Commit 1963d3ca authored by Johannes Weiner's avatar Johannes Weiner Committed by Luis Henriques

mm: protect set_page_dirty() from ongoing truncation

commit 2d6d7f98 upstream.

Tejun, while reviewing the code, spotted the following race condition
between the dirtying and truncation of a page:

__set_page_dirty_nobuffers()       __delete_from_page_cache()
  if (TestSetPageDirty(page))
                                     page->mapping = NULL
				     if (PageDirty())
				       dec_zone_page_state(page, NR_FILE_DIRTY);
				       dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
    if (page->mapping)
      account_page_dirtied(page)
        __inc_zone_page_state(page, NR_FILE_DIRTY);
	__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);

which results in an imbalance of NR_FILE_DIRTY and BDI_RECLAIMABLE.

Dirtiers usually lock out truncation, either by holding the page lock
directly, or in case of zap_pte_range(), by pinning the mapcount with
the page table lock held.  The notable exception to this rule, though,
is do_wp_page(), for which this race exists.  However, do_wp_page()
already waits for a locked page to unlock before setting the dirty bit,
in order to prevent a race where clear_page_dirty() misses the page bit
in the presence of dirty ptes.  Upgrade that wait to a fully locked
set_page_dirty() to also cover the situation explained above.

Afterwards, the code in set_page_dirty() dealing with a truncation race
is no longer needed.  Remove it.
Reported-by: default avatarTejun Heo <tj@kernel.org>
Signed-off-by: default avatarJohannes Weiner <hannes@cmpxchg.org>
Acked-by: default avatarKirill A. Shutemov <kirill.shutemov@linux.intel.com>
Reviewed-by: default avatarJan Kara <jack@suse.cz>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
Signed-off-by: default avatarLuis Henriques <luis.henriques@canonical.com>
parent d2453b3b
...@@ -178,7 +178,6 @@ int write_cache_pages(struct address_space *mapping, ...@@ -178,7 +178,6 @@ int write_cache_pages(struct address_space *mapping,
struct writeback_control *wbc, writepage_t writepage, struct writeback_control *wbc, writepage_t writepage,
void *data); void *data);
int do_writepages(struct address_space *mapping, struct writeback_control *wbc); int do_writepages(struct address_space *mapping, struct writeback_control *wbc);
void set_page_dirty_balance(struct page *page);
void writeback_set_ratelimit(void); void writeback_set_ratelimit(void);
void tag_pages_for_writeback(struct address_space *mapping, void tag_pages_for_writeback(struct address_space *mapping,
pgoff_t start, pgoff_t end); pgoff_t start, pgoff_t end);
......
...@@ -2148,17 +2148,24 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -2148,17 +2148,24 @@ static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
if (!dirty_page) if (!dirty_page)
return ret; return ret;
/*
* Yes, Virginia, this is actually required to prevent a race
* with clear_page_dirty_for_io() from clearing the page dirty
* bit after it clear all dirty ptes, but before a racing
* do_wp_page installs a dirty pte.
*
* do_shared_fault is protected similarly.
*/
if (!page_mkwrite) { if (!page_mkwrite) {
wait_on_page_locked(dirty_page); struct address_space *mapping;
set_page_dirty_balance(dirty_page); int dirtied;
lock_page(dirty_page);
dirtied = set_page_dirty(dirty_page);
VM_BUG_ON_PAGE(PageAnon(dirty_page), dirty_page);
mapping = dirty_page->mapping;
unlock_page(dirty_page);
if (dirtied && mapping) {
/*
* Some device drivers do not set page.mapping
* but still dirty their pages
*/
balance_dirty_pages_ratelimited(mapping);
}
/* file_update_time outside page_lock */ /* file_update_time outside page_lock */
if (vma->vm_file) if (vma->vm_file)
file_update_time(vma->vm_file); file_update_time(vma->vm_file);
......
...@@ -1544,16 +1544,6 @@ static void balance_dirty_pages(struct address_space *mapping, ...@@ -1544,16 +1544,6 @@ static void balance_dirty_pages(struct address_space *mapping,
bdi_start_background_writeback(bdi); bdi_start_background_writeback(bdi);
} }
void set_page_dirty_balance(struct page *page)
{
if (set_page_dirty(page)) {
struct address_space *mapping = page_mapping(page);
if (mapping)
balance_dirty_pages_ratelimited(mapping);
}
}
static DEFINE_PER_CPU(int, bdp_ratelimits); static DEFINE_PER_CPU(int, bdp_ratelimits);
/* /*
...@@ -2143,32 +2133,25 @@ EXPORT_SYMBOL(account_page_writeback); ...@@ -2143,32 +2133,25 @@ EXPORT_SYMBOL(account_page_writeback);
* page dirty in that case, but not all the buffers. This is a "bottom-up" * page dirty in that case, but not all the buffers. This is a "bottom-up"
* dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
* *
* Most callers have locked the page, which pins the address_space in memory. * The caller must ensure this doesn't race with truncation. Most will simply
* But zap_pte_range() does not lock the page, however in that case the * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
* mapping is pinned by the vma's ->vm_file reference. * the pte lock held, which also locks out truncation.
*
* We take care to handle the case where the page was truncated from the
* mapping by re-checking page_mapping() inside tree_lock.
*/ */
int __set_page_dirty_nobuffers(struct page *page) int __set_page_dirty_nobuffers(struct page *page)
{ {
if (!TestSetPageDirty(page)) { if (!TestSetPageDirty(page)) {
struct address_space *mapping = page_mapping(page); struct address_space *mapping = page_mapping(page);
struct address_space *mapping2;
unsigned long flags; unsigned long flags;
if (!mapping) if (!mapping)
return 1; return 1;
spin_lock_irqsave(&mapping->tree_lock, flags); spin_lock_irqsave(&mapping->tree_lock, flags);
mapping2 = page_mapping(page); BUG_ON(page_mapping(page) != mapping);
if (mapping2) { /* Race with truncate? */ WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
BUG_ON(mapping2 != mapping); account_page_dirtied(page, mapping);
WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); radix_tree_tag_set(&mapping->page_tree, page_index(page),
account_page_dirtied(page, mapping); PAGECACHE_TAG_DIRTY);
radix_tree_tag_set(&mapping->page_tree,
page_index(page), PAGECACHE_TAG_DIRTY);
}
spin_unlock_irqrestore(&mapping->tree_lock, flags); spin_unlock_irqrestore(&mapping->tree_lock, flags);
if (mapping->host) { if (mapping->host) {
/* !PageAnon && !swapper_space */ /* !PageAnon && !swapper_space */
...@@ -2325,12 +2308,10 @@ int clear_page_dirty_for_io(struct page *page) ...@@ -2325,12 +2308,10 @@ int clear_page_dirty_for_io(struct page *page)
/* /*
* We carefully synchronise fault handlers against * We carefully synchronise fault handlers against
* installing a dirty pte and marking the page dirty * installing a dirty pte and marking the page dirty
* at this point. We do this by having them hold the * at this point. We do this by having them hold the
* page lock at some point after installing their * page lock while dirtying the page, and pages are
* pte, but before marking the page dirty. * always locked coming in here, so we get the desired
* Pages are always locked coming in here, so we get * exclusion.
* the desired exclusion. See mm/memory.c:do_wp_page()
* for more comments.
*/ */
if (TestClearPageDirty(page)) { if (TestClearPageDirty(page)) {
dec_zone_page_state(page, NR_FILE_DIRTY); dec_zone_page_state(page, NR_FILE_DIRTY);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment