-
Daniel Borkmann authored
The main part of this work is to finally allow removal of LD_ABS and LD_IND from the BPF core by reimplementing them through native eBPF instead. Both LD_ABS/LD_IND were carried over from cBPF and keeping them around in native eBPF caused way more trouble than actually worth it. To just list some of the security issues in the past: * fdfaf64e ("x86: bpf_jit: support negative offsets") * 35607b02 ("sparc: bpf_jit: fix loads from negative offsets") * e0ee9c12 ("x86: bpf_jit: fix two bugs in eBPF JIT compiler") * 07aee943 ("bpf, sparc: fix usage of wrong reg for load_skb_regs after call") * 6d59b7db ("bpf, s390x: do not reload skb pointers in non-skb context") * 87338c8e ("bpf, ppc64: do not reload skb pointers in non-skb context") For programs in native eBPF, LD_ABS/LD_IND are pretty much legacy these days due to their limitations and more efficient/flexible alternatives that have been developed over time such as direct packet access. LD_ABS/LD_IND only cover 1/2/4 byte loads into a register, the load happens in host endianness and its exception handling can yield unexpected behavior. The latter is explained in depth in f6b1b3bf ("bpf: fix subprog verifier bypass by div/mod by 0 exception") with similar cases of exceptions we had. In native eBPF more recent program types will disable LD_ABS/LD_IND altogether through may_access_skb() in verifier, and given the limitations in terms of exception handling, it's also disabled in programs that use BPF to BPF calls. In terms of cBPF, the LD_ABS/LD_IND is used in networking programs to access packet data. It is not used in seccomp-BPF but programs that use it for socket filtering or reuseport for demuxing with cBPF. This is mostly relevant for applications that have not yet migrated to native eBPF. The main complexity and source of bugs in LD_ABS/LD_IND is coming from their implementation in the various JITs. Most of them keep the model around from cBPF times by implementing a fastpath written in asm. They use typically two from the BPF program hidden CPU registers for caching the skb's headlen (skb->len - skb->data_len) and skb->data. Throughout the JIT phase this requires to keep track whether LD_ABS/LD_IND are used and if so, the two registers need to be recached each time a BPF helper would change the underlying packet data in native eBPF case. At least in eBPF case, available CPU registers are rare and the additional exit path out of the asm written JIT helper makes it also inflexible since not all parts of the JITer are in control from plain C. A LD_ABS/LD_IND implementation in eBPF therefore allows to significantly reduce the complexity in JITs with comparable performance results for them, e.g.: test_bpf tcpdump port 22 tcpdump complex x64 - before 15 21 10 14 19 18 - after 7 10 10 7 10 15 arm64 - before 40 91 92 40 91 151 - after 51 64 73 51 62 113 For cBPF we now track any usage of LD_ABS/LD_IND in bpf_convert_filter() and cache the skb's headlen and data in the cBPF prologue. The BPF_REG_TMP gets remapped from R8 to R2 since it's mainly just used as a local temporary variable. This allows to shrink the image on x86_64 also for seccomp programs slightly since mapping to %rsi is not an ereg. In callee-saved R8 and R9 we now track skb data and headlen, respectively. For normal prologue emission in the JITs this does not add any extra instructions since R8, R9 are pushed to stack in any case from eBPF side. cBPF uses the convert_bpf_ld_abs() emitter which probes the fast path inline already and falls back to bpf_skb_load_helper_{8,16,32}() helper relying on the cached skb data and headlen as well. R8 and R9 never need to be reloaded due to bpf_helper_changes_pkt_data() since all skb access in cBPF is read-only. Then, for the case of native eBPF, we use the bpf_gen_ld_abs() emitter, which calls the bpf_skb_load_helper_{8,16,32}_no_cache() helper unconditionally, does neither cache skb data and headlen nor has an inlined fast path. The reason for the latter is that native eBPF does not have any extra registers available anyway, but even if there were, it avoids any reload of skb data and headlen in the first place. Additionally, for the negative offsets, we provide an alternative bpf_skb_load_bytes_relative() helper in eBPF which operates similarly as bpf_skb_load_bytes() and allows for more flexibility. Tested myself on x64, arm64, s390x, from Sandipan on ppc64. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Acked-by: Alexei Starovoitov <ast@kernel.org> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
e0cea7ce