Commit 1914a996 authored by Rob Herring's avatar Rob Herring Committed by Mark Brown

regulator: Convert regulator binding to json-schema

Convert the common regulator binding to DT schema format. Note that all
the properties with standard unit suffixes have type checks already, so
only a description is necessary.

As fixed-regulator has already been converted, update the references in
it. Otherwise, keep regulator.txt with a reference to the schema to
avoid a bunch of treewide updates. regulator.txt can be removed when all
the regulator bindings are converted.
Signed-off-by: default avatarRob Herring <robh@kernel.org>
Signed-off-by: default avatarMark Brown <broonie@kernel.org>
parent 7bd7916d
......@@ -12,10 +12,13 @@ maintainers:
description:
Any property defined as part of the core regulator binding, defined in
regulator.txt, can also be used. However a fixed voltage regulator is
regulator.yaml, can also be used. However a fixed voltage regulator is
expected to have the regulator-min-microvolt and regulator-max-microvolt
to be the same.
allOf:
- $ref: "regulator.yaml#"
properties:
compatible:
const: regulator-fixed
......
Voltage/Current Regulators
Optional properties:
- regulator-name: A string used as a descriptive name for regulator outputs
- regulator-min-microvolt: smallest voltage consumers may set
- regulator-max-microvolt: largest voltage consumers may set
- regulator-microvolt-offset: Offset applied to voltages to compensate for voltage drops
- regulator-min-microamp: smallest current consumers may set
- regulator-max-microamp: largest current consumers may set
- regulator-input-current-limit-microamp: maximum input current regulator allows
- regulator-always-on: boolean, regulator should never be disabled
- regulator-boot-on: bootloader/firmware enabled regulator
- regulator-allow-bypass: allow the regulator to go into bypass mode
- regulator-allow-set-load: allow the regulator performance level to be configured
- <name>-supply: phandle to the parent supply/regulator node
- regulator-ramp-delay: ramp delay for regulator(in uV/us)
For hardware which supports disabling ramp rate, it should be explicitly
initialised to zero (regulator-ramp-delay = <0>) for disabling ramp delay.
- regulator-enable-ramp-delay: The time taken, in microseconds, for the supply
rail to reach the target voltage, plus/minus whatever tolerance the board
design requires. This property describes the total system ramp time
required due to the combination of internal ramping of the regulator itself,
and board design issues such as trace capacitance and load on the supply.
- regulator-settling-time-us: Settling time, in microseconds, for voltage
change if regulator have the constant time for any level voltage change.
This is useful when regulator have exponential voltage change.
- regulator-settling-time-up-us: Settling time, in microseconds, for voltage
increase if the regulator needs a constant time to settle after voltage
increases of any level. This is useful for regulators with exponential
voltage changes.
- regulator-settling-time-down-us: Settling time, in microseconds, for voltage
decrease if the regulator needs a constant time to settle after voltage
decreases of any level. This is useful for regulators with exponential
voltage changes.
- regulator-soft-start: Enable soft start so that voltage ramps slowly
- regulator-state-standby sub-root node for Standby mode
: equivalent with standby Linux sleep state, which provides energy savings
with a relatively quick transition back time.
- regulator-state-mem sub-root node for Suspend-to-RAM mode
: suspend to memory, the device goes to sleep, but all data stored in memory,
only some external interrupt can wake the device.
- regulator-state-disk sub-root node for Suspend-to-DISK mode
: suspend to disk, this state operates similarly to Suspend-to-RAM,
but includes a final step of writing memory contents to disk.
- regulator-state-[mem/disk/standby] node has following common properties:
- regulator-on-in-suspend: regulator should be on in suspend state.
- regulator-off-in-suspend: regulator should be off in suspend state.
- regulator-suspend-min-microvolt: minimum voltage may be set in
suspend state.
- regulator-suspend-max-microvolt: maximum voltage may be set in
suspend state.
- regulator-suspend-microvolt: the default voltage which regulator
would be set in suspend. This property is now deprecated, instead
setting voltage for suspend mode via the API which regulator
driver provides is recommended.
- regulator-changeable-in-suspend: whether the default voltage and
the regulator on/off in suspend can be changed in runtime.
- regulator-mode: operating mode in the given suspend state.
The set of possible operating modes depends on the capabilities of
every hardware so the valid modes are documented on each regulator
device tree binding document.
- regulator-initial-mode: initial operating mode. The set of possible operating
modes depends on the capabilities of every hardware so each device binding
documentation explains which values the regulator supports.
- regulator-allowed-modes: list of operating modes that software is allowed to
configure for the regulator at run-time. Elements may be specified in any
order. The set of possible operating modes depends on the capabilities of
every hardware so each device binding document explains which values the
regulator supports.
- regulator-system-load: Load in uA present on regulator that is not captured by
any consumer request.
- regulator-pull-down: Enable pull down resistor when the regulator is disabled.
- regulator-over-current-protection: Enable over current protection.
- regulator-active-discharge: tristate, enable/disable active discharge of
regulators. The values are:
0: Disable active discharge.
1: Enable active discharge.
Absence of this property will leave configuration to default.
- regulator-coupled-with: Regulators with which the regulator
is coupled. The linkage is 2-way - all coupled regulators should be linked
with each other. A regulator should not be coupled with its supplier.
- regulator-coupled-max-spread: Array of maximum spread between voltages of
coupled regulators in microvolts, each value in the array relates to the
corresponding couple specified by the regulator-coupled-with property.
- regulator-max-step-microvolt: Maximum difference between current and target
voltages that can be changed safely in a single step.
Deprecated properties:
- regulator-compatible: If a regulator chip contains multiple
regulators, and if the chip's binding contains a child node that
describes each regulator, then this property indicates which regulator
this child node is intended to configure. If this property is missing,
the node's name will be used instead.
Example:
xyzreg: regulator@0 {
regulator-min-microvolt = <1000000>;
regulator-max-microvolt = <2500000>;
regulator-always-on;
vin-supply = <&vin>;
regulator-state-mem {
regulator-on-in-suspend;
};
};
Regulator Consumers:
Consumer nodes can reference one or more of its supplies/
regulators using the below bindings.
- <name>-supply: phandle to the regulator node
These are the same bindings that a regulator in the above
example used to reference its own supply, in which case
its just seen as a special case of a regulator being a
consumer itself.
Example of a consumer device node (mmc) referencing two
regulators (twl_reg1 and twl_reg2),
twl_reg1: regulator@0 {
...
...
...
};
twl_reg2: regulator@1 {
...
...
...
};
mmc: mmc@0 {
...
...
vmmc-supply = <&twl_reg1>;
vmmcaux-supply = <&twl_reg2>;
};
This file has moved to regulator.yaml.
# SPDX-License-Identifier: GPL-2.0
%YAML 1.2
---
$id: http://devicetree.org/schemas/regulator/regulator.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Voltage/Current Regulators
maintainers:
- Liam Girdwood <lgirdwood@gmail.com>
- Mark Brown <broonie@kernel.org>
properties:
regulator-name:
description: A string used as a descriptive name for regulator outputs
$ref: "/schemas/types.yaml#/definitions/string"
regulator-min-microvolt:
description: smallest voltage consumers may set
regulator-max-microvolt:
description: largest voltage consumers may set
regulator-microvolt-offset:
description: Offset applied to voltages to compensate for voltage drops
regulator-min-microamp:
description: smallest current consumers may set
regulator-max-microamp:
description: largest current consumers may set
regulator-input-current-limit-microamp:
description: maximum input current regulator allows
regulator-always-on:
description: boolean, regulator should never be disabled
type: boolean
regulator-boot-on:
description: bootloader/firmware enabled regulator
type: boolean
regulator-allow-bypass:
description: allow the regulator to go into bypass mode
type: boolean
regulator-allow-set-load:
description: allow the regulator performance level to be configured
type: boolean
regulator-ramp-delay:
description: ramp delay for regulator(in uV/us) For hardware which supports
disabling ramp rate, it should be explicitly initialised to zero (regulator-ramp-delay
= <0>) for disabling ramp delay.
$ref: "/schemas/types.yaml#/definitions/uint32"
regulator-enable-ramp-delay:
description: The time taken, in microseconds, for the supply rail to
reach the target voltage, plus/minus whatever tolerance the board
design requires. This property describes the total system ramp time
required due to the combination of internal ramping of the regulator
itself, and board design issues such as trace capacitance and load
on the supply.
$ref: "/schemas/types.yaml#/definitions/uint32"
regulator-settling-time-us:
description: Settling time, in microseconds, for voltage change if regulator
have the constant time for any level voltage change. This is useful
when regulator have exponential voltage change.
regulator-settling-time-up-us:
description: Settling time, in microseconds, for voltage increase if
the regulator needs a constant time to settle after voltage increases
of any level. This is useful for regulators with exponential voltage
changes.
regulator-settling-time-down-us:
description: Settling time, in microseconds, for voltage decrease if
the regulator needs a constant time to settle after voltage decreases
of any level. This is useful for regulators with exponential voltage
changes.
regulator-soft-start:
description: Enable soft start so that voltage ramps slowly
type: boolean
regulator-initial-mode:
description: initial operating mode. The set of possible operating modes
depends on the capabilities of every hardware so each device binding
documentation explains which values the regulator supports.
$ref: "/schemas/types.yaml#/definitions/uint32"
regulator-allowed-modes:
description: list of operating modes that software is allowed to configure
for the regulator at run-time. Elements may be specified in any order.
The set of possible operating modes depends on the capabilities of
every hardware so each device binding document explains which values
the regulator supports.
$ref: "/schemas/types.yaml#/definitions/uint32-array"
regulator-system-load:
description: Load in uA present on regulator that is not captured by
any consumer request.
$ref: "/schemas/types.yaml#/definitions/uint32"
regulator-pull-down:
description: Enable pull down resistor when the regulator is disabled.
type: boolean
regulator-over-current-protection:
description: Enable over current protection.
type: boolean
regulator-active-discharge:
description: |
tristate, enable/disable active discharge of regulators. The values are:
0: Disable active discharge.
1: Enable active discharge.
Absence of this property will leave configuration to default.
allOf:
- $ref: "/schemas/types.yaml#/definitions/uint32"
- enum: [ 0, 1 ]
regulator-coupled-with:
description: Regulators with which the regulator is coupled. The linkage
is 2-way - all coupled regulators should be linked with each other.
A regulator should not be coupled with its supplier.
$ref: "/schemas/types.yaml#/definitions/phandle-array"
regulator-coupled-max-spread:
description: Array of maximum spread between voltages of coupled regulators
in microvolts, each value in the array relates to the corresponding
couple specified by the regulator-coupled-with property.
$ref: "/schemas/types.yaml#/definitions/uint32"
regulator-max-step-microvolt:
description: Maximum difference between current and target voltages
that can be changed safely in a single step.
patternProperties:
".*-supply$":
description: Input supply phandle(s) for this node
regulator-state-(standby|mem|disk):
type: object
description:
sub-nodes for regulator state in Standby, Suspend-to-RAM, and
Suspend-to-DISK modes. Equivalent with standby, mem, and disk Linux
sleep states.
properties:
regulator-on-in-suspend:
description: regulator should be on in suspend state.
type: boolean
regulator-off-in-suspend:
description: regulator should be off in suspend state.
type: boolean
regulator-suspend-min-microvolt:
description: minimum voltage may be set in suspend state.
regulator-suspend-max-microvolt:
description: maximum voltage may be set in suspend state.
regulator-suspend-microvolt:
description: the default voltage which regulator would be set in
suspend. This property is now deprecated, instead setting voltage
for suspend mode via the API which regulator driver provides is
recommended.
regulator-changeable-in-suspend:
description: whether the default voltage and the regulator on/off
in suspend can be changed in runtime.
type: boolean
regulator-mode:
description: operating mode in the given suspend state. The set
of possible operating modes depends on the capabilities of every
hardware so the valid modes are documented on each regulator device
tree binding document.
$ref: "/schemas/types.yaml#/definitions/uint32"
additionalProperties: false
examples:
- |
xyzreg: regulator@0 {
regulator-min-microvolt = <1000000>;
regulator-max-microvolt = <2500000>;
regulator-always-on;
vin-supply = <&vin>;
regulator-state-mem {
regulator-on-in-suspend;
};
};
...
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment