Commit 1366c37e authored by Matthew Wilcox's avatar Matthew Wilcox Committed by Linus Torvalds

radix tree test harness

This code is mostly from Andrew Morton and Nick Piggin; tarball downloaded
from http://ozlabs.org/~akpm/rtth.tar.gz with sha1sum
0ce679db9ec047296b5d1ff7a1dfaa03a7bef1bd

Some small modifications were necessary to the test harness to fix the
build with the current Linux source code.

I also made minor modifications to automatically test the radix-tree.c
and radix-tree.h files that are in the current source tree, as opposed
to a copied and slightly modified version.  I am sure more could be done
to tidy up the harness, as well as adding more tests.

[koct9i@gmail.com: fix compilation]
Signed-off-by: default avatarMatthew Wilcox <willy@linux.intel.com>
Cc: Shuah Khan <shuahkh@osg.samsung.com>
Cc: Johannes Weiner <hannes@cmpxchg.org>
Cc: Matthew Wilcox <willy@linux.intel.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Ross Zwisler <ross.zwisler@linux.intel.com>
Cc: Hugh Dickins <hughd@google.com>
Signed-off-by: default avatarKonstantin Khlebnikov <koct9i@gmail.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent f67c07f0
CFLAGS += -I. -g -Wall -D_LGPL_SOURCE
LDFLAGS += -lpthread -lurcu
TARGETS = main
OFILES = main.o radix-tree.o linux.o test.o tag_check.o find_next_bit.o \
regression1.o regression2.o
targets: $(TARGETS)
main: $(OFILES)
$(CC) $(CFLAGS) $(LDFLAGS) $(OFILES) -o main
clean:
$(RM) -f $(TARGETS) *.o radix-tree.c
$(OFILES): *.h */*.h
radix-tree.c: ../../../lib/radix-tree.c
sed -e 's/^static //' -e 's/__always_inline //' -e 's/inline //' < $< > $@
/* find_next_bit.c: fallback find next bit implementation
*
* Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version
* 2 of the License, or (at your option) any later version.
*/
#include <linux/types.h>
#include <linux/bitops.h>
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
/*
* Find the next set bit in a memory region.
*/
unsigned long find_next_bit(const unsigned long *addr, unsigned long size,
unsigned long offset)
{
const unsigned long *p = addr + BITOP_WORD(offset);
unsigned long result = offset & ~(BITS_PER_LONG-1);
unsigned long tmp;
if (offset >= size)
return size;
size -= result;
offset %= BITS_PER_LONG;
if (offset) {
tmp = *(p++);
tmp &= (~0UL << offset);
if (size < BITS_PER_LONG)
goto found_first;
if (tmp)
goto found_middle;
size -= BITS_PER_LONG;
result += BITS_PER_LONG;
}
while (size & ~(BITS_PER_LONG-1)) {
if ((tmp = *(p++)))
goto found_middle;
result += BITS_PER_LONG;
size -= BITS_PER_LONG;
}
if (!size)
return result;
tmp = *p;
found_first:
tmp &= (~0UL >> (BITS_PER_LONG - size));
if (tmp == 0UL) /* Are any bits set? */
return result + size; /* Nope. */
found_middle:
return result + __ffs(tmp);
}
#include <stdlib.h>
#include <string.h>
#include <malloc.h>
#include <unistd.h>
#include <assert.h>
#include <linux/mempool.h>
#include <linux/slab.h>
#include <urcu/uatomic.h>
int nr_allocated;
void *mempool_alloc(mempool_t *pool, int gfp_mask)
{
return pool->alloc(gfp_mask, pool->data);
}
void mempool_free(void *element, mempool_t *pool)
{
pool->free(element, pool->data);
}
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data)
{
mempool_t *ret = malloc(sizeof(*ret));
ret->alloc = alloc_fn;
ret->free = free_fn;
ret->data = pool_data;
return ret;
}
void *kmem_cache_alloc(struct kmem_cache *cachep, int flags)
{
void *ret = malloc(cachep->size);
if (cachep->ctor)
cachep->ctor(ret);
uatomic_inc(&nr_allocated);
return ret;
}
void kmem_cache_free(struct kmem_cache *cachep, void *objp)
{
assert(objp);
uatomic_dec(&nr_allocated);
memset(objp, 0, cachep->size);
free(objp);
}
struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t offset,
unsigned long flags, void (*ctor)(void *))
{
struct kmem_cache *ret = malloc(sizeof(*ret));
ret->size = size;
ret->ctor = ctor;
return ret;
}
#ifndef _ASM_GENERIC_BITOPS_NON_ATOMIC_H_
#define _ASM_GENERIC_BITOPS_NON_ATOMIC_H_
#include <linux/types.h>
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p |= mask;
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p &= ~mask;
}
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to change
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p ^= mask;
}
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old | mask;
return (old & mask) != 0;
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old & ~mask;
return (old & mask) != 0;
}
/* WARNING: non atomic and it can be reordered! */
static inline int __test_and_change_bit(int nr,
volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old ^ mask;
return (old & mask) != 0;
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline int test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline unsigned long __ffs(unsigned long word)
{
int num = 0;
if ((word & 0xffffffff) == 0) {
num += 32;
word >>= 32;
}
if ((word & 0xffff) == 0) {
num += 16;
word >>= 16;
}
if ((word & 0xff) == 0) {
num += 8;
word >>= 8;
}
if ((word & 0xf) == 0) {
num += 4;
word >>= 4;
}
if ((word & 0x3) == 0) {
num += 2;
word >>= 2;
}
if ((word & 0x1) == 0)
num += 1;
return num;
}
unsigned long find_next_bit(const unsigned long *addr,
unsigned long size,
unsigned long offset);
#endif /* _ASM_GENERIC_BITOPS_NON_ATOMIC_H_ */
#ifndef _ASM_GENERIC_BITOPS___FFS_H_
#define _ASM_GENERIC_BITOPS___FFS_H_
#include <asm/types.h>
/**
* __ffs - find first bit in word.
* @word: The word to search
*
* Undefined if no bit exists, so code should check against 0 first.
*/
static inline unsigned long __ffs(unsigned long word)
{
int num = 0;
#if BITS_PER_LONG == 64
if ((word & 0xffffffff) == 0) {
num += 32;
word >>= 32;
}
#endif
if ((word & 0xffff) == 0) {
num += 16;
word >>= 16;
}
if ((word & 0xff) == 0) {
num += 8;
word >>= 8;
}
if ((word & 0xf) == 0) {
num += 4;
word >>= 4;
}
if ((word & 0x3) == 0) {
num += 2;
word >>= 2;
}
if ((word & 0x1) == 0)
num += 1;
return num;
}
#endif /* _ASM_GENERIC_BITOPS___FFS_H_ */
#ifndef _ASM_GENERIC_BITOPS_FFS_H_
#define _ASM_GENERIC_BITOPS_FFS_H_
/**
* ffs - find first bit set
* @x: the word to search
*
* This is defined the same way as
* the libc and compiler builtin ffs routines, therefore
* differs in spirit from the above ffz (man ffs).
*/
static inline int ffs(int x)
{
int r = 1;
if (!x)
return 0;
if (!(x & 0xffff)) {
x >>= 16;
r += 16;
}
if (!(x & 0xff)) {
x >>= 8;
r += 8;
}
if (!(x & 0xf)) {
x >>= 4;
r += 4;
}
if (!(x & 3)) {
x >>= 2;
r += 2;
}
if (!(x & 1)) {
x >>= 1;
r += 1;
}
return r;
}
#endif /* _ASM_GENERIC_BITOPS_FFS_H_ */
#ifndef _ASM_GENERIC_BITOPS_FFZ_H_
#define _ASM_GENERIC_BITOPS_FFZ_H_
/*
* ffz - find first zero in word.
* @word: The word to search
*
* Undefined if no zero exists, so code should check against ~0UL first.
*/
#define ffz(x) __ffs(~(x))
#endif /* _ASM_GENERIC_BITOPS_FFZ_H_ */
#ifndef _ASM_GENERIC_BITOPS_FIND_H_
#define _ASM_GENERIC_BITOPS_FIND_H_
extern unsigned long find_next_bit(const unsigned long *addr, unsigned long
size, unsigned long offset);
extern unsigned long find_next_zero_bit(const unsigned long *addr, unsigned
long size, unsigned long offset);
#define find_first_bit(addr, size) find_next_bit((addr), (size), 0)
#define find_first_zero_bit(addr, size) find_next_zero_bit((addr), (size), 0)
#endif /*_ASM_GENERIC_BITOPS_FIND_H_ */
#ifndef _ASM_GENERIC_BITOPS_FLS_H_
#define _ASM_GENERIC_BITOPS_FLS_H_
/**
* fls - find last (most-significant) bit set
* @x: the word to search
*
* This is defined the same way as ffs.
* Note fls(0) = 0, fls(1) = 1, fls(0x80000000) = 32.
*/
static inline int fls(int x)
{
int r = 32;
if (!x)
return 0;
if (!(x & 0xffff0000u)) {
x <<= 16;
r -= 16;
}
if (!(x & 0xff000000u)) {
x <<= 8;
r -= 8;
}
if (!(x & 0xf0000000u)) {
x <<= 4;
r -= 4;
}
if (!(x & 0xc0000000u)) {
x <<= 2;
r -= 2;
}
if (!(x & 0x80000000u)) {
x <<= 1;
r -= 1;
}
return r;
}
#endif /* _ASM_GENERIC_BITOPS_FLS_H_ */
#ifndef _ASM_GENERIC_BITOPS_FLS64_H_
#define _ASM_GENERIC_BITOPS_FLS64_H_
#include <asm/types.h>
static inline int fls64(__u64 x)
{
__u32 h = x >> 32;
if (h)
return fls(h) + 32;
return fls(x);
}
#endif /* _ASM_GENERIC_BITOPS_FLS64_H_ */
#ifndef _ASM_GENERIC_BITOPS_HWEIGHT_H_
#define _ASM_GENERIC_BITOPS_HWEIGHT_H_
#include <asm/types.h>
extern unsigned int hweight32(unsigned int w);
extern unsigned int hweight16(unsigned int w);
extern unsigned int hweight8(unsigned int w);
extern unsigned long hweight64(__u64 w);
#endif /* _ASM_GENERIC_BITOPS_HWEIGHT_H_ */
#ifndef _ASM_GENERIC_BITOPS_LE_H_
#define _ASM_GENERIC_BITOPS_LE_H_
#include <asm/types.h>
#include <asm/byteorder.h>
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
#define BITOP_LE_SWIZZLE ((BITS_PER_LONG-1) & ~0x7)
#if defined(__LITTLE_ENDIAN)
#define generic_test_le_bit(nr, addr) test_bit(nr, addr)
#define generic___set_le_bit(nr, addr) __set_bit(nr, addr)
#define generic___clear_le_bit(nr, addr) __clear_bit(nr, addr)
#define generic_test_and_set_le_bit(nr, addr) test_and_set_bit(nr, addr)
#define generic_test_and_clear_le_bit(nr, addr) test_and_clear_bit(nr, addr)
#define generic___test_and_set_le_bit(nr, addr) __test_and_set_bit(nr, addr)
#define generic___test_and_clear_le_bit(nr, addr) __test_and_clear_bit(nr, addr)
#define generic_find_next_zero_le_bit(addr, size, offset) find_next_zero_bit(addr, size, offset)
#elif defined(__BIG_ENDIAN)
#define generic_test_le_bit(nr, addr) \
test_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic___set_le_bit(nr, addr) \
__set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic___clear_le_bit(nr, addr) \
__clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic_test_and_set_le_bit(nr, addr) \
test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic_test_and_clear_le_bit(nr, addr) \
test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic___test_and_set_le_bit(nr, addr) \
__test_and_set_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
#define generic___test_and_clear_le_bit(nr, addr) \
__test_and_clear_bit((nr) ^ BITOP_LE_SWIZZLE, (addr))
extern unsigned long generic_find_next_zero_le_bit(const unsigned long *addr,
unsigned long size, unsigned long offset);
#else
#error "Please fix <asm/byteorder.h>"
#endif
#define generic_find_first_zero_le_bit(addr, size) \
generic_find_next_zero_le_bit((addr), (size), 0)
#endif /* _ASM_GENERIC_BITOPS_LE_H_ */
#ifndef _ASM_GENERIC_BITOPS_NON_ATOMIC_H_
#define _ASM_GENERIC_BITOPS_NON_ATOMIC_H_
#include <asm/types.h>
#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))
#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)
/**
* __set_bit - Set a bit in memory
* @nr: the bit to set
* @addr: the address to start counting from
*
* Unlike set_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p |= mask;
}
static inline void __clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p &= ~mask;
}
/**
* __change_bit - Toggle a bit in memory
* @nr: the bit to change
* @addr: the address to start counting from
*
* Unlike change_bit(), this function is non-atomic and may be reordered.
* If it's called on the same region of memory simultaneously, the effect
* may be that only one operation succeeds.
*/
static inline void __change_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
*p ^= mask;
}
/**
* __test_and_set_bit - Set a bit and return its old value
* @nr: Bit to set
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static inline int __test_and_set_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old | mask;
return (old & mask) != 0;
}
/**
* __test_and_clear_bit - Clear a bit and return its old value
* @nr: Bit to clear
* @addr: Address to count from
*
* This operation is non-atomic and can be reordered.
* If two examples of this operation race, one can appear to succeed
* but actually fail. You must protect multiple accesses with a lock.
*/
static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old & ~mask;
return (old & mask) != 0;
}
/* WARNING: non atomic and it can be reordered! */
static inline int __test_and_change_bit(int nr,
volatile unsigned long *addr)
{
unsigned long mask = BITOP_MASK(nr);
unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr);
unsigned long old = *p;
*p = old ^ mask;
return (old & mask) != 0;
}
/**
* test_bit - Determine whether a bit is set
* @nr: bit number to test
* @addr: Address to start counting from
*/
static inline int test_bit(int nr, const volatile unsigned long *addr)
{
return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
}
#endif /* _ASM_GENERIC_BITOPS_NON_ATOMIC_H_ */
#define WARN_ON_ONCE(x) assert(x)
#define hotcpu_notifier(a, b)
#define CPU_ONLINE 0x0002 /* CPU (unsigned)v is up */
#define CPU_UP_PREPARE 0x0003 /* CPU (unsigned)v coming up */
#define CPU_UP_CANCELED 0x0004 /* CPU (unsigned)v NOT coming up */
#define CPU_DOWN_PREPARE 0x0005 /* CPU (unsigned)v going down */
#define CPU_DOWN_FAILED 0x0006 /* CPU (unsigned)v NOT going down */
#define CPU_DEAD 0x0007 /* CPU (unsigned)v dead */
#define CPU_DYING 0x0008 /* CPU (unsigned)v not running any task,
* not handling interrupts, soon dead.
* Called on the dying cpu, interrupts
* are already disabled. Must not
* sleep, must not fail */
#define CPU_POST_DEAD 0x0009 /* CPU (unsigned)v dead, cpu_hotplug
* lock is dropped */
#define CPU_STARTING 0x000A /* CPU (unsigned)v soon running.
* Called on the new cpu, just before
* enabling interrupts. Must not sleep,
* must not fail */
#define CPU_DYING_IDLE 0x000B /* CPU (unsigned)v dying, reached
* idle loop. */
#define CPU_BROKEN 0x000C /* CPU (unsigned)v did not die properly,
* perhaps due to preemption. */
#define CPU_TASKS_FROZEN 0x0010
#define CPU_ONLINE_FROZEN (CPU_ONLINE | CPU_TASKS_FROZEN)
#define CPU_UP_PREPARE_FROZEN (CPU_UP_PREPARE | CPU_TASKS_FROZEN)
#define CPU_UP_CANCELED_FROZEN (CPU_UP_CANCELED | CPU_TASKS_FROZEN)
#define CPU_DOWN_PREPARE_FROZEN (CPU_DOWN_PREPARE | CPU_TASKS_FROZEN)
#define CPU_DOWN_FAILED_FROZEN (CPU_DOWN_FAILED | CPU_TASKS_FROZEN)
#define CPU_DEAD_FROZEN (CPU_DEAD | CPU_TASKS_FROZEN)
#define CPU_DYING_FROZEN (CPU_DYING | CPU_TASKS_FROZEN)
#define CPU_STARTING_FROZEN (CPU_STARTING | CPU_TASKS_FROZEN)
#ifndef _GFP_H
#define _GFP_H
#define __GFP_BITS_SHIFT 22
#define __GFP_BITS_MASK ((gfp_t)((1 << __GFP_BITS_SHIFT) - 1))
#define __GFP_WAIT 1
#define __GFP_ACCOUNT 0
#define __GFP_NOWARN 0
#endif
#ifndef _KERNEL_H
#define _KERNEL_H
#include <assert.h>
#include <string.h>
#include <stdio.h>
#include <stddef.h>
#include <limits.h>
#ifndef NULL
#define NULL 0
#endif
#define BUG_ON(expr) assert(!(expr))
#define __init
#define panic(expr)
#define printk printf
#define __force
#define likely(c) (c)
#define unlikely(c) (c)
#define DIV_ROUND_UP(n,d) (((n) + (d) - 1) / (d))
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]))
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type, member) );})
#define min(a, b) ((a) < (b) ? (a) : (b))
static inline int in_interrupt(void)
{
return 0;
}
#endif /* _KERNEL_H */
static inline void kmemleak_update_trace(const void *ptr) { }
#include <linux/slab.h>
typedef void *(mempool_alloc_t)(int gfp_mask, void *pool_data);
typedef void (mempool_free_t)(void *element, void *pool_data);
typedef struct {
mempool_alloc_t *alloc;
mempool_free_t *free;
void *data;
} mempool_t;
void *mempool_alloc(mempool_t *pool, int gfp_mask);
void mempool_free(void *element, mempool_t *pool);
mempool_t *mempool_create(int min_nr, mempool_alloc_t *alloc_fn,
mempool_free_t *free_fn, void *pool_data);
#ifndef _NOTIFIER_H
#define _NOTIFIER_H
struct notifier_block;
#define NOTIFY_OK 0x0001 /* Suits me */
#endif
#define DEFINE_PER_CPU(type, val) type val
#define __get_cpu_var(var) var
#define this_cpu_ptr(var) var
#define per_cpu_ptr(ptr, cpu) ({ (void)(cpu); (ptr); })
#define per_cpu(var, cpu) (*per_cpu_ptr(&(var), cpu))
/* */
#define preempt_disable() do { } while (0)
#define preempt_enable() do { } while (0)
#include "../../../../include/linux/radix-tree.h"
#ifndef _RCUPDATE_H
#define _RCUPDATE_H
#include <urcu.h>
#define rcu_dereference_raw(p) rcu_dereference(p)
#define rcu_dereference_protected(p, cond) rcu_dereference(p)
#endif
#ifndef SLAB_H
#define SLAB_H
#include <linux/types.h>
#define GFP_KERNEL 1
#define SLAB_HWCACHE_ALIGN 1
#define SLAB_PANIC 2
#define SLAB_RECLAIM_ACCOUNT 0x00020000UL /* Objects are reclaimable */
static inline int gfpflags_allow_blocking(gfp_t mask)
{
return 1;
}
struct kmem_cache {
int size;
void (*ctor)(void *);
};
void *kmem_cache_alloc(struct kmem_cache *cachep, int flags);
void kmem_cache_free(struct kmem_cache *cachep, void *objp);
struct kmem_cache *
kmem_cache_create(const char *name, size_t size, size_t offset,
unsigned long flags, void (*ctor)(void *));
#endif /* SLAB_H */
#ifndef _TYPES_H
#define _TYPES_H
#define __rcu
#define __read_mostly
#define BITS_PER_LONG (sizeof(long) * 8)
struct list_head {
struct list_head *next, *prev;
};
static inline void INIT_LIST_HEAD(struct list_head *list)
{
list->next = list;
list->prev = list;
}
typedef struct {
unsigned int x;
} spinlock_t;
#define uninitialized_var(x) x = x
typedef unsigned gfp_t;
#include <linux/gfp.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <time.h>
#include <assert.h>
#include <linux/slab.h>
#include <linux/radix-tree.h>
#include "test.h"
#include "regression.h"
void __gang_check(unsigned long middle, long down, long up, int chunk, int hop)
{
long idx;
RADIX_TREE(tree, GFP_KERNEL);
middle = 1 << 30;
for (idx = -down; idx < up; idx++)
item_insert(&tree, middle + idx);
item_check_absent(&tree, middle - down - 1);
for (idx = -down; idx < up; idx++)
item_check_present(&tree, middle + idx);
item_check_absent(&tree, middle + up);
item_gang_check_present(&tree, middle - down,
up + down, chunk, hop);
item_full_scan(&tree, middle - down, down + up, chunk);
item_kill_tree(&tree);
}
void gang_check(void)
{
__gang_check(1 << 30, 128, 128, 35, 2);
__gang_check(1 << 31, 128, 128, 32, 32);
__gang_check(1 << 31, 128, 128, 32, 100);
__gang_check(1 << 31, 128, 128, 17, 7);
__gang_check(0xffff0000, 0, 65536, 17, 7);
__gang_check(0xfffffffe, 1, 1, 17, 7);
}
void __big_gang_check(void)
{
unsigned long start;
int wrapped = 0;
start = 0;
do {
unsigned long old_start;
// printf("0x%08lx\n", start);
__gang_check(start, rand() % 113 + 1, rand() % 71,
rand() % 157, rand() % 91 + 1);
old_start = start;
start += rand() % 1000000;
start %= 1ULL << 33;
if (start < old_start)
wrapped = 1;
} while (!wrapped);
}
void big_gang_check(void)
{
int i;
for (i = 0; i < 1000; i++) {
__big_gang_check();
srand(time(0));
printf("%d ", i);
fflush(stdout);
}
}
void add_and_check(void)
{
RADIX_TREE(tree, GFP_KERNEL);
item_insert(&tree, 44);
item_check_present(&tree, 44);
item_check_absent(&tree, 43);
item_kill_tree(&tree);
}
void dynamic_height_check(void)
{
int i;
RADIX_TREE(tree, GFP_KERNEL);
tree_verify_min_height(&tree, 0);
item_insert(&tree, 42);
tree_verify_min_height(&tree, 42);
item_insert(&tree, 1000000);
tree_verify_min_height(&tree, 1000000);
assert(item_delete(&tree, 1000000));
tree_verify_min_height(&tree, 42);
assert(item_delete(&tree, 42));
tree_verify_min_height(&tree, 0);
for (i = 0; i < 1000; i++) {
item_insert(&tree, i);
tree_verify_min_height(&tree, i);
}
i--;
for (;;) {
assert(item_delete(&tree, i));
if (i == 0) {
tree_verify_min_height(&tree, 0);
break;
}
i--;
tree_verify_min_height(&tree, i);
}
item_kill_tree(&tree);
}
void check_copied_tags(struct radix_tree_root *tree, unsigned long start, unsigned long end, unsigned long *idx, int count, int fromtag, int totag)
{
int i;
for (i = 0; i < count; i++) {
/* if (i % 1000 == 0)
putchar('.'); */
if (idx[i] < start || idx[i] > end) {
if (item_tag_get(tree, idx[i], totag)) {
printf("%lu-%lu: %lu, tags %d-%d\n", start, end, idx[i], item_tag_get(tree, idx[i], fromtag), item_tag_get(tree, idx[i], totag));
}
assert(!item_tag_get(tree, idx[i], totag));
continue;
}
if (item_tag_get(tree, idx[i], fromtag) ^
item_tag_get(tree, idx[i], totag)) {
printf("%lu-%lu: %lu, tags %d-%d\n", start, end, idx[i], item_tag_get(tree, idx[i], fromtag), item_tag_get(tree, idx[i], totag));
}
assert(!(item_tag_get(tree, idx[i], fromtag) ^
item_tag_get(tree, idx[i], totag)));
}
}
#define ITEMS 50000
void copy_tag_check(void)
{
RADIX_TREE(tree, GFP_KERNEL);
unsigned long idx[ITEMS];
unsigned long start, end, count = 0, tagged, cur, tmp;
int i;
// printf("generating radix tree indices...\n");
start = rand();
end = rand();
if (start > end && (rand() % 10)) {
cur = start;
start = end;
end = cur;
}
/* Specifically create items around the start and the end of the range
* with high probability to check for off by one errors */
cur = rand();
if (cur & 1) {
item_insert(&tree, start);
if (cur & 2) {
if (start <= end)
count++;
item_tag_set(&tree, start, 0);
}
}
if (cur & 4) {
item_insert(&tree, start-1);
if (cur & 8)
item_tag_set(&tree, start-1, 0);
}
if (cur & 16) {
item_insert(&tree, end);
if (cur & 32) {
if (start <= end)
count++;
item_tag_set(&tree, end, 0);
}
}
if (cur & 64) {
item_insert(&tree, end+1);
if (cur & 128)
item_tag_set(&tree, end+1, 0);
}
for (i = 0; i < ITEMS; i++) {
do {
idx[i] = rand();
} while (item_lookup(&tree, idx[i]));
item_insert(&tree, idx[i]);
if (rand() & 1) {
item_tag_set(&tree, idx[i], 0);
if (idx[i] >= start && idx[i] <= end)
count++;
}
/* if (i % 1000 == 0)
putchar('.'); */
}
// printf("\ncopying tags...\n");
cur = start;
tagged = radix_tree_range_tag_if_tagged(&tree, &cur, end, ITEMS, 0, 1);
// printf("checking copied tags\n");
assert(tagged == count);
check_copied_tags(&tree, start, end, idx, ITEMS, 0, 1);
/* Copy tags in several rounds */
// printf("\ncopying tags...\n");
cur = start;
do {
tmp = rand() % (count/10+2);
tagged = radix_tree_range_tag_if_tagged(&tree, &cur, end, tmp, 0, 2);
} while (tmp == tagged);
// printf("%lu %lu %lu\n", tagged, tmp, count);
// printf("checking copied tags\n");
check_copied_tags(&tree, start, end, idx, ITEMS, 0, 2);
assert(tagged < tmp);
verify_tag_consistency(&tree, 0);
verify_tag_consistency(&tree, 1);
verify_tag_consistency(&tree, 2);
// printf("\n");
item_kill_tree(&tree);
}
static void single_thread_tests(void)
{
int i;
tag_check();
printf("after tag_check: %d allocated\n", nr_allocated);
gang_check();
printf("after gang_check: %d allocated\n", nr_allocated);
add_and_check();
printf("after add_and_check: %d allocated\n", nr_allocated);
dynamic_height_check();
printf("after dynamic_height_check: %d allocated\n", nr_allocated);
big_gang_check();
printf("after big_gang_check: %d allocated\n", nr_allocated);
for (i = 0; i < 2000; i++) {
copy_tag_check();
printf("%d ", i);
fflush(stdout);
}
printf("after copy_tag_check: %d allocated\n", nr_allocated);
}
int main(void)
{
rcu_register_thread();
radix_tree_init();
regression1_test();
regression2_test();
single_thread_tests();
sleep(1);
printf("after sleep(1): %d allocated\n", nr_allocated);
rcu_unregister_thread();
exit(0);
}
#include <linux/rcupdate.h>
#include <pthread.h>
#include <stdio.h>
#include <assert.h>
static pthread_mutex_t rculock = PTHREAD_MUTEX_INITIALIZER;
static struct rcu_head *rcuhead_global = NULL;
static __thread int nr_rcuhead = 0;
static __thread struct rcu_head *rcuhead = NULL;
static __thread struct rcu_head *rcutail = NULL;
static pthread_cond_t rcu_worker_cond = PTHREAD_COND_INITIALIZER;
/* switch to urcu implementation when it is merged. */
void call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *head))
{
head->func = func;
head->next = rcuhead;
rcuhead = head;
if (!rcutail)
rcutail = head;
nr_rcuhead++;
if (nr_rcuhead >= 1000) {
int signal = 0;
pthread_mutex_lock(&rculock);
if (!rcuhead_global)
signal = 1;
rcutail->next = rcuhead_global;
rcuhead_global = head;
pthread_mutex_unlock(&rculock);
nr_rcuhead = 0;
rcuhead = NULL;
rcutail = NULL;
if (signal) {
pthread_cond_signal(&rcu_worker_cond);
}
}
}
static void *rcu_worker(void *arg)
{
struct rcu_head *r;
rcupdate_thread_init();
while (1) {
pthread_mutex_lock(&rculock);
while (!rcuhead_global) {
pthread_cond_wait(&rcu_worker_cond, &rculock);
}
r = rcuhead_global;
rcuhead_global = NULL;
pthread_mutex_unlock(&rculock);
synchronize_rcu();
while (r) {
struct rcu_head *tmp = r->next;
r->func(r);
r = tmp;
}
}
rcupdate_thread_exit();
return NULL;
}
static pthread_t worker_thread;
void rcupdate_init(void)
{
pthread_create(&worker_thread, NULL, rcu_worker, NULL);
}
void rcupdate_thread_init(void)
{
rcu_register_thread();
}
void rcupdate_thread_exit(void)
{
rcu_unregister_thread();
}
#ifndef __REGRESSION_H__
#define __REGRESSION_H__
void regression1_test(void);
void regression2_test(void);
#endif
/*
* Regression1
* Description:
* Salman Qazi describes the following radix-tree bug:
*
* In the following case, we get can get a deadlock:
*
* 0. The radix tree contains two items, one has the index 0.
* 1. The reader (in this case find_get_pages) takes the rcu_read_lock.
* 2. The reader acquires slot(s) for item(s) including the index 0 item.
* 3. The non-zero index item is deleted, and as a consequence the other item
* is moved to the root of the tree. The place where it used to be is queued
* for deletion after the readers finish.
* 3b. The zero item is deleted, removing it from the direct slot, it remains in
* the rcu-delayed indirect node.
* 4. The reader looks at the index 0 slot, and finds that the page has 0 ref
* count
* 5. The reader looks at it again, hoping that the item will either be freed
* or the ref count will increase. This never happens, as the slot it is
* looking at will never be updated. Also, this slot can never be reclaimed
* because the reader is holding rcu_read_lock and is in an infinite loop.
*
* The fix is to re-use the same "indirect" pointer case that requires a slot
* lookup retry into a general "retry the lookup" bit.
*
* Running:
* This test should run to completion in a few seconds. The above bug would
* cause it to hang indefinitely.
*
* Upstream commit:
* Not yet
*/
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
#include <stdlib.h>
#include <pthread.h>
#include <stdio.h>
#include <assert.h>
#include "regression.h"
static RADIX_TREE(mt_tree, GFP_KERNEL);
static pthread_mutex_t mt_lock;
struct page {
pthread_mutex_t lock;
struct rcu_head rcu;
int count;
unsigned long index;
};
static struct page *page_alloc(void)
{
struct page *p;
p = malloc(sizeof(struct page));
p->count = 1;
p->index = 1;
pthread_mutex_init(&p->lock, NULL);
return p;
}
static void page_rcu_free(struct rcu_head *rcu)
{
struct page *p = container_of(rcu, struct page, rcu);
assert(!p->count);
pthread_mutex_destroy(&p->lock);
free(p);
}
static void page_free(struct page *p)
{
call_rcu(&p->rcu, page_rcu_free);
}
static unsigned find_get_pages(unsigned long start,
unsigned int nr_pages, struct page **pages)
{
unsigned int i;
unsigned int ret;
unsigned int nr_found;
rcu_read_lock();
restart:
nr_found = radix_tree_gang_lookup_slot(&mt_tree,
(void ***)pages, NULL, start, nr_pages);
ret = 0;
for (i = 0; i < nr_found; i++) {
struct page *page;
repeat:
page = radix_tree_deref_slot((void **)pages[i]);
if (unlikely(!page))
continue;
if (radix_tree_exception(page)) {
if (radix_tree_deref_retry(page)) {
/*
* Transient condition which can only trigger
* when entry at index 0 moves out of or back
* to root: none yet gotten, safe to restart.
*/
assert((start | i) == 0);
goto restart;
}
/*
* No exceptional entries are inserted in this test.
*/
assert(0);
}
pthread_mutex_lock(&page->lock);
if (!page->count) {
pthread_mutex_unlock(&page->lock);
goto repeat;
}
/* don't actually update page refcount */
pthread_mutex_unlock(&page->lock);
/* Has the page moved? */
if (unlikely(page != *((void **)pages[i]))) {
goto repeat;
}
pages[ret] = page;
ret++;
}
rcu_read_unlock();
return ret;
}
static pthread_barrier_t worker_barrier;
static void *regression1_fn(void *arg)
{
rcu_register_thread();
if (pthread_barrier_wait(&worker_barrier) ==
PTHREAD_BARRIER_SERIAL_THREAD) {
int j;
for (j = 0; j < 1000000; j++) {
struct page *p;
p = page_alloc();
pthread_mutex_lock(&mt_lock);
radix_tree_insert(&mt_tree, 0, p);
pthread_mutex_unlock(&mt_lock);
p = page_alloc();
pthread_mutex_lock(&mt_lock);
radix_tree_insert(&mt_tree, 1, p);
pthread_mutex_unlock(&mt_lock);
pthread_mutex_lock(&mt_lock);
p = radix_tree_delete(&mt_tree, 1);
pthread_mutex_lock(&p->lock);
p->count--;
pthread_mutex_unlock(&p->lock);
pthread_mutex_unlock(&mt_lock);
page_free(p);
pthread_mutex_lock(&mt_lock);
p = radix_tree_delete(&mt_tree, 0);
pthread_mutex_lock(&p->lock);
p->count--;
pthread_mutex_unlock(&p->lock);
pthread_mutex_unlock(&mt_lock);
page_free(p);
}
} else {
int j;
for (j = 0; j < 100000000; j++) {
struct page *pages[10];
find_get_pages(0, 10, pages);
}
}
rcu_unregister_thread();
return NULL;
}
static pthread_t *threads;
void regression1_test(void)
{
int nr_threads;
int i;
long arg;
/* Regression #1 */
printf("running regression test 1, should finish in under a minute\n");
nr_threads = 2;
pthread_barrier_init(&worker_barrier, NULL, nr_threads);
threads = malloc(nr_threads * sizeof(pthread_t *));
for (i = 0; i < nr_threads; i++) {
arg = i;
if (pthread_create(&threads[i], NULL, regression1_fn, (void *)arg)) {
perror("pthread_create");
exit(1);
}
}
for (i = 0; i < nr_threads; i++) {
if (pthread_join(threads[i], NULL)) {
perror("pthread_join");
exit(1);
}
}
free(threads);
printf("regression test 1, done\n");
}
/*
* Regression2
* Description:
* Toshiyuki Okajima describes the following radix-tree bug:
*
* In the following case, we can get a hangup on
* radix_radix_tree_gang_lookup_tag_slot.
*
* 0. The radix tree contains RADIX_TREE_MAP_SIZE items. And the tag of
* a certain item has PAGECACHE_TAG_DIRTY.
* 1. radix_tree_range_tag_if_tagged(, start, end, , PAGECACHE_TAG_DIRTY,
* PAGECACHE_TAG_TOWRITE) is called to add PAGECACHE_TAG_TOWRITE tag
* for the tag which has PAGECACHE_TAG_DIRTY. However, there is no tag with
* PAGECACHE_TAG_DIRTY within the range from start to end. As the result,
* There is no tag with PAGECACHE_TAG_TOWRITE but the root tag has
* PAGECACHE_TAG_TOWRITE.
* 2. An item is added into the radix tree and then the level of it is
* extended into 2 from 1. At that time, the new radix tree node succeeds
* the tag status of the root tag. Therefore the tag of the new radix tree
* node has PAGECACHE_TAG_TOWRITE but there is not slot with
* PAGECACHE_TAG_TOWRITE tag in the child node of the new radix tree node.
* 3. The tag of a certain item is cleared with PAGECACHE_TAG_DIRTY.
* 4. All items within the index range from 0 to RADIX_TREE_MAP_SIZE - 1 are
* released. (Only the item which index is RADIX_TREE_MAP_SIZE exist in the
* radix tree.) As the result, the slot of the radix tree node is NULL but
* the tag which corresponds to the slot has PAGECACHE_TAG_TOWRITE.
* 5. radix_tree_gang_lookup_tag_slot(PAGECACHE_TAG_TOWRITE) calls
* __lookup_tag. __lookup_tag returns with 0. And __lookup_tag doesn't
* change the index that is the input and output parameter. Because the 1st
* slot of the radix tree node is NULL, but the tag which corresponds to
* the slot has PAGECACHE_TAG_TOWRITE.
* Therefore radix_tree_gang_lookup_tag_slot tries to get some items by
* calling __lookup_tag, but it cannot get any items forever.
*
* The fix is to change that radix_tree_tag_if_tagged doesn't tag the root tag
* if it doesn't set any tags within the specified range.
*
* Running:
* This test should run to completion immediately. The above bug would cause it
* to hang indefinitely.
*
* Upstream commit:
* Not yet
*/
#include <linux/kernel.h>
#include <linux/gfp.h>
#include <linux/slab.h>
#include <linux/radix-tree.h>
#include <stdlib.h>
#include <stdio.h>
#include "regression.h"
#ifdef __KERNEL__
#define RADIX_TREE_MAP_SHIFT (CONFIG_BASE_SMALL ? 4 : 6)
#else
#define RADIX_TREE_MAP_SHIFT 3 /* For more stressful testing */
#endif
#define RADIX_TREE_MAP_SIZE (1UL << RADIX_TREE_MAP_SHIFT)
#define PAGECACHE_TAG_DIRTY 0
#define PAGECACHE_TAG_WRITEBACK 1
#define PAGECACHE_TAG_TOWRITE 2
static RADIX_TREE(mt_tree, GFP_KERNEL);
unsigned long page_count = 0;
struct page {
unsigned long index;
};
static struct page *page_alloc(void)
{
struct page *p;
p = malloc(sizeof(struct page));
p->index = page_count++;
return p;
}
void regression2_test(void)
{
int i;
struct page *p;
int max_slots = RADIX_TREE_MAP_SIZE;
unsigned long int start, end;
struct page *pages[1];
printf("running regression test 2 (should take milliseconds)\n");
/* 0. */
for (i = 0; i <= max_slots - 1; i++) {
p = page_alloc();
radix_tree_insert(&mt_tree, i, p);
}
radix_tree_tag_set(&mt_tree, max_slots - 1, PAGECACHE_TAG_DIRTY);
/* 1. */
start = 0;
end = max_slots - 2;
radix_tree_range_tag_if_tagged(&mt_tree, &start, end, 1,
PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
/* 2. */
p = page_alloc();
radix_tree_insert(&mt_tree, max_slots, p);
/* 3. */
radix_tree_tag_clear(&mt_tree, max_slots - 1, PAGECACHE_TAG_DIRTY);
/* 4. */
for (i = max_slots - 1; i >= 0; i--)
radix_tree_delete(&mt_tree, i);
/* 5. */
// NOTE: start should not be 0 because radix_tree_gang_lookup_tag_slot
// can return.
start = 1;
end = max_slots - 2;
radix_tree_gang_lookup_tag_slot(&mt_tree, (void ***)pages, start, end,
PAGECACHE_TAG_TOWRITE);
/* We remove all the remained nodes */
radix_tree_delete(&mt_tree, max_slots);
printf("regression test 2, done\n");
}
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <string.h>
#include <linux/slab.h>
#include <linux/radix-tree.h>
#include "test.h"
static void
__simple_checks(struct radix_tree_root *tree, unsigned long index, int tag)
{
int ret;
item_check_absent(tree, index);
assert(item_tag_get(tree, index, tag) == 0);
item_insert(tree, index);
assert(item_tag_get(tree, index, tag) == 0);
item_tag_set(tree, index, tag);
ret = item_tag_get(tree, index, tag);
assert(ret != 0);
ret = item_delete(tree, index);
assert(ret != 0);
item_insert(tree, index);
ret = item_tag_get(tree, index, tag);
assert(ret == 0);
ret = item_delete(tree, index);
assert(ret != 0);
ret = item_delete(tree, index);
assert(ret == 0);
}
void simple_checks(void)
{
unsigned long index;
RADIX_TREE(tree, GFP_KERNEL);
for (index = 0; index < 10000; index++) {
__simple_checks(&tree, index, 0);
__simple_checks(&tree, index, 1);
}
verify_tag_consistency(&tree, 0);
verify_tag_consistency(&tree, 1);
printf("before item_kill_tree: %d allocated\n", nr_allocated);
item_kill_tree(&tree);
printf("after item_kill_tree: %d allocated\n", nr_allocated);
}
/*
* Check that tags propagate correctly when extending a tree.
*/
static void extend_checks(void)
{
RADIX_TREE(tree, GFP_KERNEL);
item_insert(&tree, 43);
assert(item_tag_get(&tree, 43, 0) == 0);
item_tag_set(&tree, 43, 0);
assert(item_tag_get(&tree, 43, 0) == 1);
item_insert(&tree, 1000000);
assert(item_tag_get(&tree, 43, 0) == 1);
item_insert(&tree, 0);
item_tag_set(&tree, 0, 0);
item_delete(&tree, 1000000);
assert(item_tag_get(&tree, 43, 0) != 0);
item_delete(&tree, 43);
assert(item_tag_get(&tree, 43, 0) == 0); /* crash */
assert(item_tag_get(&tree, 0, 0) == 1);
verify_tag_consistency(&tree, 0);
item_kill_tree(&tree);
}
/*
* Check that tags propagate correctly when contracting a tree.
*/
static void contract_checks(void)
{
struct item *item;
int tmp;
RADIX_TREE(tree, GFP_KERNEL);
tmp = 1<<RADIX_TREE_MAP_SHIFT;
item_insert(&tree, tmp);
item_insert(&tree, tmp+1);
item_tag_set(&tree, tmp, 0);
item_tag_set(&tree, tmp, 1);
item_tag_set(&tree, tmp+1, 0);
item_delete(&tree, tmp+1);
item_tag_clear(&tree, tmp, 1);
assert(radix_tree_gang_lookup_tag(&tree, (void **)&item, 0, 1, 0) == 1);
assert(radix_tree_gang_lookup_tag(&tree, (void **)&item, 0, 1, 1) == 0);
assert(item_tag_get(&tree, tmp, 0) == 1);
assert(item_tag_get(&tree, tmp, 1) == 0);
verify_tag_consistency(&tree, 0);
item_kill_tree(&tree);
}
/*
* Stupid tag thrasher
*
* Create a large linear array corresponding to the tree. Each element in
* the array is coherent with each node in the tree
*/
enum {
NODE_ABSENT = 0,
NODE_PRESENT = 1,
NODE_TAGGED = 2,
};
#define THRASH_SIZE 1000 * 1000
#define N 127
#define BATCH 33
static void gang_check(struct radix_tree_root *tree,
char *thrash_state, int tag)
{
struct item *items[BATCH];
int nr_found;
unsigned long index = 0;
unsigned long last_index = 0;
while ((nr_found = radix_tree_gang_lookup_tag(tree, (void **)items,
index, BATCH, tag))) {
int i;
for (i = 0; i < nr_found; i++) {
struct item *item = items[i];
while (last_index < item->index) {
assert(thrash_state[last_index] != NODE_TAGGED);
last_index++;
}
assert(thrash_state[last_index] == NODE_TAGGED);
last_index++;
}
index = items[nr_found - 1]->index + 1;
}
}
static void do_thrash(struct radix_tree_root *tree, char *thrash_state, int tag)
{
int insert_chunk;
int delete_chunk;
int tag_chunk;
int untag_chunk;
int total_tagged = 0;
int total_present = 0;
for (insert_chunk = 1; insert_chunk < THRASH_SIZE; insert_chunk *= N)
for (delete_chunk = 1; delete_chunk < THRASH_SIZE; delete_chunk *= N)
for (tag_chunk = 1; tag_chunk < THRASH_SIZE; tag_chunk *= N)
for (untag_chunk = 1; untag_chunk < THRASH_SIZE; untag_chunk *= N) {
int i;
unsigned long index;
int nr_inserted = 0;
int nr_deleted = 0;
int nr_tagged = 0;
int nr_untagged = 0;
int actual_total_tagged;
int actual_total_present;
for (i = 0; i < insert_chunk; i++) {
index = rand() % THRASH_SIZE;
if (thrash_state[index] != NODE_ABSENT)
continue;
item_check_absent(tree, index);
item_insert(tree, index);
assert(thrash_state[index] != NODE_PRESENT);
thrash_state[index] = NODE_PRESENT;
nr_inserted++;
total_present++;
}
for (i = 0; i < delete_chunk; i++) {
index = rand() % THRASH_SIZE;
if (thrash_state[index] == NODE_ABSENT)
continue;
item_check_present(tree, index);
if (item_tag_get(tree, index, tag)) {
assert(thrash_state[index] == NODE_TAGGED);
total_tagged--;
} else {
assert(thrash_state[index] == NODE_PRESENT);
}
item_delete(tree, index);
assert(thrash_state[index] != NODE_ABSENT);
thrash_state[index] = NODE_ABSENT;
nr_deleted++;
total_present--;
}
for (i = 0; i < tag_chunk; i++) {
index = rand() % THRASH_SIZE;
if (thrash_state[index] != NODE_PRESENT) {
if (item_lookup(tree, index))
assert(item_tag_get(tree, index, tag));
continue;
}
item_tag_set(tree, index, tag);
item_tag_set(tree, index, tag);
assert(thrash_state[index] != NODE_TAGGED);
thrash_state[index] = NODE_TAGGED;
nr_tagged++;
total_tagged++;
}
for (i = 0; i < untag_chunk; i++) {
index = rand() % THRASH_SIZE;
if (thrash_state[index] != NODE_TAGGED)
continue;
item_check_present(tree, index);
assert(item_tag_get(tree, index, tag));
item_tag_clear(tree, index, tag);
item_tag_clear(tree, index, tag);
assert(thrash_state[index] != NODE_PRESENT);
thrash_state[index] = NODE_PRESENT;
nr_untagged++;
total_tagged--;
}
actual_total_tagged = 0;
actual_total_present = 0;
for (index = 0; index < THRASH_SIZE; index++) {
switch (thrash_state[index]) {
case NODE_ABSENT:
item_check_absent(tree, index);
break;
case NODE_PRESENT:
item_check_present(tree, index);
assert(!item_tag_get(tree, index, tag));
actual_total_present++;
break;
case NODE_TAGGED:
item_check_present(tree, index);
assert(item_tag_get(tree, index, tag));
actual_total_present++;
actual_total_tagged++;
break;
}
}
gang_check(tree, thrash_state, tag);
printf("%d(%d) %d(%d) %d(%d) %d(%d) / "
"%d(%d) present, %d(%d) tagged\n",
insert_chunk, nr_inserted,
delete_chunk, nr_deleted,
tag_chunk, nr_tagged,
untag_chunk, nr_untagged,
total_present, actual_total_present,
total_tagged, actual_total_tagged);
}
}
static void thrash_tags(void)
{
RADIX_TREE(tree, GFP_KERNEL);
char *thrash_state;
thrash_state = malloc(THRASH_SIZE);
memset(thrash_state, 0, THRASH_SIZE);
do_thrash(&tree, thrash_state, 0);
verify_tag_consistency(&tree, 0);
item_kill_tree(&tree);
free(thrash_state);
}
static void leak_check(void)
{
RADIX_TREE(tree, GFP_KERNEL);
item_insert(&tree, 1000000);
item_delete(&tree, 1000000);
item_kill_tree(&tree);
}
static void __leak_check(void)
{
RADIX_TREE(tree, GFP_KERNEL);
printf("%d: nr_allocated=%d\n", __LINE__, nr_allocated);
item_insert(&tree, 1000000);
printf("%d: nr_allocated=%d\n", __LINE__, nr_allocated);
item_delete(&tree, 1000000);
printf("%d: nr_allocated=%d\n", __LINE__, nr_allocated);
item_kill_tree(&tree);
printf("%d: nr_allocated=%d\n", __LINE__, nr_allocated);
}
static void single_check(void)
{
struct item *items[BATCH];
RADIX_TREE(tree, GFP_KERNEL);
int ret;
item_insert(&tree, 0);
item_tag_set(&tree, 0, 0);
ret = radix_tree_gang_lookup_tag(&tree, (void **)items, 0, BATCH, 0);
assert(ret == 1);
ret = radix_tree_gang_lookup_tag(&tree, (void **)items, 1, BATCH, 0);
assert(ret == 0);
verify_tag_consistency(&tree, 0);
verify_tag_consistency(&tree, 1);
item_kill_tree(&tree);
}
void tag_check(void)
{
single_check();
extend_checks();
contract_checks();
printf("after extend_checks: %d allocated\n", nr_allocated);
__leak_check();
leak_check();
printf("after leak_check: %d allocated\n", nr_allocated);
simple_checks();
printf("after simple_checks: %d allocated\n", nr_allocated);
thrash_tags();
printf("after thrash_tags: %d allocated\n", nr_allocated);
}
#include <stdlib.h>
#include <assert.h>
#include <stdio.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/bitops.h>
#include "test.h"
struct item *
item_tag_set(struct radix_tree_root *root, unsigned long index, int tag)
{
return radix_tree_tag_set(root, index, tag);
}
struct item *
item_tag_clear(struct radix_tree_root *root, unsigned long index, int tag)
{
return radix_tree_tag_clear(root, index, tag);
}
int item_tag_get(struct radix_tree_root *root, unsigned long index, int tag)
{
return radix_tree_tag_get(root, index, tag);
}
int __item_insert(struct radix_tree_root *root, struct item *item)
{
return radix_tree_insert(root, item->index, item);
}
int item_insert(struct radix_tree_root *root, unsigned long index)
{
return __item_insert(root, item_create(index));
}
int item_delete(struct radix_tree_root *root, unsigned long index)
{
struct item *item = radix_tree_delete(root, index);
if (item) {
assert(item->index == index);
free(item);
return 1;
}
return 0;
}
struct item *item_create(unsigned long index)
{
struct item *ret = malloc(sizeof(*ret));
ret->index = index;
return ret;
}
void item_check_present(struct radix_tree_root *root, unsigned long index)
{
struct item *item;
item = radix_tree_lookup(root, index);
assert(item != 0);
assert(item->index == index);
}
struct item *item_lookup(struct radix_tree_root *root, unsigned long index)
{
return radix_tree_lookup(root, index);
}
void item_check_absent(struct radix_tree_root *root, unsigned long index)
{
struct item *item;
item = radix_tree_lookup(root, index);
assert(item == 0);
}
/*
* Scan only the passed (start, start+nr] for present items
*/
void item_gang_check_present(struct radix_tree_root *root,
unsigned long start, unsigned long nr,
int chunk, int hop)
{
struct item *items[chunk];
unsigned long into;
for (into = 0; into < nr; ) {
int nfound;
int nr_to_find = chunk;
int i;
if (nr_to_find > (nr - into))
nr_to_find = nr - into;
nfound = radix_tree_gang_lookup(root, (void **)items,
start + into, nr_to_find);
assert(nfound == nr_to_find);
for (i = 0; i < nfound; i++)
assert(items[i]->index == start + into + i);
into += hop;
}
}
/*
* Scan the entire tree, only expecting present items (start, start+nr]
*/
void item_full_scan(struct radix_tree_root *root, unsigned long start,
unsigned long nr, int chunk)
{
struct item *items[chunk];
unsigned long into = 0;
unsigned long this_index = start;
int nfound;
int i;
// printf("%s(0x%08lx, 0x%08lx, %d)\n", __FUNCTION__, start, nr, chunk);
while ((nfound = radix_tree_gang_lookup(root, (void **)items, into,
chunk))) {
// printf("At 0x%08lx, nfound=%d\n", into, nfound);
for (i = 0; i < nfound; i++) {
assert(items[i]->index == this_index);
this_index++;
}
// printf("Found 0x%08lx->0x%08lx\n",
// items[0]->index, items[nfound-1]->index);
into = this_index;
}
if (chunk)
assert(this_index == start + nr);
nfound = radix_tree_gang_lookup(root, (void **)items,
this_index, chunk);
assert(nfound == 0);
}
static int verify_node(struct radix_tree_node *slot, unsigned int tag,
unsigned int height, int tagged)
{
int anyset = 0;
int i;
int j;
/* Verify consistency at this level */
for (i = 0; i < RADIX_TREE_TAG_LONGS; i++) {
if (slot->tags[tag][i]) {
anyset = 1;
break;
}
}
if (tagged != anyset) {
printf("tag: %u, height %u, tagged: %d, anyset: %d\n", tag, height, tagged, anyset);
for (j = 0; j < RADIX_TREE_MAX_TAGS; j++) {
printf("tag %d: ", j);
for (i = 0; i < RADIX_TREE_TAG_LONGS; i++)
printf("%016lx ", slot->tags[j][i]);
printf("\n");
}
return 1;
}
assert(tagged == anyset);
/* Go for next level */
if (height > 1) {
for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
if (slot->slots[i])
if (verify_node(slot->slots[i], tag, height - 1,
!!test_bit(i, slot->tags[tag]))) {
printf("Failure at off %d\n", i);
for (j = 0; j < RADIX_TREE_MAX_TAGS; j++) {
printf("tag %d: ", j);
for (i = 0; i < RADIX_TREE_TAG_LONGS; i++)
printf("%016lx ", slot->tags[j][i]);
printf("\n");
}
return 1;
}
}
return 0;
}
void verify_tag_consistency(struct radix_tree_root *root, unsigned int tag)
{
if (!root->height)
return;
verify_node(indirect_to_ptr(root->rnode),
tag, root->height, !!root_tag_get(root, tag));
}
void item_kill_tree(struct radix_tree_root *root)
{
struct item *items[32];
int nfound;
while ((nfound = radix_tree_gang_lookup(root, (void **)items, 0, 32))) {
int i;
for (i = 0; i < nfound; i++) {
void *ret;
ret = radix_tree_delete(root, items[i]->index);
assert(ret == items[i]);
free(items[i]);
}
}
assert(radix_tree_gang_lookup(root, (void **)items, 0, 32) == 0);
assert(root->rnode == NULL);
}
void tree_verify_min_height(struct radix_tree_root *root, int maxindex)
{
assert(radix_tree_maxindex(root->height) >= maxindex);
if (root->height > 1)
assert(radix_tree_maxindex(root->height-1) < maxindex);
else if (root->height == 1)
assert(radix_tree_maxindex(root->height-1) <= maxindex);
}
#include <linux/gfp.h>
#include <linux/types.h>
#include <linux/radix-tree.h>
#include <linux/rcupdate.h>
struct item {
unsigned long index;
};
struct item *item_create(unsigned long index);
int __item_insert(struct radix_tree_root *root, struct item *item);
int item_insert(struct radix_tree_root *root, unsigned long index);
int item_delete(struct radix_tree_root *root, unsigned long index);
struct item *item_lookup(struct radix_tree_root *root, unsigned long index);
void item_check_present(struct radix_tree_root *root, unsigned long index);
void item_check_absent(struct radix_tree_root *root, unsigned long index);
void item_gang_check_present(struct radix_tree_root *root,
unsigned long start, unsigned long nr,
int chunk, int hop);
void item_full_scan(struct radix_tree_root *root, unsigned long start,
unsigned long nr, int chunk);
void item_kill_tree(struct radix_tree_root *root);
void tag_check(void);
struct item *
item_tag_set(struct radix_tree_root *root, unsigned long index, int tag);
struct item *
item_tag_clear(struct radix_tree_root *root, unsigned long index, int tag);
int item_tag_get(struct radix_tree_root *root, unsigned long index, int tag);
void tree_verify_min_height(struct radix_tree_root *root, int maxindex);
void verify_tag_consistency(struct radix_tree_root *root, unsigned int tag);
extern int nr_allocated;
/* Normally private parts of lib/radix-tree.c */
void *indirect_to_ptr(void *ptr);
int root_tag_get(struct radix_tree_root *root, unsigned int tag);
unsigned long radix_tree_maxindex(unsigned int height);
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment