Commit 0d925626 authored by Mauro Carvalho Chehab's avatar Mauro Carvalho Chehab Committed by Guenter Roeck

docs: hwmon: k8temp, w83793: convert to ReST format

Convert k8temp and w83793 to ReST format, in order to allow them
to be parsed by Sphinx.
Signed-off-by: default avatarMauro Carvalho Chehab <mchehab+samsung@kernel.org>
Signed-off-by: default avatarGuenter Roeck <linux@roeck-us.net>
parent 08fae079
......@@ -2,12 +2,17 @@ Kernel driver k8temp
====================
Supported chips:
* AMD Athlon64/FX or Opteron CPUs
Prefix: 'k8temp'
Addresses scanned: PCI space
Datasheet: http://support.amd.com/us/Processor_TechDocs/32559.pdf
Author: Rudolf Marek
Contact: Rudolf Marek <r.marek@assembler.cz>
Description
......@@ -27,10 +32,12 @@ implemented sensors.
Mapping of /sys files is as follows:
temp1_input - temperature of Core 0 and "place" 0
temp2_input - temperature of Core 0 and "place" 1
temp3_input - temperature of Core 1 and "place" 0
temp4_input - temperature of Core 1 and "place" 1
============= ===================================
temp1_input temperature of Core 0 and "place" 0
temp2_input temperature of Core 0 and "place" 1
temp3_input temperature of Core 1 and "place" 0
temp4_input temperature of Core 1 and "place" 1
============= ===================================
Temperatures are measured in degrees Celsius and measurement resolution is
1 degree C. It is expected that future CPU will have better resolution. The
......@@ -48,7 +55,7 @@ computed temperature called TControl, which must be lower than TControlMax.
The relationship is following:
temp1_input - TjOffset*2 < TControlMax,
temp1_input - TjOffset*2 < TControlMax,
TjOffset is not yet exported by the driver, TControlMax is usually
70 degrees C. The rule of the thumb -> CPU temperature should not cross
......
......@@ -2,29 +2,34 @@ Kernel driver w83793
====================
Supported chips:
* Winbond W83793G/W83793R
Prefix: 'w83793'
Addresses scanned: I2C 0x2c - 0x2f
Datasheet: Still not published
Authors:
Yuan Mu (Winbond Electronics)
Rudolf Marek <r.marek@assembler.cz>
- Yuan Mu (Winbond Electronics)
- Rudolf Marek <r.marek@assembler.cz>
Module parameters
-----------------
* reset int
(default 0)
This parameter is not recommended, it will lose motherboard specific
settings. Use 'reset=1' to reset the chip when loading this module.
(default 0)
This parameter is not recommended, it will lose motherboard specific
settings. Use 'reset=1' to reset the chip when loading this module.
* force_subclients=bus,caddr,saddr1,saddr2
This is used to force the i2c addresses for subclients of
a certain chip. Typical usage is `force_subclients=0,0x2f,0x4a,0x4b'
to force the subclients of chip 0x2f on bus 0 to i2c addresses
0x4a and 0x4b.
This is used to force the i2c addresses for subclients of
a certain chip. Typical usage is `force_subclients=0,0x2f,0x4a,0x4b`
to force the subclients of chip 0x2f on bus 0 to i2c addresses
0x4a and 0x4b.
Description
......@@ -33,70 +38,72 @@ Description
This driver implements support for Winbond W83793G/W83793R chips.
* Exported features
This driver exports 10 voltage sensors, up to 12 fan tachometer inputs,
6 remote temperatures, up to 8 sets of PWM fan controls, SmartFan
(automatic fan speed control) on all temperature/PWM combinations, 2
sets of 6-pin CPU VID input.
This driver exports 10 voltage sensors, up to 12 fan tachometer inputs,
6 remote temperatures, up to 8 sets of PWM fan controls, SmartFan
(automatic fan speed control) on all temperature/PWM combinations, 2
sets of 6-pin CPU VID input.
* Sensor resolutions
If your motherboard maker used the reference design, the resolution of
voltage0-2 is 2mV, resolution of voltage3/4/5 is 16mV, 8mV for voltage6,
24mV for voltage7/8. Temp1-4 have a 0.25 degree Celsius resolution,
temp5-6 have a 1 degree Celsiis resolution.
If your motherboard maker used the reference design, the resolution of
voltage0-2 is 2mV, resolution of voltage3/4/5 is 16mV, 8mV for voltage6,
24mV for voltage7/8. Temp1-4 have a 0.25 degree Celsius resolution,
temp5-6 have a 1 degree Celsiis resolution.
* Temperature sensor types
Temp1-4 have 2 possible types. It can be read from (and written to)
temp[1-4]_type.
- If the value is 3, it starts monitoring using a remote termal diode
(default).
- If the value is 6, it starts monitoring using the temperature sensor
in Intel CPU and get result by PECI.
Temp5-6 can be connected to external thermistors (value of
temp[5-6]_type is 4).
Temp1-4 have 2 possible types. It can be read from (and written to)
temp[1-4]_type.
- If the value is 3, it starts monitoring using a remote termal diode
(default).
- If the value is 6, it starts monitoring using the temperature sensor
in Intel CPU and get result by PECI.
Temp5-6 can be connected to external thermistors (value of
temp[5-6]_type is 4).
* Alarm mechanism
For voltage sensors, an alarm triggers if the measured value is below
the low voltage limit or over the high voltage limit.
For temperature sensors, an alarm triggers if the measured value goes
above the high temperature limit, and wears off only after the measured
value drops below the hysteresis value.
For fan sensors, an alarm triggers if the measured value is below the
low speed limit.
For voltage sensors, an alarm triggers if the measured value is below
the low voltage limit or over the high voltage limit.
For temperature sensors, an alarm triggers if the measured value goes
above the high temperature limit, and wears off only after the measured
value drops below the hysteresis value.
For fan sensors, an alarm triggers if the measured value is below the
low speed limit.
* SmartFan/PWM control
If you want to set a pwm fan to manual mode, you just need to make sure it
is not controlled by any temp channel, for example, you want to set fan1
to manual mode, you need to check the value of temp[1-6]_fan_map, make
sure bit 0 is cleared in the 6 values. And then set the pwm1 value to
control the fan.
Each temperature channel can control all the 8 PWM outputs (by setting the
corresponding bit in tempX_fan_map), you can set the temperature channel
mode using temp[1-6]_pwm_enable, 2 is Thermal Cruise mode and 3
is the SmartFanII mode. Temperature channels will try to speed up or
slow down all controlled fans, this means one fan can receive different
PWM value requests from different temperature channels, but the chip
will always pick the safest (max) PWM value for each fan.
In Thermal Cruise mode, the chip attempts to keep the temperature at a
predefined value, within a tolerance margin. So if tempX_input >
thermal_cruiseX + toleranceX, the chip will increase the PWM value,
if tempX_input < thermal_cruiseX - toleranceX, the chip will decrease
the PWM value. If the temperature is within the tolerance range, the PWM
value is left unchanged.
SmartFanII works differently, you have to define up to 7 PWM, temperature
trip points, defining a PWM/temperature curve which the chip will follow.
While not fundamentally different from the Thermal Cruise mode, the
implementation is quite different, giving you a finer-grained control.
If you want to set a pwm fan to manual mode, you just need to make sure it
is not controlled by any temp channel, for example, you want to set fan1
to manual mode, you need to check the value of temp[1-6]_fan_map, make
sure bit 0 is cleared in the 6 values. And then set the pwm1 value to
control the fan.
Each temperature channel can control all the 8 PWM outputs (by setting the
corresponding bit in tempX_fan_map), you can set the temperature channel
mode using temp[1-6]_pwm_enable, 2 is Thermal Cruise mode and 3
is the SmartFanII mode. Temperature channels will try to speed up or
slow down all controlled fans, this means one fan can receive different
PWM value requests from different temperature channels, but the chip
will always pick the safest (max) PWM value for each fan.
In Thermal Cruise mode, the chip attempts to keep the temperature at a
predefined value, within a tolerance margin. So if tempX_input >
thermal_cruiseX + toleranceX, the chip will increase the PWM value,
if tempX_input < thermal_cruiseX - toleranceX, the chip will decrease
the PWM value. If the temperature is within the tolerance range, the PWM
value is left unchanged.
SmartFanII works differently, you have to define up to 7 PWM, temperature
trip points, defining a PWM/temperature curve which the chip will follow.
While not fundamentally different from the Thermal Cruise mode, the
implementation is quite different, giving you a finer-grained control.
* Chassis
If the case open alarm triggers, it will stay in this state unless cleared
by writing 0 to the sysfs file "intrusion0_alarm".
If the case open alarm triggers, it will stay in this state unless cleared
by writing 0 to the sysfs file "intrusion0_alarm".
* VID and VRM
The VRM version is detected automatically, don't modify the it unless you
*do* know the cpu VRM version and it's not properly detected.
The VRM version is detected automatically, don't modify the it unless you
*do* know the cpu VRM version and it's not properly detected.
Notes
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment