Commit 16e59467 authored by Andy Gross's avatar Andy Gross

firmware: qcom: scm: Convert to streaming DMA APIS

This patch converts the Qualcomm SCM driver to use the streaming DMA APIs
for communication buffers.  This is being done so that the
secure_flush_area call can be removed.  Using the DMA APIs will also make
the SCM32 symmetric to the coming SCM64 code.
Signed-off-by: default avatarAndy Gross <andy.gross@linaro.org>
Reviewed-by: default avatarBjorn Andersson <bjorn.andersson@linaro.org>
Reviewed-by: default avatarStephen Boyd <sboyd@codeaurora.org>
parent 11bdcee4
...@@ -23,8 +23,7 @@ ...@@ -23,8 +23,7 @@
#include <linux/errno.h> #include <linux/errno.h>
#include <linux/err.h> #include <linux/err.h>
#include <linux/qcom_scm.h> #include <linux/qcom_scm.h>
#include <linux/dma-mapping.h>
#include <asm/cacheflush.h>
#include "qcom_scm.h" #include "qcom_scm.h"
...@@ -96,44 +95,6 @@ struct qcom_scm_response { ...@@ -96,44 +95,6 @@ struct qcom_scm_response {
__le32 is_complete; __le32 is_complete;
}; };
/**
* alloc_qcom_scm_command() - Allocate an SCM command
* @cmd_size: size of the command buffer
* @resp_size: size of the response buffer
*
* Allocate an SCM command, including enough room for the command
* and response headers as well as the command and response buffers.
*
* Returns a valid &qcom_scm_command on success or %NULL if the allocation fails.
*/
static struct qcom_scm_command *alloc_qcom_scm_command(size_t cmd_size, size_t resp_size)
{
struct qcom_scm_command *cmd;
size_t len = sizeof(*cmd) + sizeof(struct qcom_scm_response) + cmd_size +
resp_size;
u32 offset;
cmd = kzalloc(PAGE_ALIGN(len), GFP_KERNEL);
if (cmd) {
cmd->len = cpu_to_le32(len);
offset = offsetof(struct qcom_scm_command, buf);
cmd->buf_offset = cpu_to_le32(offset);
cmd->resp_hdr_offset = cpu_to_le32(offset + cmd_size);
}
return cmd;
}
/**
* free_qcom_scm_command() - Free an SCM command
* @cmd: command to free
*
* Free an SCM command.
*/
static inline void free_qcom_scm_command(struct qcom_scm_command *cmd)
{
kfree(cmd);
}
/** /**
* qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response * qcom_scm_command_to_response() - Get a pointer to a qcom_scm_response
* @cmd: command * @cmd: command
...@@ -192,45 +153,9 @@ static u32 smc(u32 cmd_addr) ...@@ -192,45 +153,9 @@ static u32 smc(u32 cmd_addr)
return r0; return r0;
} }
static int __qcom_scm_call(const struct qcom_scm_command *cmd)
{
int ret;
u32 cmd_addr = virt_to_phys(cmd);
/*
* Flush the command buffer so that the secure world sees
* the correct data.
*/
secure_flush_area(cmd, cmd->len);
ret = smc(cmd_addr);
if (ret < 0)
ret = qcom_scm_remap_error(ret);
return ret;
}
static void qcom_scm_inv_range(unsigned long start, unsigned long end)
{
u32 cacheline_size, ctr;
asm volatile("mrc p15, 0, %0, c0, c0, 1" : "=r" (ctr));
cacheline_size = 4 << ((ctr >> 16) & 0xf);
start = round_down(start, cacheline_size);
end = round_up(end, cacheline_size);
outer_inv_range(start, end);
while (start < end) {
asm ("mcr p15, 0, %0, c7, c6, 1" : : "r" (start)
: "memory");
start += cacheline_size;
}
dsb();
isb();
}
/** /**
* qcom_scm_call() - Send an SCM command * qcom_scm_call() - Send an SCM command
* @dev: struct device
* @svc_id: service identifier * @svc_id: service identifier
* @cmd_id: command identifier * @cmd_id: command identifier
* @cmd_buf: command buffer * @cmd_buf: command buffer
...@@ -247,42 +172,59 @@ static void qcom_scm_inv_range(unsigned long start, unsigned long end) ...@@ -247,42 +172,59 @@ static void qcom_scm_inv_range(unsigned long start, unsigned long end)
* and response buffers is taken care of by qcom_scm_call; however, callers are * and response buffers is taken care of by qcom_scm_call; however, callers are
* responsible for any other cached buffers passed over to the secure world. * responsible for any other cached buffers passed over to the secure world.
*/ */
static int qcom_scm_call(u32 svc_id, u32 cmd_id, const void *cmd_buf, static int qcom_scm_call(struct device *dev, u32 svc_id, u32 cmd_id,
size_t cmd_len, void *resp_buf, size_t resp_len) const void *cmd_buf, size_t cmd_len, void *resp_buf,
size_t resp_len)
{ {
int ret; int ret;
struct qcom_scm_command *cmd; struct qcom_scm_command *cmd;
struct qcom_scm_response *rsp; struct qcom_scm_response *rsp;
unsigned long start, end; size_t alloc_len = sizeof(*cmd) + cmd_len + sizeof(*rsp) + resp_len;
dma_addr_t cmd_phys;
cmd = alloc_qcom_scm_command(cmd_len, resp_len); cmd = kzalloc(PAGE_ALIGN(alloc_len), GFP_KERNEL);
if (!cmd) if (!cmd)
return -ENOMEM; return -ENOMEM;
cmd->len = cpu_to_le32(alloc_len);
cmd->buf_offset = cpu_to_le32(sizeof(*cmd));
cmd->resp_hdr_offset = cpu_to_le32(sizeof(*cmd) + cmd_len);
cmd->id = cpu_to_le32((svc_id << 10) | cmd_id); cmd->id = cpu_to_le32((svc_id << 10) | cmd_id);
if (cmd_buf) if (cmd_buf)
memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len); memcpy(qcom_scm_get_command_buffer(cmd), cmd_buf, cmd_len);
rsp = qcom_scm_command_to_response(cmd);
cmd_phys = dma_map_single(dev, cmd, alloc_len, DMA_TO_DEVICE);
if (dma_mapping_error(dev, cmd_phys)) {
kfree(cmd);
return -ENOMEM;
}
mutex_lock(&qcom_scm_lock); mutex_lock(&qcom_scm_lock);
ret = __qcom_scm_call(cmd); ret = smc(cmd_phys);
if (ret < 0)
ret = qcom_scm_remap_error(ret);
mutex_unlock(&qcom_scm_lock); mutex_unlock(&qcom_scm_lock);
if (ret) if (ret)
goto out; goto out;
rsp = qcom_scm_command_to_response(cmd);
start = (unsigned long)rsp;
do { do {
qcom_scm_inv_range(start, start + sizeof(*rsp)); dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len,
sizeof(*rsp), DMA_FROM_DEVICE);
} while (!rsp->is_complete); } while (!rsp->is_complete);
end = (unsigned long)qcom_scm_get_response_buffer(rsp) + resp_len; if (resp_buf) {
qcom_scm_inv_range(start, end); dma_sync_single_for_cpu(dev, cmd_phys + sizeof(*cmd) + cmd_len +
le32_to_cpu(rsp->buf_offset),
if (resp_buf) resp_len, DMA_FROM_DEVICE);
memcpy(resp_buf, qcom_scm_get_response_buffer(rsp), resp_len); memcpy(resp_buf, qcom_scm_get_response_buffer(rsp),
resp_len);
}
out: out:
free_qcom_scm_command(cmd); dma_unmap_single(dev, cmd_phys, alloc_len, DMA_TO_DEVICE);
kfree(cmd);
return ret; return ret;
} }
...@@ -437,7 +379,8 @@ int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus) ...@@ -437,7 +379,8 @@ int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus)
* Set the Linux entry point for the SCM to transfer control to when coming * Set the Linux entry point for the SCM to transfer control to when coming
* out of a power down. CPU power down may be executed on cpuidle or hotplug. * out of a power down. CPU power down may be executed on cpuidle or hotplug.
*/ */
int __qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus) int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry,
const cpumask_t *cpus)
{ {
int ret; int ret;
int flags = 0; int flags = 0;
...@@ -463,7 +406,7 @@ int __qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus) ...@@ -463,7 +406,7 @@ int __qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
cmd.addr = cpu_to_le32(virt_to_phys(entry)); cmd.addr = cpu_to_le32(virt_to_phys(entry));
cmd.flags = cpu_to_le32(flags); cmd.flags = cpu_to_le32(flags);
ret = qcom_scm_call(QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR, ret = qcom_scm_call(dev, QCOM_SCM_SVC_BOOT, QCOM_SCM_BOOT_ADDR,
&cmd, sizeof(cmd), NULL, 0); &cmd, sizeof(cmd), NULL, 0);
if (!ret) { if (!ret) {
for_each_cpu(cpu, cpus) for_each_cpu(cpu, cpus)
...@@ -487,25 +430,27 @@ void __qcom_scm_cpu_power_down(u32 flags) ...@@ -487,25 +430,27 @@ void __qcom_scm_cpu_power_down(u32 flags)
flags & QCOM_SCM_FLUSH_FLAG_MASK); flags & QCOM_SCM_FLUSH_FLAG_MASK);
} }
int __qcom_scm_is_call_available(u32 svc_id, u32 cmd_id) int __qcom_scm_is_call_available(struct device *dev, u32 svc_id, u32 cmd_id)
{ {
int ret; int ret;
__le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id); __le32 svc_cmd = cpu_to_le32((svc_id << 10) | cmd_id);
__le32 ret_val = 0; __le32 ret_val = 0;
ret = qcom_scm_call(QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD, &svc_cmd, ret = qcom_scm_call(dev, QCOM_SCM_SVC_INFO, QCOM_IS_CALL_AVAIL_CMD,
sizeof(svc_cmd), &ret_val, sizeof(ret_val)); &svc_cmd, sizeof(svc_cmd), &ret_val,
sizeof(ret_val));
if (ret) if (ret)
return ret; return ret;
return le32_to_cpu(ret_val); return le32_to_cpu(ret_val);
} }
int __qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) int __qcom_scm_hdcp_req(struct device *dev, struct qcom_scm_hdcp_req *req,
u32 req_cnt, u32 *resp)
{ {
if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT) if (req_cnt > QCOM_SCM_HDCP_MAX_REQ_CNT)
return -ERANGE; return -ERANGE;
return qcom_scm_call(QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP, return qcom_scm_call(dev, QCOM_SCM_SVC_HDCP, QCOM_SCM_CMD_HDCP,
req, req_cnt * sizeof(*req), resp, sizeof(*resp)); req, req_cnt * sizeof(*req), resp, sizeof(*resp));
} }
...@@ -89,7 +89,7 @@ EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr); ...@@ -89,7 +89,7 @@ EXPORT_SYMBOL(qcom_scm_set_cold_boot_addr);
*/ */
int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus) int qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus)
{ {
return __qcom_scm_set_warm_boot_addr(entry, cpus); return __qcom_scm_set_warm_boot_addr(__scm->dev, entry, cpus);
} }
EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr); EXPORT_SYMBOL(qcom_scm_set_warm_boot_addr);
...@@ -119,7 +119,7 @@ bool qcom_scm_hdcp_available(void) ...@@ -119,7 +119,7 @@ bool qcom_scm_hdcp_available(void)
if (ret) if (ret)
return ret; return ret;
ret = __qcom_scm_is_call_available(QCOM_SCM_SVC_HDCP, ret = __qcom_scm_is_call_available(__scm->dev, QCOM_SCM_SVC_HDCP,
QCOM_SCM_CMD_HDCP); QCOM_SCM_CMD_HDCP);
qcom_scm_clk_disable(); qcom_scm_clk_disable();
...@@ -143,7 +143,7 @@ int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp) ...@@ -143,7 +143,7 @@ int qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp)
if (ret) if (ret)
return ret; return ret;
ret = __qcom_scm_hdcp_req(req, req_cnt, resp); ret = __qcom_scm_hdcp_req(__scm->dev, req, req_cnt, resp);
qcom_scm_clk_disable(); qcom_scm_clk_disable();
return ret; return ret;
} }
......
...@@ -19,7 +19,8 @@ ...@@ -19,7 +19,8 @@
#define QCOM_SCM_FLAG_HLOS 0x01 #define QCOM_SCM_FLAG_HLOS 0x01
#define QCOM_SCM_FLAG_COLDBOOT_MC 0x02 #define QCOM_SCM_FLAG_COLDBOOT_MC 0x02
#define QCOM_SCM_FLAG_WARMBOOT_MC 0x04 #define QCOM_SCM_FLAG_WARMBOOT_MC 0x04
extern int __qcom_scm_set_warm_boot_addr(void *entry, const cpumask_t *cpus); extern int __qcom_scm_set_warm_boot_addr(struct device *dev, void *entry,
const cpumask_t *cpus);
extern int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus); extern int __qcom_scm_set_cold_boot_addr(void *entry, const cpumask_t *cpus);
#define QCOM_SCM_CMD_TERMINATE_PC 0x2 #define QCOM_SCM_CMD_TERMINATE_PC 0x2
...@@ -29,12 +30,13 @@ extern void __qcom_scm_cpu_power_down(u32 flags); ...@@ -29,12 +30,13 @@ extern void __qcom_scm_cpu_power_down(u32 flags);
#define QCOM_SCM_SVC_INFO 0x6 #define QCOM_SCM_SVC_INFO 0x6
#define QCOM_IS_CALL_AVAIL_CMD 0x1 #define QCOM_IS_CALL_AVAIL_CMD 0x1
extern int __qcom_scm_is_call_available(u32 svc_id, u32 cmd_id); extern int __qcom_scm_is_call_available(struct device *dev, u32 svc_id,
u32 cmd_id);
#define QCOM_SCM_SVC_HDCP 0x11 #define QCOM_SCM_SVC_HDCP 0x11
#define QCOM_SCM_CMD_HDCP 0x01 #define QCOM_SCM_CMD_HDCP 0x01
extern int __qcom_scm_hdcp_req(struct qcom_scm_hdcp_req *req, u32 req_cnt, extern int __qcom_scm_hdcp_req(struct device *dev,
u32 *resp); struct qcom_scm_hdcp_req *req, u32 req_cnt, u32 *resp);
/* common error codes */ /* common error codes */
#define QCOM_SCM_ENOMEM -5 #define QCOM_SCM_ENOMEM -5
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment