-
Vladimir Oltean authored
Changing the DSA master means different things depending on the tagging protocol in use. For NPI mode ("ocelot" and "seville"), there is a single port which can be configured as NPI, but DSA only permits changing the CPU port affinity of user ports one by one. So changing a user port to a different NPI port globally changes what the NPI port is, and breaks the user ports still using the old one. To address this while still permitting the change of the NPI port, require that the user ports which are still affine to the old NPI port are down, and cannot be brought up until they are all affine to the same NPI port. The tag_8021q mode ("ocelot-8021q") is more flexible, in that each user port can be freely assigned to one CPU port or to the other. This works by filtering host addresses towards both tag_8021q CPU ports, and then restricting the forwarding from a certain user port only to one of the two tag_8021q CPU ports. Additionally, the 2 tag_8021q CPU ports can be placed in a LAG. This works by enabling forwarding via PGID_SRC from a certain user port towards the logical port ID containing both tag_8021q CPU ports, but then restricting forwarding per packet, via the LAG hash codes in PGID_AGGR, to either one or the other. When we change the DSA master to a LAG device, DSA guarantees us that the LAG has at least one lower interface as a physical DSA master. But DSA masters can come and go as lowers of that LAG, and ds->ops->port_change_master() will not get called, because the DSA master is still the same (the LAG). So we need to hook into the ds->ops->port_lag_{join,leave} calls on the CPU ports and update the logical port ID of the LAG that user ports are assigned to. Signed-off-by: Vladimir Oltean <vladimir.oltean@nxp.com> Signed-off-by: Paolo Abeni <pabeni@redhat.com>
eca70102