs? Ding was doing x86 testing. ]
    
    The kernel module allocator also uses vmalloc to map module images even on
    non-NUMA, which can result in high iTLB pressure on highly modular distro
    type of kernels.  This series does not implement huge mappings for modules
    yet, but it's a step along the way.  Rick Edgecombe was looking at that
    IIRC.
    
    The per-cpu allocator similarly might be able to take advantage of this.
    Also on the todo list.
    
    The disadvantages of this I can see are:
    * Memory fragmentation can waste some physical memory because it will
      attempt to allocate larger pages to fit the required size, rounding up
      (once the requested size is >= 2MB).
      - I don't see it being a big problem in practice unless some user
        crops up that allocates thousands of 2.5MB ranges. We can tewak
        heuristics a bit there if needed to reduce peak waste.
    * Less granular mappings can make the NUMA distribution less balanced.
      - Similar to the above.
      - Could also allocate all major system hashes with one allocation
        up-front and spread them all across the one block, which should help
        overall NUMA distribution and reduce fragmentation waste.
    * Callers might expect something about the underlying allocated pages.
      - Tried to keep the apperance of base PAGE_SIZE pages throughout the
        APIs and exposed data structures.
      - Added a VM_NO_HUGE_VMAP flag to hammer troublesome cases with.
    
    - Finally, added a nohugevmalloc boot option to turn it off (independent
      of nohugeiomap).
    
    This patch (of 14):
    
    ARM uses its own PMD folding scheme which is missing pud_page which should
    just pass through to pmd_page.  Move this from the 3-level page table to
    common header.
    
    Link: https://lkml.kernel.org/r/20210317062402.533919-2-npiggin@gmail.comSigned-off-by: default avatarNicholas Piggin <npiggin@gmail.com>
    Cc: Russell King <linux@armlinux.org.uk>
    Cc: Ding Tianhong <dingtianhong@huawei.com>
    Cc: Uladzislau Rezki (Sony) <urezki@gmail.com>
    Cc: Borislav Petkov <bp@alien8.de>
    Cc: Catalin Marinas <catalin.marinas@arm.com>
    Cc: Christoph Hellwig <hch@lst.de>
    Cc: "H. Peter Anvin" <hpa@zytor.com>
    Cc: Ingo Molnar <mingo@redhat.com>
    Cc: Miaohe Lin <linmiaohe@huawei.com>
    Cc: Michael Ellerman <mpe@ellerman.id.au>
    Cc: Thomas Gleixner <tglx@linutronix.de>
    Cc: Will Deacon <will@kernel.org>
    Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
    Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
    972472c7
pgtable.h 10.2 KB