Commit 1fab45ab authored by Linus Torvalds's avatar Linus Torvalds

Merge tag 'rcu.2022.12.02a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu

Pull RCU updates from Paul McKenney:

 - Documentation updates. This is the second in a series from an ongoing
   review of the RCU documentation.

 - Miscellaneous fixes.

 - Introduce a default-off Kconfig option that depends on RCU_NOCB_CPU
   that, on CPUs mentioned in the nohz_full or rcu_nocbs boot-argument
   CPU lists, causes call_rcu() to introduce delays.

   These delays result in significant power savings on nearly idle
   Android and ChromeOS systems. These savings range from a few percent
   to more than ten percent.

   This series also includes several commits that change call_rcu() to a
   new call_rcu_hurry() function that avoids these delays in a few
   cases, for example, where timely wakeups are required. Several of
   these are outside of RCU and thus have acks and reviews from the
   relevant maintainers.

 - Create an srcu_read_lock_nmisafe() and an srcu_read_unlock_nmisafe()
   for architectures that support NMIs, but which do not provide
   NMI-safe this_cpu_inc(). These NMI-safe SRCU functions are required
   by the upcoming lockless printk() work by John Ogness et al.

 - Changes providing minor but important increases in torture test
   coverage for the new RCU polled-grace-period APIs.

 - Changes to torturescript that avoid redundant kernel builds, thus
   providing about a 30% speedup for the torture.sh acceptance test.

* tag 'rcu.2022.12.02a' of git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/linux-rcu: (49 commits)
  net: devinet: Reduce refcount before grace period
  net: Use call_rcu_hurry() for dst_release()
  workqueue: Make queue_rcu_work() use call_rcu_hurry()
  percpu-refcount: Use call_rcu_hurry() for atomic switch
  scsi/scsi_error: Use call_rcu_hurry() instead of call_rcu()
  rcu/rcutorture: Use call_rcu_hurry() where needed
  rcu/rcuscale: Use call_rcu_hurry() for async reader test
  rcu/sync: Use call_rcu_hurry() instead of call_rcu
  rcuscale: Add laziness and kfree tests
  rcu: Shrinker for lazy rcu
  rcu: Refactor code a bit in rcu_nocb_do_flush_bypass()
  rcu: Make call_rcu() lazy to save power
  rcu: Implement lockdep_rcu_enabled for !CONFIG_DEBUG_LOCK_ALLOC
  srcu: Debug NMI safety even on archs that don't require it
  srcu: Explain the reason behind the read side critical section on GP start
  srcu: Warn when NMI-unsafe API is used in NMI
  arch/s390: Add ARCH_HAS_NMI_SAFE_THIS_CPU_OPS Kconfig option
  arch/loongarch: Add ARCH_HAS_NMI_SAFE_THIS_CPU_OPS Kconfig option
  rcu: Fix __this_cpu_read() lockdep warning in rcu_force_quiescent_state()
  rcu-tasks: Make grace-period-age message human-readable
  ...
parents 830b3c68 87492c06
.. _array_rcu_doc:
Using RCU to Protect Read-Mostly Arrays
=======================================
Although RCU is more commonly used to protect linked lists, it can
also be used to protect arrays. Three situations are as follows:
1. :ref:`Hash Tables <hash_tables>`
2. :ref:`Static Arrays <static_arrays>`
3. :ref:`Resizable Arrays <resizable_arrays>`
Each of these three situations involves an RCU-protected pointer to an
array that is separately indexed. It might be tempting to consider use
of RCU to instead protect the index into an array, however, this use
case is **not** supported. The problem with RCU-protected indexes into
arrays is that compilers can play way too many optimization games with
integers, which means that the rules governing handling of these indexes
are far more trouble than they are worth. If RCU-protected indexes into
arrays prove to be particularly valuable (which they have not thus far),
explicit cooperation from the compiler will be required to permit them
to be safely used.
That aside, each of the three RCU-protected pointer situations are
described in the following sections.
.. _hash_tables:
Situation 1: Hash Tables
------------------------
Hash tables are often implemented as an array, where each array entry
has a linked-list hash chain. Each hash chain can be protected by RCU
as described in listRCU.rst. This approach also applies to other
array-of-list situations, such as radix trees.
.. _static_arrays:
Situation 2: Static Arrays
--------------------------
Static arrays, where the data (rather than a pointer to the data) is
located in each array element, and where the array is never resized,
have not been used with RCU. Rik van Riel recommends using seqlock in
this situation, which would also have minimal read-side overhead as long
as updates are rare.
Quick Quiz:
Why is it so important that updates be rare when using seqlock?
:ref:`Answer to Quick Quiz <answer_quick_quiz_seqlock>`
.. _resizable_arrays:
Situation 3: Resizable Arrays
------------------------------
Use of RCU for resizable arrays is demonstrated by the grow_ary()
function formerly used by the System V IPC code. The array is used
to map from semaphore, message-queue, and shared-memory IDs to the data
structure that represents the corresponding IPC construct. The grow_ary()
function does not acquire any locks; instead its caller must hold the
ids->sem semaphore.
The grow_ary() function, shown below, does some limit checks, allocates a
new ipc_id_ary, copies the old to the new portion of the new, initializes
the remainder of the new, updates the ids->entries pointer to point to
the new array, and invokes ipc_rcu_putref() to free up the old array.
Note that rcu_assign_pointer() is used to update the ids->entries pointer,
which includes any memory barriers required on whatever architecture
you are running on::
static int grow_ary(struct ipc_ids* ids, int newsize)
{
struct ipc_id_ary* new;
struct ipc_id_ary* old;
int i;
int size = ids->entries->size;
if(newsize > IPCMNI)
newsize = IPCMNI;
if(newsize <= size)
return newsize;
new = ipc_rcu_alloc(sizeof(struct kern_ipc_perm *)*newsize +
sizeof(struct ipc_id_ary));
if(new == NULL)
return size;
new->size = newsize;
memcpy(new->p, ids->entries->p,
sizeof(struct kern_ipc_perm *)*size +
sizeof(struct ipc_id_ary));
for(i=size;i<newsize;i++) {
new->p[i] = NULL;
}
old = ids->entries;
/*
* Use rcu_assign_pointer() to make sure the memcpyed
* contents of the new array are visible before the new
* array becomes visible.
*/
rcu_assign_pointer(ids->entries, new);
ipc_rcu_putref(old);
return newsize;
}
The ipc_rcu_putref() function decrements the array's reference count
and then, if the reference count has dropped to zero, uses call_rcu()
to free the array after a grace period has elapsed.
The array is traversed by the ipc_lock() function. This function
indexes into the array under the protection of rcu_read_lock(),
using rcu_dereference() to pick up the pointer to the array so
that it may later safely be dereferenced -- memory barriers are
required on the Alpha CPU. Since the size of the array is stored
with the array itself, there can be no array-size mismatches, so
a simple check suffices. The pointer to the structure corresponding
to the desired IPC object is placed in "out", with NULL indicating
a non-existent entry. After acquiring "out->lock", the "out->deleted"
flag indicates whether the IPC object is in the process of being
deleted, and, if not, the pointer is returned::
struct kern_ipc_perm* ipc_lock(struct ipc_ids* ids, int id)
{
struct kern_ipc_perm* out;
int lid = id % SEQ_MULTIPLIER;
struct ipc_id_ary* entries;
rcu_read_lock();
entries = rcu_dereference(ids->entries);
if(lid >= entries->size) {
rcu_read_unlock();
return NULL;
}
out = entries->p[lid];
if(out == NULL) {
rcu_read_unlock();
return NULL;
}
spin_lock(&out->lock);
/* ipc_rmid() may have already freed the ID while ipc_lock
* was spinning: here verify that the structure is still valid
*/
if (out->deleted) {
spin_unlock(&out->lock);
rcu_read_unlock();
return NULL;
}
return out;
}
.. _answer_quick_quiz_seqlock:
Answer to Quick Quiz:
Why is it so important that updates be rare when using seqlock?
The reason that it is important that updates be rare when
using seqlock is that frequent updates can livelock readers.
One way to avoid this problem is to assign a seqlock for
each array entry rather than to the entire array.
......@@ -32,8 +32,8 @@ over a rather long period of time, but improvements are always welcome!
for lockless updates. This does result in the mildly
counter-intuitive situation where rcu_read_lock() and
rcu_read_unlock() are used to protect updates, however, this
approach provides the same potential simplifications that garbage
collectors do.
approach can provide the same simplifications to certain types
of lockless algorithms that garbage collectors do.
1. Does the update code have proper mutual exclusion?
......@@ -49,12 +49,12 @@ over a rather long period of time, but improvements are always welcome!
them -- even x86 allows later loads to be reordered to precede
earlier stores), and be prepared to explain why this added
complexity is worthwhile. If you choose #c, be prepared to
explain how this single task does not become a major bottleneck on
big multiprocessor machines (for example, if the task is updating
information relating to itself that other tasks can read, there
by definition can be no bottleneck). Note that the definition
of "large" has changed significantly: Eight CPUs was "large"
in the year 2000, but a hundred CPUs was unremarkable in 2017.
explain how this single task does not become a major bottleneck
on large systems (for example, if the task is updating information
relating to itself that other tasks can read, there by definition
can be no bottleneck). Note that the definition of "large" has
changed significantly: Eight CPUs was "large" in the year 2000,
but a hundred CPUs was unremarkable in 2017.
2. Do the RCU read-side critical sections make proper use of
rcu_read_lock() and friends? These primitives are needed
......@@ -97,33 +97,38 @@ over a rather long period of time, but improvements are always welcome!
b. Proceed as in (a) above, but also maintain per-element
locks (that are acquired by both readers and writers)
that guard per-element state. Of course, fields that
the readers refrain from accessing can be guarded by
some other lock acquired only by updaters, if desired.
that guard per-element state. Fields that the readers
refrain from accessing can be guarded by some other lock
acquired only by updaters, if desired.
This works quite well, also.
This also works quite well.
c. Make updates appear atomic to readers. For example,
pointer updates to properly aligned fields will
appear atomic, as will individual atomic primitives.
Sequences of operations performed under a lock will *not*
appear to be atomic to RCU readers, nor will sequences
of multiple atomic primitives.
of multiple atomic primitives. One alternative is to
move multiple individual fields to a separate structure,
thus solving the multiple-field problem by imposing an
additional level of indirection.
This can work, but is starting to get a bit tricky.
d. Carefully order the updates and the reads so that
readers see valid data at all phases of the update.
This is often more difficult than it sounds, especially
given modern CPUs' tendency to reorder memory references.
One must usually liberally sprinkle memory barriers
(smp_wmb(), smp_rmb(), smp_mb()) through the code,
making it difficult to understand and to test.
It is usually better to group the changing data into
a separate structure, so that the change may be made
to appear atomic by updating a pointer to reference
a new structure containing updated values.
d. Carefully order the updates and the reads so that readers
see valid data at all phases of the update. This is often
more difficult than it sounds, especially given modern
CPUs' tendency to reorder memory references. One must
usually liberally sprinkle memory-ordering operations
through the code, making it difficult to understand and
to test. Where it works, it is better to use things
like smp_store_release() and smp_load_acquire(), but in
some cases the smp_mb() full memory barrier is required.
As noted earlier, it is usually better to group the
changing data into a separate structure, so that the
change may be made to appear atomic by updating a pointer
to reference a new structure containing updated values.
4. Weakly ordered CPUs pose special challenges. Almost all CPUs
are weakly ordered -- even x86 CPUs allow later loads to be
......@@ -188,26 +193,29 @@ over a rather long period of time, but improvements are always welcome!
when publicizing a pointer to a structure that can
be traversed by an RCU read-side critical section.
5. If call_rcu() or call_srcu() is used, the callback function will
be called from softirq context. In particular, it cannot block.
If you need the callback to block, run that code in a workqueue
handler scheduled from the callback. The queue_rcu_work()
function does this for you in the case of call_rcu().
5. If any of call_rcu(), call_srcu(), call_rcu_tasks(),
call_rcu_tasks_rude(), or call_rcu_tasks_trace() is used,
the callback function may be invoked from softirq context,
and in any case with bottom halves disabled. In particular,
this callback function cannot block. If you need the callback
to block, run that code in a workqueue handler scheduled from
the callback. The queue_rcu_work() function does this for you
in the case of call_rcu().
6. Since synchronize_rcu() can block, it cannot be called
from any sort of irq context. The same rule applies
for synchronize_srcu(), synchronize_rcu_expedited(), and
synchronize_srcu_expedited().
for synchronize_srcu(), synchronize_rcu_expedited(),
synchronize_srcu_expedited(), synchronize_rcu_tasks(),
synchronize_rcu_tasks_rude(), and synchronize_rcu_tasks_trace().
The expedited forms of these primitives have the same semantics
as the non-expedited forms, but expediting is both expensive and
(with the exception of synchronize_srcu_expedited()) unfriendly
to real-time workloads. Use of the expedited primitives should
be restricted to rare configuration-change operations that would
not normally be undertaken while a real-time workload is running.
However, real-time workloads can use rcupdate.rcu_normal kernel
boot parameter to completely disable expedited grace periods,
though this might have performance implications.
as the non-expedited forms, but expediting is more CPU intensive.
Use of the expedited primitives should be restricted to rare
configuration-change operations that would not normally be
undertaken while a real-time workload is running. Note that
IPI-sensitive real-time workloads can use the rcupdate.rcu_normal
kernel boot parameter to completely disable expedited grace
periods, though this might have performance implications.
In particular, if you find yourself invoking one of the expedited
primitives repeatedly in a loop, please do everyone a favor:
......@@ -215,8 +223,9 @@ over a rather long period of time, but improvements are always welcome!
a single non-expedited primitive to cover the entire batch.
This will very likely be faster than the loop containing the
expedited primitive, and will be much much easier on the rest
of the system, especially to real-time workloads running on
the rest of the system.
of the system, especially to real-time workloads running on the
rest of the system. Alternatively, instead use asynchronous
primitives such as call_rcu().
7. As of v4.20, a given kernel implements only one RCU flavor, which
is RCU-sched for PREEMPTION=n and RCU-preempt for PREEMPTION=y.
......@@ -239,7 +248,8 @@ over a rather long period of time, but improvements are always welcome!
the corresponding readers must use rcu_read_lock_trace() and
rcu_read_unlock_trace(). If an updater uses call_rcu_tasks_rude()
or synchronize_rcu_tasks_rude(), then the corresponding readers
must use anything that disables interrupts.
must use anything that disables preemption, for example,
preempt_disable() and preempt_enable().
Mixing things up will result in confusion and broken kernels, and
has even resulted in an exploitable security issue. Therefore,
......@@ -253,15 +263,16 @@ over a rather long period of time, but improvements are always welcome!
that this usage is safe is that readers can use anything that
disables BH when updaters use call_rcu() or synchronize_rcu().
8. Although synchronize_rcu() is slower than is call_rcu(), it
usually results in simpler code. So, unless update performance is
critically important, the updaters cannot block, or the latency of
synchronize_rcu() is visible from userspace, synchronize_rcu()
should be used in preference to call_rcu(). Furthermore,
kfree_rcu() usually results in even simpler code than does
synchronize_rcu() without synchronize_rcu()'s multi-millisecond
latency. So please take advantage of kfree_rcu()'s "fire and
forget" memory-freeing capabilities where it applies.
8. Although synchronize_rcu() is slower than is call_rcu(),
it usually results in simpler code. So, unless update
performance is critically important, the updaters cannot block,
or the latency of synchronize_rcu() is visible from userspace,
synchronize_rcu() should be used in preference to call_rcu().
Furthermore, kfree_rcu() and kvfree_rcu() usually result
in even simpler code than does synchronize_rcu() without
synchronize_rcu()'s multi-millisecond latency. So please take
advantage of kfree_rcu()'s and kvfree_rcu()'s "fire and forget"
memory-freeing capabilities where it applies.
An especially important property of the synchronize_rcu()
primitive is that it automatically self-limits: if grace periods
......@@ -271,8 +282,8 @@ over a rather long period of time, but improvements are always welcome!
cases where grace periods are delayed, as failing to do so can
result in excessive realtime latencies or even OOM conditions.
Ways of gaining this self-limiting property when using call_rcu()
include:
Ways of gaining this self-limiting property when using call_rcu(),
kfree_rcu(), or kvfree_rcu() include:
a. Keeping a count of the number of data-structure elements
used by the RCU-protected data structure, including
......@@ -304,18 +315,21 @@ over a rather long period of time, but improvements are always welcome!
here is that superuser already has lots of ways to crash
the machine.
d. Periodically invoke synchronize_rcu(), permitting a limited
number of updates per grace period. Better yet, periodically
invoke rcu_barrier() to wait for all outstanding callbacks.
d. Periodically invoke rcu_barrier(), permitting a limited
number of updates per grace period.
The same cautions apply to call_srcu() and kfree_rcu().
The same cautions apply to call_srcu(), call_rcu_tasks(),
call_rcu_tasks_rude(), and call_rcu_tasks_trace(). This is
why there is an srcu_barrier(), rcu_barrier_tasks(),
rcu_barrier_tasks_rude(), and rcu_barrier_tasks_rude(),
respectively.
Note that although these primitives do take action to avoid memory
exhaustion when any given CPU has too many callbacks, a determined
user could still exhaust memory. This is especially the case
if a system with a large number of CPUs has been configured to
offload all of its RCU callbacks onto a single CPU, or if the
system has relatively little free memory.
Note that although these primitives do take action to avoid
memory exhaustion when any given CPU has too many callbacks,
a determined user or administrator can still exhaust memory.
This is especially the case if a system with a large number of
CPUs has been configured to offload all of its RCU callbacks onto
a single CPU, or if the system has relatively little free memory.
9. All RCU list-traversal primitives, which include
rcu_dereference(), list_for_each_entry_rcu(), and
......@@ -344,14 +358,14 @@ over a rather long period of time, but improvements are always welcome!
and you don't hold the appropriate update-side lock, you *must*
use the "_rcu()" variants of the list macros. Failing to do so
will break Alpha, cause aggressive compilers to generate bad code,
and confuse people trying to read your code.
and confuse people trying to understand your code.
11. Any lock acquired by an RCU callback must be acquired elsewhere
with softirq disabled, e.g., via spin_lock_irqsave(),
spin_lock_bh(), etc. Failing to disable softirq on a given
acquisition of that lock will result in deadlock as soon as
the RCU softirq handler happens to run your RCU callback while
interrupting that acquisition's critical section.
with softirq disabled, e.g., via spin_lock_bh(). Failing to
disable softirq on a given acquisition of that lock will result
in deadlock as soon as the RCU softirq handler happens to run
your RCU callback while interrupting that acquisition's critical
section.
12. RCU callbacks can be and are executed in parallel. In many cases,
the callback code simply wrappers around kfree(), so that this
......@@ -372,7 +386,17 @@ over a rather long period of time, but improvements are always welcome!
for some real-time workloads, this is the whole point of using
the rcu_nocbs= kernel boot parameter.
13. Unlike other forms of RCU, it *is* permissible to block in an
In addition, do not assume that callbacks queued in a given order
will be invoked in that order, even if they all are queued on the
same CPU. Furthermore, do not assume that same-CPU callbacks will
be invoked serially. For example, in recent kernels, CPUs can be
switched between offloaded and de-offloaded callback invocation,
and while a given CPU is undergoing such a switch, its callbacks
might be concurrently invoked by that CPU's softirq handler and
that CPU's rcuo kthread. At such times, that CPU's callbacks
might be executed both concurrently and out of order.
13. Unlike most flavors of RCU, it *is* permissible to block in an
SRCU read-side critical section (demarked by srcu_read_lock()
and srcu_read_unlock()), hence the "SRCU": "sleepable RCU".
Please note that if you don't need to sleep in read-side critical
......@@ -412,6 +436,12 @@ over a rather long period of time, but improvements are always welcome!
never sends IPIs to other CPUs, so it is easier on
real-time workloads than is synchronize_rcu_expedited().
It is also permissible to sleep in RCU Tasks Trace read-side
critical, which are delimited by rcu_read_lock_trace() and
rcu_read_unlock_trace(). However, this is a specialized flavor
of RCU, and you should not use it without first checking with
its current users. In most cases, you should instead use SRCU.
Note that rcu_assign_pointer() relates to SRCU just as it does to
other forms of RCU, but instead of rcu_dereference() you should
use srcu_dereference() in order to avoid lockdep splats.
......@@ -442,50 +472,62 @@ over a rather long period of time, but improvements are always welcome!
find problems as follows:
CONFIG_PROVE_LOCKING:
check that accesses to RCU-protected data
structures are carried out under the proper RCU
read-side critical section, while holding the right
combination of locks, or whatever other conditions
are appropriate.
check that accesses to RCU-protected data structures
are carried out under the proper RCU read-side critical
section, while holding the right combination of locks,
or whatever other conditions are appropriate.
CONFIG_DEBUG_OBJECTS_RCU_HEAD:
check that you don't pass the
same object to call_rcu() (or friends) before an RCU
grace period has elapsed since the last time that you
passed that same object to call_rcu() (or friends).
check that you don't pass the same object to call_rcu()
(or friends) before an RCU grace period has elapsed
since the last time that you passed that same object to
call_rcu() (or friends).
__rcu sparse checks:
tag the pointer to the RCU-protected data
structure with __rcu, and sparse will warn you if you
access that pointer without the services of one of the
variants of rcu_dereference().
tag the pointer to the RCU-protected data structure
with __rcu, and sparse will warn you if you access that
pointer without the services of one of the variants
of rcu_dereference().
These debugging aids can help you find problems that are
otherwise extremely difficult to spot.
17. If you register a callback using call_rcu() or call_srcu(), and
pass in a function defined within a loadable module, then it in
necessary to wait for all pending callbacks to be invoked after
the last invocation and before unloading that module. Note that
it is absolutely *not* sufficient to wait for a grace period!
The current (say) synchronize_rcu() implementation is *not*
guaranteed to wait for callbacks registered on other CPUs.
Or even on the current CPU if that CPU recently went offline
and came back online.
17. If you pass a callback function defined within a module to one of
call_rcu(), call_srcu(), call_rcu_tasks(), call_rcu_tasks_rude(),
or call_rcu_tasks_trace(), then it is necessary to wait for all
pending callbacks to be invoked before unloading that module.
Note that it is absolutely *not* sufficient to wait for a grace
period! For example, synchronize_rcu() implementation is *not*
guaranteed to wait for callbacks registered on other CPUs via
call_rcu(). Or even on the current CPU if that CPU recently
went offline and came back online.
You instead need to use one of the barrier functions:
- call_rcu() -> rcu_barrier()
- call_srcu() -> srcu_barrier()
- call_rcu_tasks() -> rcu_barrier_tasks()
- call_rcu_tasks_rude() -> rcu_barrier_tasks_rude()
- call_rcu_tasks_trace() -> rcu_barrier_tasks_trace()
However, these barrier functions are absolutely *not* guaranteed
to wait for a grace period. In fact, if there are no call_rcu()
callbacks waiting anywhere in the system, rcu_barrier() is within
its rights to return immediately.
So if you need to wait for both an RCU grace period and for
all pre-existing call_rcu() callbacks, you will need to execute
both rcu_barrier() and synchronize_rcu(), if necessary, using
something like workqueues to execute them concurrently.
to wait for a grace period. For example, if there are no
call_rcu() callbacks queued anywhere in the system, rcu_barrier()
can and will return immediately.
So if you need to wait for both a grace period and for all
pre-existing callbacks, you will need to invoke both functions,
with the pair depending on the flavor of RCU:
- Either synchronize_rcu() or synchronize_rcu_expedited(),
together with rcu_barrier()
- Either synchronize_srcu() or synchronize_srcu_expedited(),
together with and srcu_barrier()
- synchronize_rcu_tasks() and rcu_barrier_tasks()
- synchronize_tasks_rude() and rcu_barrier_tasks_rude()
- synchronize_tasks_trace() and rcu_barrier_tasks_trace()
If necessary, you can use something like workqueues to execute
the requisite pair of functions concurrently.
See rcubarrier.rst for more information.
......@@ -9,7 +9,6 @@ RCU concepts
.. toctree::
:maxdepth: 3
arrayRCU
checklist
lockdep
lockdep-splat
......
......@@ -3,11 +3,10 @@
Using RCU to Protect Read-Mostly Linked Lists
=============================================
One of the best applications of RCU is to protect read-mostly linked lists
(``struct list_head`` in list.h). One big advantage of this approach
is that all of the required memory barriers are included for you in
the list macros. This document describes several applications of RCU,
with the best fits first.
One of the most common uses of RCU is protecting read-mostly linked lists
(``struct list_head`` in list.h). One big advantage of this approach is
that all of the required memory ordering is provided by the list macros.
This document describes several list-based RCU use cases.
Example 1: Read-mostly list: Deferred Destruction
......@@ -35,7 +34,8 @@ The code traversing the list of all processes typically looks like::
}
rcu_read_unlock();
The simplified code for removing a process from a task list is::
The simplified and heavily inlined code for removing a process from a
task list is::
void release_task(struct task_struct *p)
{
......@@ -45,39 +45,48 @@ The simplified code for removing a process from a task list is::
call_rcu(&p->rcu, delayed_put_task_struct);
}
When a process exits, ``release_task()`` calls ``list_del_rcu(&p->tasks)`` under
``tasklist_lock`` writer lock protection, to remove the task from the list of
all tasks. The ``tasklist_lock`` prevents concurrent list additions/removals
from corrupting the list. Readers using ``for_each_process()`` are not protected
with the ``tasklist_lock``. To prevent readers from noticing changes in the list
pointers, the ``task_struct`` object is freed only after one or more grace
periods elapse (with the help of call_rcu()). This deferring of destruction
ensures that any readers traversing the list will see valid ``p->tasks.next``
pointers and deletion/freeing can happen in parallel with traversal of the list.
This pattern is also called an **existence lock**, since RCU pins the object in
memory until all existing readers finish.
When a process exits, ``release_task()`` calls ``list_del_rcu(&p->tasks)``
via __exit_signal() and __unhash_process() under ``tasklist_lock``
writer lock protection. The list_del_rcu() invocation removes
the task from the list of all tasks. The ``tasklist_lock``
prevents concurrent list additions/removals from corrupting the
list. Readers using ``for_each_process()`` are not protected with the
``tasklist_lock``. To prevent readers from noticing changes in the list
pointers, the ``task_struct`` object is freed only after one or more
grace periods elapse, with the help of call_rcu(), which is invoked via
put_task_struct_rcu_user(). This deferring of destruction ensures that
any readers traversing the list will see valid ``p->tasks.next`` pointers
and deletion/freeing can happen in parallel with traversal of the list.
This pattern is also called an **existence lock**, since RCU refrains
from invoking the delayed_put_task_struct() callback function until
all existing readers finish, which guarantees that the ``task_struct``
object in question will remain in existence until after the completion
of all RCU readers that might possibly have a reference to that object.
Example 2: Read-Side Action Taken Outside of Lock: No In-Place Updates
----------------------------------------------------------------------
The best applications are cases where, if reader-writer locking were
used, the read-side lock would be dropped before taking any action
based on the results of the search. The most celebrated example is
the routing table. Because the routing table is tracking the state of
equipment outside of the computer, it will at times contain stale data.
Therefore, once the route has been computed, there is no need to hold
the routing table static during transmission of the packet. After all,
you can hold the routing table static all you want, but that won't keep
the external Internet from changing, and it is the state of the external
Internet that really matters. In addition, routing entries are typically
added or deleted, rather than being modified in place.
A straightforward example of this use of RCU may be found in the
system-call auditing support. For example, a reader-writer locked
Some reader-writer locking use cases compute a value while holding
the read-side lock, but continue to use that value after that lock is
released. These use cases are often good candidates for conversion
to RCU. One prominent example involves network packet routing.
Because the packet-routing data tracks the state of equipment outside
of the computer, it will at times contain stale data. Therefore, once
the route has been computed, there is no need to hold the routing table
static during transmission of the packet. After all, you can hold the
routing table static all you want, but that won't keep the external
Internet from changing, and it is the state of the external Internet
that really matters. In addition, routing entries are typically added
or deleted, rather than being modified in place. This is a rare example
of the finite speed of light and the non-zero size of atoms actually
helping make synchronization be lighter weight.
A straightforward example of this type of RCU use case may be found in
the system-call auditing support. For example, a reader-writer locked
implementation of ``audit_filter_task()`` might be as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
{
struct audit_entry *e;
enum audit_state state;
......@@ -86,6 +95,8 @@ implementation of ``audit_filter_task()`` might be as follows::
/* Note: audit_filter_mutex held by caller. */
list_for_each_entry(e, &audit_tsklist, list) {
if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
if (state == AUDIT_STATE_RECORD)
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
read_unlock(&auditsc_lock);
return state;
}
......@@ -101,7 +112,7 @@ you are turning auditing off, it is OK to audit a few extra system calls.
This means that RCU can be easily applied to the read side, as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
{
struct audit_entry *e;
enum audit_state state;
......@@ -110,6 +121,8 @@ This means that RCU can be easily applied to the read side, as follows::
/* Note: audit_filter_mutex held by caller. */
list_for_each_entry_rcu(e, &audit_tsklist, list) {
if (audit_filter_rules(tsk, &e->rule, NULL, &state)) {
if (state == AUDIT_STATE_RECORD)
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
rcu_read_unlock();
return state;
}
......@@ -118,13 +131,15 @@ This means that RCU can be easily applied to the read side, as follows::
return AUDIT_BUILD_CONTEXT;
}
The ``read_lock()`` and ``read_unlock()`` calls have become rcu_read_lock()
and rcu_read_unlock(), respectively, and the list_for_each_entry() has
become list_for_each_entry_rcu(). The **_rcu()** list-traversal primitives
insert the read-side memory barriers that are required on DEC Alpha CPUs.
The read_lock() and read_unlock() calls have become rcu_read_lock()
and rcu_read_unlock(), respectively, and the list_for_each_entry()
has become list_for_each_entry_rcu(). The **_rcu()** list-traversal
primitives add READ_ONCE() and diagnostic checks for incorrect use
outside of an RCU read-side critical section.
The changes to the update side are also straightforward. A reader-writer lock
might be used as follows for deletion and insertion::
might be used as follows for deletion and insertion in these simplified
versions of audit_del_rule() and audit_add_rule()::
static inline int audit_del_rule(struct audit_rule *rule,
struct list_head *list)
......@@ -188,16 +203,16 @@ Following are the RCU equivalents for these two functions::
return 0;
}
Normally, the ``write_lock()`` and ``write_unlock()`` would be replaced by a
Normally, the write_lock() and write_unlock() would be replaced by a
spin_lock() and a spin_unlock(). But in this case, all callers hold
``audit_filter_mutex``, so no additional locking is required. The
``auditsc_lock`` can therefore be eliminated, since use of RCU eliminates the
auditsc_lock can therefore be eliminated, since use of RCU eliminates the
need for writers to exclude readers.
The list_del(), list_add(), and list_add_tail() primitives have been
replaced by list_del_rcu(), list_add_rcu(), and list_add_tail_rcu().
The **_rcu()** list-manipulation primitives add memory barriers that are needed on
weakly ordered CPUs (most of them!). The list_del_rcu() primitive omits the
The **_rcu()** list-manipulation primitives add memory barriers that are
needed on weakly ordered CPUs. The list_del_rcu() primitive omits the
pointer poisoning debug-assist code that would otherwise cause concurrent
readers to fail spectacularly.
......@@ -238,7 +253,9 @@ need to be filled in)::
The RCU version creates a copy, updates the copy, then replaces the old
entry with the newly updated entry. This sequence of actions, allowing
concurrent reads while making a copy to perform an update, is what gives
RCU (*read-copy update*) its name. The RCU code is as follows::
RCU (*read-copy update*) its name.
The RCU version of audit_upd_rule() is as follows::
static inline int audit_upd_rule(struct audit_rule *rule,
struct list_head *list,
......@@ -267,6 +284,9 @@ RCU (*read-copy update*) its name. The RCU code is as follows::
Again, this assumes that the caller holds ``audit_filter_mutex``. Normally, the
writer lock would become a spinlock in this sort of code.
The update_lsm_rule() does something very similar, for those who would
prefer to look at real Linux-kernel code.
Another use of this pattern can be found in the openswitch driver's *connection
tracking table* code in ``ct_limit_set()``. The table holds connection tracking
entries and has a limit on the maximum entries. There is one such table
......@@ -281,9 +301,10 @@ Example 4: Eliminating Stale Data
---------------------------------
The auditing example above tolerates stale data, as do most algorithms
that are tracking external state. Because there is a delay from the
time the external state changes before Linux becomes aware of the change,
additional RCU-induced staleness is generally not a problem.
that are tracking external state. After all, given there is a delay
from the time the external state changes before Linux becomes aware
of the change, and so as noted earlier, a small quantity of additional
RCU-induced staleness is generally not a problem.
However, there are many examples where stale data cannot be tolerated.
One example in the Linux kernel is the System V IPC (see the shm_lock()
......@@ -302,7 +323,7 @@ Quick Quiz:
If the system-call audit module were to ever need to reject stale data, one way
to accomplish this would be to add a ``deleted`` flag and a ``lock`` spinlock to the
audit_entry structure, and modify ``audit_filter_task()`` as follows::
``audit_entry`` structure, and modify audit_filter_task() as follows::
static enum audit_state audit_filter_task(struct task_struct *tsk)
{
......@@ -319,6 +340,8 @@ audit_entry structure, and modify ``audit_filter_task()`` as follows::
return AUDIT_BUILD_CONTEXT;
}
rcu_read_unlock();
if (state == AUDIT_STATE_RECORD)
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
return state;
}
}
......@@ -326,12 +349,6 @@ audit_entry structure, and modify ``audit_filter_task()`` as follows::
return AUDIT_BUILD_CONTEXT;
}
Note that this example assumes that entries are only added and deleted.
Additional mechanism is required to deal correctly with the update-in-place
performed by ``audit_upd_rule()``. For one thing, ``audit_upd_rule()`` would
need additional memory barriers to ensure that the list_add_rcu() was really
executed before the list_del_rcu().
The ``audit_del_rule()`` function would need to set the ``deleted`` flag under the
spinlock as follows::
......@@ -357,24 +374,32 @@ spinlock as follows::
This too assumes that the caller holds ``audit_filter_mutex``.
Note that this example assumes that entries are only added and deleted.
Additional mechanism is required to deal correctly with the update-in-place
performed by audit_upd_rule(). For one thing, audit_upd_rule() would
need to hold the locks of both the old ``audit_entry`` and its replacement
while executing the list_replace_rcu().
Example 5: Skipping Stale Objects
---------------------------------
For some usecases, reader performance can be improved by skipping stale objects
during read-side list traversal if the object in concern is pending destruction
after one or more grace periods. One such example can be found in the timerfd
subsystem. When a ``CLOCK_REALTIME`` clock is reprogrammed - for example due to
setting of the system time, then all programmed timerfds that depend on this
clock get triggered and processes waiting on them to expire are woken up in
advance of their scheduled expiry. To facilitate this, all such timers are added
to an RCU-managed ``cancel_list`` when they are setup in
For some use cases, reader performance can be improved by skipping
stale objects during read-side list traversal, where stale objects
are those that will be removed and destroyed after one or more grace
periods. One such example can be found in the timerfd subsystem. When a
``CLOCK_REALTIME`` clock is reprogrammed (for example due to setting
of the system time) then all programmed ``timerfds`` that depend on
this clock get triggered and processes waiting on them are awakened in
advance of their scheduled expiry. To facilitate this, all such timers
are added to an RCU-managed ``cancel_list`` when they are setup in
``timerfd_setup_cancel()``::
static void timerfd_setup_cancel(struct timerfd_ctx *ctx, int flags)
{
spin_lock(&ctx->cancel_lock);
if ((ctx->clockid == CLOCK_REALTIME &&
if ((ctx->clockid == CLOCK_REALTIME ||
ctx->clockid == CLOCK_REALTIME_ALARM) &&
(flags & TFD_TIMER_ABSTIME) && (flags & TFD_TIMER_CANCEL_ON_SET)) {
if (!ctx->might_cancel) {
ctx->might_cancel = true;
......@@ -382,13 +407,16 @@ to an RCU-managed ``cancel_list`` when they are setup in
list_add_rcu(&ctx->clist, &cancel_list);
spin_unlock(&cancel_lock);
}
} else {
__timerfd_remove_cancel(ctx);
}
spin_unlock(&ctx->cancel_lock);
}
When a timerfd is freed (fd is closed), then the ``might_cancel`` flag of the
timerfd object is cleared, the object removed from the ``cancel_list`` and
destroyed::
When a timerfd is freed (fd is closed), then the ``might_cancel``
flag of the timerfd object is cleared, the object removed from the
``cancel_list`` and destroyed, as shown in this simplified and inlined
version of timerfd_release()::
int timerfd_release(struct inode *inode, struct file *file)
{
......@@ -403,7 +431,10 @@ destroyed::
}
spin_unlock(&ctx->cancel_lock);
hrtimer_cancel(&ctx->t.tmr);
if (isalarm(ctx))
alarm_cancel(&ctx->t.alarm);
else
hrtimer_cancel(&ctx->t.tmr);
kfree_rcu(ctx, rcu);
return 0;
}
......@@ -416,6 +447,7 @@ objects::
void timerfd_clock_was_set(void)
{
ktime_t moffs = ktime_mono_to_real(0);
struct timerfd_ctx *ctx;
unsigned long flags;
......@@ -424,7 +456,7 @@ objects::
if (!ctx->might_cancel)
continue;
spin_lock_irqsave(&ctx->wqh.lock, flags);
if (ctx->moffs != ktime_mono_to_real(0)) {
if (ctx->moffs != moffs) {
ctx->moffs = KTIME_MAX;
ctx->ticks++;
wake_up_locked_poll(&ctx->wqh, EPOLLIN);
......@@ -434,10 +466,10 @@ objects::
rcu_read_unlock();
}
The key point here is, because RCU-traversal of the ``cancel_list`` happens
while objects are being added and removed to the list, sometimes the traversal
can step on an object that has been removed from the list. In this example, it
is seen that it is better to skip such objects using a flag.
The key point is that because RCU-protected traversal of the
``cancel_list`` happens concurrently with object addition and removal,
sometimes the traversal can access an object that has been removed from
the list. In this example, a flag is used to skip such objects.
Summary
......
......@@ -17,7 +17,9 @@ state::
rcu_read_lock_held() for normal RCU.
rcu_read_lock_bh_held() for RCU-bh.
rcu_read_lock_sched_held() for RCU-sched.
rcu_read_lock_any_held() for any of normal RCU, RCU-bh, and RCU-sched.
srcu_read_lock_held() for SRCU.
rcu_read_lock_trace_held() for RCU Tasks Trace.
These functions are conservative, and will therefore return 1 if they
aren't certain (for example, if CONFIG_DEBUG_LOCK_ALLOC is not set).
......@@ -53,6 +55,8 @@ checking of rcu_dereference() primitives:
is invoked by both SRCU readers and updaters.
rcu_dereference_raw(p):
Don't check. (Use sparingly, if at all.)
rcu_dereference_raw_check(p):
Don't do lockdep at all. (Use sparingly, if at all.)
rcu_dereference_protected(p, c):
Use explicit check expression "c", and omit all barriers
and compiler constraints. This is useful when the data
......
......@@ -468,6 +468,9 @@ config ARCH_WANT_IRQS_OFF_ACTIVATE_MM
config ARCH_HAVE_NMI_SAFE_CMPXCHG
bool
config ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
bool
config HAVE_ALIGNED_STRUCT_PAGE
bool
help
......
......@@ -31,6 +31,7 @@ config ARM64
select ARCH_HAS_KCOV
select ARCH_HAS_KEEPINITRD
select ARCH_HAS_MEMBARRIER_SYNC_CORE
select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
select ARCH_HAS_PTE_DEVMAP
select ARCH_HAS_PTE_SPECIAL
......
......@@ -10,6 +10,7 @@ config LOONGARCH
select ARCH_ENABLE_MEMORY_HOTPLUG
select ARCH_ENABLE_MEMORY_HOTREMOVE
select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
select ARCH_HAS_PTE_SPECIAL
select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
select ARCH_INLINE_READ_LOCK if !PREEMPTION
......
......@@ -73,6 +73,7 @@ config S390
select ARCH_HAS_GIGANTIC_PAGE
select ARCH_HAS_KCOV
select ARCH_HAS_MEM_ENCRYPT
select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
select ARCH_HAS_PTE_SPECIAL
select ARCH_HAS_SCALED_CPUTIME
select ARCH_HAS_SET_MEMORY
......
......@@ -81,6 +81,7 @@ config X86
select ARCH_HAS_KCOV if X86_64
select ARCH_HAS_MEM_ENCRYPT
select ARCH_HAS_MEMBARRIER_SYNC_CORE
select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
select ARCH_HAS_PMEM_API if X86_64
select ARCH_HAS_PTE_DEVMAP if X86_64
......
......@@ -312,7 +312,7 @@ void scsi_eh_scmd_add(struct scsi_cmnd *scmd)
* Ensure that all tasks observe the host state change before the
* host_failed change.
*/
call_rcu(&scmd->rcu, scsi_eh_inc_host_failed);
call_rcu_hurry(&scmd->rcu, scsi_eh_inc_host_failed);
}
/**
......
......@@ -416,7 +416,7 @@ static __always_inline void guest_context_enter_irqoff(void)
*/
if (!context_tracking_guest_enter()) {
instrumentation_begin();
rcu_virt_note_context_switch(smp_processor_id());
rcu_virt_note_context_switch();
instrumentation_end();
}
}
......
......@@ -108,6 +108,15 @@ static inline int rcu_preempt_depth(void)
#endif /* #else #ifdef CONFIG_PREEMPT_RCU */
#ifdef CONFIG_RCU_LAZY
void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func);
#else
static inline void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
{
call_rcu(head, func);
}
#endif
/* Internal to kernel */
void rcu_init(void);
extern int rcu_scheduler_active;
......@@ -340,6 +349,11 @@ static inline int rcu_read_lock_any_held(void)
return !preemptible();
}
static inline int debug_lockdep_rcu_enabled(void)
{
return 0;
}
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
#ifdef CONFIG_PROVE_RCU
......
......@@ -142,12 +142,10 @@ static inline int rcu_needs_cpu(void)
* Take advantage of the fact that there is only one CPU, which
* allows us to ignore virtualization-based context switches.
*/
static inline void rcu_virt_note_context_switch(int cpu) { }
static inline void rcu_virt_note_context_switch(void) { }
static inline void rcu_cpu_stall_reset(void) { }
static inline int rcu_jiffies_till_stall_check(void) { return 21 * HZ; }
static inline void rcu_irq_exit_check_preempt(void) { }
#define rcu_is_idle_cpu(cpu) \
(is_idle_task(current) && !in_nmi() && !in_hardirq() && !in_serving_softirq())
static inline void exit_rcu(void) { }
static inline bool rcu_preempt_need_deferred_qs(struct task_struct *t)
{
......
......@@ -27,7 +27,7 @@ void rcu_cpu_stall_reset(void);
* wrapper around rcu_note_context_switch(), which allows TINY_RCU
* to save a few bytes. The caller must have disabled interrupts.
*/
static inline void rcu_virt_note_context_switch(int cpu)
static inline void rcu_virt_note_context_switch(void)
{
rcu_note_context_switch(false);
}
......@@ -87,8 +87,6 @@ bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
void cond_synchronize_rcu(unsigned long oldstate);
void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp);
bool rcu_is_idle_cpu(int cpu);
#ifdef CONFIG_PROVE_RCU
void rcu_irq_exit_check_preempt(void);
#else
......
......@@ -76,6 +76,17 @@
* rcu_read_lock before reading the address, then rcu_read_unlock after
* taking the spinlock within the structure expected at that address.
*
* Note that it is not possible to acquire a lock within a structure
* allocated with SLAB_TYPESAFE_BY_RCU without first acquiring a reference
* as described above. The reason is that SLAB_TYPESAFE_BY_RCU pages
* are not zeroed before being given to the slab, which means that any
* locks must be initialized after each and every kmem_struct_alloc().
* Alternatively, make the ctor passed to kmem_cache_create() initialize
* the locks at page-allocation time, as is done in __i915_request_ctor(),
* sighand_ctor(), and anon_vma_ctor(). Such a ctor permits readers
* to safely acquire those ctor-initialized locks under rcu_read_lock()
* protection.
*
* Note that SLAB_TYPESAFE_BY_RCU was originally named SLAB_DESTROY_BY_RCU.
*/
/* Defer freeing slabs to RCU */
......
......@@ -64,6 +64,20 @@ unsigned long get_state_synchronize_srcu(struct srcu_struct *ssp);
unsigned long start_poll_synchronize_srcu(struct srcu_struct *ssp);
bool poll_state_synchronize_srcu(struct srcu_struct *ssp, unsigned long cookie);
#ifdef CONFIG_NEED_SRCU_NMI_SAFE
int __srcu_read_lock_nmisafe(struct srcu_struct *ssp) __acquires(ssp);
void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx) __releases(ssp);
#else
static inline int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
{
return __srcu_read_lock(ssp);
}
static inline void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
{
__srcu_read_unlock(ssp, idx);
}
#endif /* CONFIG_NEED_SRCU_NMI_SAFE */
#ifdef CONFIG_SRCU
void srcu_init(void);
#else /* #ifdef CONFIG_SRCU */
......@@ -104,6 +118,18 @@ static inline int srcu_read_lock_held(const struct srcu_struct *ssp)
#endif /* #else #ifdef CONFIG_DEBUG_LOCK_ALLOC */
#define SRCU_NMI_UNKNOWN 0x0
#define SRCU_NMI_UNSAFE 0x1
#define SRCU_NMI_SAFE 0x2
#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_TREE_SRCU)
void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe);
#else
static inline void srcu_check_nmi_safety(struct srcu_struct *ssp,
bool nmi_safe) { }
#endif
/**
* srcu_dereference_check - fetch SRCU-protected pointer for later dereferencing
* @p: the pointer to fetch and protect for later dereferencing
......@@ -161,17 +187,36 @@ static inline int srcu_read_lock(struct srcu_struct *ssp) __acquires(ssp)
{
int retval;
srcu_check_nmi_safety(ssp, false);
retval = __srcu_read_lock(ssp);
rcu_lock_acquire(&(ssp)->dep_map);
return retval;
}
/**
* srcu_read_lock_nmisafe - register a new reader for an SRCU-protected structure.
* @ssp: srcu_struct in which to register the new reader.
*
* Enter an SRCU read-side critical section, but in an NMI-safe manner.
* See srcu_read_lock() for more information.
*/
static inline int srcu_read_lock_nmisafe(struct srcu_struct *ssp) __acquires(ssp)
{
int retval;
srcu_check_nmi_safety(ssp, true);
retval = __srcu_read_lock_nmisafe(ssp);
rcu_lock_acquire(&(ssp)->dep_map);
return retval;
}
/* Used by tracing, cannot be traced and cannot invoke lockdep. */
static inline notrace int
srcu_read_lock_notrace(struct srcu_struct *ssp) __acquires(ssp)
{
int retval;
srcu_check_nmi_safety(ssp, false);
retval = __srcu_read_lock(ssp);
return retval;
}
......@@ -187,14 +232,32 @@ static inline void srcu_read_unlock(struct srcu_struct *ssp, int idx)
__releases(ssp)
{
WARN_ON_ONCE(idx & ~0x1);
srcu_check_nmi_safety(ssp, false);
rcu_lock_release(&(ssp)->dep_map);
__srcu_read_unlock(ssp, idx);
}
/**
* srcu_read_unlock_nmisafe - unregister a old reader from an SRCU-protected structure.
* @ssp: srcu_struct in which to unregister the old reader.
* @idx: return value from corresponding srcu_read_lock().
*
* Exit an SRCU read-side critical section, but in an NMI-safe manner.
*/
static inline void srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
__releases(ssp)
{
WARN_ON_ONCE(idx & ~0x1);
srcu_check_nmi_safety(ssp, true);
rcu_lock_release(&(ssp)->dep_map);
__srcu_read_unlock_nmisafe(ssp, idx);
}
/* Used by tracing, cannot be traced and cannot call lockdep. */
static inline notrace void
srcu_read_unlock_notrace(struct srcu_struct *ssp, int idx) __releases(ssp)
{
srcu_check_nmi_safety(ssp, false);
__srcu_read_unlock(ssp, idx);
}
......
......@@ -23,8 +23,9 @@ struct srcu_struct;
*/
struct srcu_data {
/* Read-side state. */
unsigned long srcu_lock_count[2]; /* Locks per CPU. */
unsigned long srcu_unlock_count[2]; /* Unlocks per CPU. */
atomic_long_t srcu_lock_count[2]; /* Locks per CPU. */
atomic_long_t srcu_unlock_count[2]; /* Unlocks per CPU. */
int srcu_nmi_safety; /* NMI-safe srcu_struct structure? */
/* Update-side state. */
spinlock_t __private lock ____cacheline_internodealigned_in_smp;
......
......@@ -72,6 +72,9 @@ config TREE_SRCU
help
This option selects the full-fledged version of SRCU.
config NEED_SRCU_NMI_SAFE
def_bool HAVE_NMI && !ARCH_HAS_NMI_SAFE_THIS_CPU_OPS && !TINY_SRCU
config TASKS_RCU_GENERIC
def_bool TASKS_RCU || TASKS_RUDE_RCU || TASKS_TRACE_RCU
select SRCU
......@@ -311,4 +314,12 @@ config TASKS_TRACE_RCU_READ_MB
Say N here if you hate read-side memory barriers.
Take the default if you are unsure.
config RCU_LAZY
bool "RCU callback lazy invocation functionality"
depends on RCU_NOCB_CPU
default n
help
To save power, batch RCU callbacks and flush after delay, memory
pressure, or callback list growing too big.
endmenu # "RCU Subsystem"
......@@ -474,6 +474,14 @@ enum rcutorture_type {
INVALID_RCU_FLAVOR
};
#if defined(CONFIG_RCU_LAZY)
unsigned long rcu_lazy_get_jiffies_till_flush(void);
void rcu_lazy_set_jiffies_till_flush(unsigned long j);
#else
static inline unsigned long rcu_lazy_get_jiffies_till_flush(void) { return 0; }
static inline void rcu_lazy_set_jiffies_till_flush(unsigned long j) { }
#endif
#if defined(CONFIG_TREE_RCU)
void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
unsigned long *gp_seq);
......
......@@ -95,6 +95,7 @@ torture_param(int, verbose, 1, "Enable verbose debugging printk()s");
torture_param(int, writer_holdoff, 0, "Holdoff (us) between GPs, zero to disable");
torture_param(int, kfree_rcu_test, 0, "Do we run a kfree_rcu() scale test?");
torture_param(int, kfree_mult, 1, "Multiple of kfree_obj size to allocate.");
torture_param(int, kfree_by_call_rcu, 0, "Use call_rcu() to emulate kfree_rcu()?");
static char *scale_type = "rcu";
module_param(scale_type, charp, 0444);
......@@ -175,7 +176,7 @@ static struct rcu_scale_ops rcu_ops = {
.get_gp_seq = rcu_get_gp_seq,
.gp_diff = rcu_seq_diff,
.exp_completed = rcu_exp_batches_completed,
.async = call_rcu,
.async = call_rcu_hurry,
.gp_barrier = rcu_barrier,
.sync = synchronize_rcu,
.exp_sync = synchronize_rcu_expedited,
......@@ -659,6 +660,14 @@ struct kfree_obj {
struct rcu_head rh;
};
/* Used if doing RCU-kfree'ing via call_rcu(). */
static void kfree_call_rcu(struct rcu_head *rh)
{
struct kfree_obj *obj = container_of(rh, struct kfree_obj, rh);
kfree(obj);
}
static int
kfree_scale_thread(void *arg)
{
......@@ -696,6 +705,11 @@ kfree_scale_thread(void *arg)
if (!alloc_ptr)
return -ENOMEM;
if (kfree_by_call_rcu) {
call_rcu(&(alloc_ptr->rh), kfree_call_rcu);
continue;
}
// By default kfree_rcu_test_single and kfree_rcu_test_double are
// initialized to false. If both have the same value (false or true)
// both are randomly tested, otherwise only the one with value true
......@@ -767,11 +781,58 @@ kfree_scale_shutdown(void *arg)
return -EINVAL;
}
// Used if doing RCU-kfree'ing via call_rcu().
static unsigned long jiffies_at_lazy_cb;
static struct rcu_head lazy_test1_rh;
static int rcu_lazy_test1_cb_called;
static void call_rcu_lazy_test1(struct rcu_head *rh)
{
jiffies_at_lazy_cb = jiffies;
WRITE_ONCE(rcu_lazy_test1_cb_called, 1);
}
static int __init
kfree_scale_init(void)
{
long i;
int firsterr = 0;
long i;
unsigned long jif_start;
unsigned long orig_jif;
// Also, do a quick self-test to ensure laziness is as much as
// expected.
if (kfree_by_call_rcu && !IS_ENABLED(CONFIG_RCU_LAZY)) {
pr_alert("CONFIG_RCU_LAZY is disabled, falling back to kfree_rcu() for delayed RCU kfree'ing\n");
kfree_by_call_rcu = 0;
}
if (kfree_by_call_rcu) {
/* do a test to check the timeout. */
orig_jif = rcu_lazy_get_jiffies_till_flush();
rcu_lazy_set_jiffies_till_flush(2 * HZ);
rcu_barrier();
jif_start = jiffies;
jiffies_at_lazy_cb = 0;
call_rcu(&lazy_test1_rh, call_rcu_lazy_test1);
smp_cond_load_relaxed(&rcu_lazy_test1_cb_called, VAL == 1);
rcu_lazy_set_jiffies_till_flush(orig_jif);
if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start < 2 * HZ)) {
pr_alert("ERROR: call_rcu() CBs are not being lazy as expected!\n");
WARN_ON_ONCE(1);
return -1;
}
if (WARN_ON_ONCE(jiffies_at_lazy_cb - jif_start > 3 * HZ)) {
pr_alert("ERROR: call_rcu() CBs are being too lazy!\n");
WARN_ON_ONCE(1);
return -1;
}
}
kfree_nrealthreads = compute_real(kfree_nthreads);
/* Start up the kthreads. */
......@@ -784,7 +845,9 @@ kfree_scale_init(void)
schedule_timeout_uninterruptible(1);
}
pr_alert("kfree object size=%zu\n", kfree_mult * sizeof(struct kfree_obj));
pr_alert("kfree object size=%zu, kfree_by_call_rcu=%d\n",
kfree_mult * sizeof(struct kfree_obj),
kfree_by_call_rcu);
kfree_reader_tasks = kcalloc(kfree_nrealthreads, sizeof(kfree_reader_tasks[0]),
GFP_KERNEL);
......
......@@ -357,6 +357,10 @@ struct rcu_torture_ops {
bool (*poll_gp_state_exp)(unsigned long oldstate);
void (*cond_sync_exp)(unsigned long oldstate);
void (*cond_sync_exp_full)(struct rcu_gp_oldstate *rgosp);
unsigned long (*get_comp_state)(void);
void (*get_comp_state_full)(struct rcu_gp_oldstate *rgosp);
bool (*same_gp_state)(unsigned long oldstate1, unsigned long oldstate2);
bool (*same_gp_state_full)(struct rcu_gp_oldstate *rgosp1, struct rcu_gp_oldstate *rgosp2);
unsigned long (*get_gp_state)(void);
void (*get_gp_state_full)(struct rcu_gp_oldstate *rgosp);
unsigned long (*get_gp_completed)(void);
......@@ -510,7 +514,7 @@ static unsigned long rcu_no_completed(void)
static void rcu_torture_deferred_free(struct rcu_torture *p)
{
call_rcu(&p->rtort_rcu, rcu_torture_cb);
call_rcu_hurry(&p->rtort_rcu, rcu_torture_cb);
}
static void rcu_sync_torture_init(void)
......@@ -535,6 +539,10 @@ static struct rcu_torture_ops rcu_ops = {
.deferred_free = rcu_torture_deferred_free,
.sync = synchronize_rcu,
.exp_sync = synchronize_rcu_expedited,
.same_gp_state = same_state_synchronize_rcu,
.same_gp_state_full = same_state_synchronize_rcu_full,
.get_comp_state = get_completed_synchronize_rcu,
.get_comp_state_full = get_completed_synchronize_rcu_full,
.get_gp_state = get_state_synchronize_rcu,
.get_gp_state_full = get_state_synchronize_rcu_full,
.get_gp_completed = get_completed_synchronize_rcu,
......@@ -551,7 +559,7 @@ static struct rcu_torture_ops rcu_ops = {
.start_gp_poll_exp_full = start_poll_synchronize_rcu_expedited_full,
.poll_gp_state_exp = poll_state_synchronize_rcu,
.cond_sync_exp = cond_synchronize_rcu_expedited,
.call = call_rcu,
.call = call_rcu_hurry,
.cb_barrier = rcu_barrier,
.fqs = rcu_force_quiescent_state,
.stats = NULL,
......@@ -615,10 +623,14 @@ static struct rcu_torture_ops rcu_busted_ops = {
DEFINE_STATIC_SRCU(srcu_ctl);
static struct srcu_struct srcu_ctld;
static struct srcu_struct *srcu_ctlp = &srcu_ctl;
static struct rcu_torture_ops srcud_ops;
static int srcu_torture_read_lock(void) __acquires(srcu_ctlp)
{
return srcu_read_lock(srcu_ctlp);
if (cur_ops == &srcud_ops)
return srcu_read_lock_nmisafe(srcu_ctlp);
else
return srcu_read_lock(srcu_ctlp);
}
static void
......@@ -642,7 +654,10 @@ srcu_read_delay(struct torture_random_state *rrsp, struct rt_read_seg *rtrsp)
static void srcu_torture_read_unlock(int idx) __releases(srcu_ctlp)
{
srcu_read_unlock(srcu_ctlp, idx);
if (cur_ops == &srcud_ops)
srcu_read_unlock_nmisafe(srcu_ctlp, idx);
else
srcu_read_unlock(srcu_ctlp, idx);
}
static int torture_srcu_read_lock_held(void)
......@@ -848,7 +863,7 @@ static void rcu_tasks_torture_deferred_free(struct rcu_torture *p)
static void synchronize_rcu_mult_test(void)
{
synchronize_rcu_mult(call_rcu_tasks, call_rcu);
synchronize_rcu_mult(call_rcu_tasks, call_rcu_hurry);
}
static struct rcu_torture_ops tasks_ops = {
......@@ -1258,13 +1273,15 @@ static void rcu_torture_write_types(void)
} else if (gp_normal && !cur_ops->deferred_free) {
pr_alert("%s: gp_normal without primitives.\n", __func__);
}
if (gp_poll1 && cur_ops->start_gp_poll && cur_ops->poll_gp_state) {
if (gp_poll1 && cur_ops->get_comp_state && cur_ops->same_gp_state &&
cur_ops->start_gp_poll && cur_ops->poll_gp_state) {
synctype[nsynctypes++] = RTWS_POLL_GET;
pr_info("%s: Testing polling GPs.\n", __func__);
} else if (gp_poll && (!cur_ops->start_gp_poll || !cur_ops->poll_gp_state)) {
pr_alert("%s: gp_poll without primitives.\n", __func__);
}
if (gp_poll_full1 && cur_ops->start_gp_poll_full && cur_ops->poll_gp_state_full) {
if (gp_poll_full1 && cur_ops->get_comp_state_full && cur_ops->same_gp_state_full
&& cur_ops->start_gp_poll_full && cur_ops->poll_gp_state_full) {
synctype[nsynctypes++] = RTWS_POLL_GET_FULL;
pr_info("%s: Testing polling full-state GPs.\n", __func__);
} else if (gp_poll_full && (!cur_ops->start_gp_poll_full || !cur_ops->poll_gp_state_full)) {
......@@ -1339,14 +1356,18 @@ rcu_torture_writer(void *arg)
struct rcu_gp_oldstate cookie_full;
int expediting = 0;
unsigned long gp_snap;
unsigned long gp_snap1;
struct rcu_gp_oldstate gp_snap_full;
struct rcu_gp_oldstate gp_snap1_full;
int i;
int idx;
int oldnice = task_nice(current);
struct rcu_gp_oldstate rgo[NUM_ACTIVE_RCU_POLL_FULL_OLDSTATE];
struct rcu_torture *rp;
struct rcu_torture *old_rp;
static DEFINE_TORTURE_RANDOM(rand);
bool stutter_waited;
unsigned long ulo[NUM_ACTIVE_RCU_POLL_OLDSTATE];
VERBOSE_TOROUT_STRING("rcu_torture_writer task started");
if (!can_expedite)
......@@ -1463,20 +1484,43 @@ rcu_torture_writer(void *arg)
break;
case RTWS_POLL_GET:
rcu_torture_writer_state = RTWS_POLL_GET;
for (i = 0; i < ARRAY_SIZE(ulo); i++)
ulo[i] = cur_ops->get_comp_state();
gp_snap = cur_ops->start_gp_poll();
rcu_torture_writer_state = RTWS_POLL_WAIT;
while (!cur_ops->poll_gp_state(gp_snap))
while (!cur_ops->poll_gp_state(gp_snap)) {
gp_snap1 = cur_ops->get_gp_state();
for (i = 0; i < ARRAY_SIZE(ulo); i++)
if (cur_ops->poll_gp_state(ulo[i]) ||
cur_ops->same_gp_state(ulo[i], gp_snap1)) {
ulo[i] = gp_snap1;
break;
}
WARN_ON_ONCE(i >= ARRAY_SIZE(ulo));
torture_hrtimeout_jiffies(torture_random(&rand) % 16,
&rand);
}
rcu_torture_pipe_update(old_rp);
break;
case RTWS_POLL_GET_FULL:
rcu_torture_writer_state = RTWS_POLL_GET_FULL;
for (i = 0; i < ARRAY_SIZE(rgo); i++)
cur_ops->get_comp_state_full(&rgo[i]);
cur_ops->start_gp_poll_full(&gp_snap_full);
rcu_torture_writer_state = RTWS_POLL_WAIT_FULL;
while (!cur_ops->poll_gp_state_full(&gp_snap_full))
while (!cur_ops->poll_gp_state_full(&gp_snap_full)) {
cur_ops->get_gp_state_full(&gp_snap1_full);
for (i = 0; i < ARRAY_SIZE(rgo); i++)
if (cur_ops->poll_gp_state_full(&rgo[i]) ||
cur_ops->same_gp_state_full(&rgo[i],
&gp_snap1_full)) {
rgo[i] = gp_snap1_full;
break;
}
WARN_ON_ONCE(i >= ARRAY_SIZE(rgo));
torture_hrtimeout_jiffies(torture_random(&rand) % 16,
&rand);
}
rcu_torture_pipe_update(old_rp);
break;
case RTWS_POLL_GET_EXP:
......@@ -3388,13 +3432,13 @@ static void rcu_test_debug_objects(void)
/* Try to queue the rh2 pair of callbacks for the same grace period. */
preempt_disable(); /* Prevent preemption from interrupting test. */
rcu_read_lock(); /* Make it impossible to finish a grace period. */
call_rcu(&rh1, rcu_torture_leak_cb); /* Start grace period. */
call_rcu_hurry(&rh1, rcu_torture_leak_cb); /* Start grace period. */
local_irq_disable(); /* Make it harder to start a new grace period. */
call_rcu(&rh2, rcu_torture_leak_cb);
call_rcu(&rh2, rcu_torture_err_cb); /* Duplicate callback. */
call_rcu_hurry(&rh2, rcu_torture_leak_cb);
call_rcu_hurry(&rh2, rcu_torture_err_cb); /* Duplicate callback. */
if (rhp) {
call_rcu(rhp, rcu_torture_leak_cb);
call_rcu(rhp, rcu_torture_err_cb); /* Another duplicate callback. */
call_rcu_hurry(rhp, rcu_torture_leak_cb);
call_rcu_hurry(rhp, rcu_torture_err_cb); /* Another duplicate callback. */
}
local_irq_enable();
rcu_read_unlock();
......
......@@ -417,7 +417,7 @@ static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
for_each_possible_cpu(cpu) {
struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
sum += READ_ONCE(cpuc->srcu_lock_count[idx]);
sum += atomic_long_read(&cpuc->srcu_lock_count[idx]);
}
return sum;
}
......@@ -429,13 +429,18 @@ static unsigned long srcu_readers_lock_idx(struct srcu_struct *ssp, int idx)
static unsigned long srcu_readers_unlock_idx(struct srcu_struct *ssp, int idx)
{
int cpu;
unsigned long mask = 0;
unsigned long sum = 0;
for_each_possible_cpu(cpu) {
struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
sum += READ_ONCE(cpuc->srcu_unlock_count[idx]);
sum += atomic_long_read(&cpuc->srcu_unlock_count[idx]);
if (IS_ENABLED(CONFIG_PROVE_RCU))
mask = mask | READ_ONCE(cpuc->srcu_nmi_safety);
}
WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) && (mask & (mask >> 1)),
"Mixed NMI-safe readers for srcu_struct at %ps.\n", ssp);
return sum;
}
......@@ -503,10 +508,10 @@ static bool srcu_readers_active(struct srcu_struct *ssp)
for_each_possible_cpu(cpu) {
struct srcu_data *cpuc = per_cpu_ptr(ssp->sda, cpu);
sum += READ_ONCE(cpuc->srcu_lock_count[0]);
sum += READ_ONCE(cpuc->srcu_lock_count[1]);
sum -= READ_ONCE(cpuc->srcu_unlock_count[0]);
sum -= READ_ONCE(cpuc->srcu_unlock_count[1]);
sum += atomic_long_read(&cpuc->srcu_lock_count[0]);
sum += atomic_long_read(&cpuc->srcu_lock_count[1]);
sum -= atomic_long_read(&cpuc->srcu_unlock_count[0]);
sum -= atomic_long_read(&cpuc->srcu_unlock_count[1]);
}
return sum;
}
......@@ -626,6 +631,29 @@ void cleanup_srcu_struct(struct srcu_struct *ssp)
}
EXPORT_SYMBOL_GPL(cleanup_srcu_struct);
#ifdef CONFIG_PROVE_RCU
/*
* Check for consistent NMI safety.
*/
void srcu_check_nmi_safety(struct srcu_struct *ssp, bool nmi_safe)
{
int nmi_safe_mask = 1 << nmi_safe;
int old_nmi_safe_mask;
struct srcu_data *sdp;
/* NMI-unsafe use in NMI is a bad sign */
WARN_ON_ONCE(!nmi_safe && in_nmi());
sdp = raw_cpu_ptr(ssp->sda);
old_nmi_safe_mask = READ_ONCE(sdp->srcu_nmi_safety);
if (!old_nmi_safe_mask) {
WRITE_ONCE(sdp->srcu_nmi_safety, nmi_safe_mask);
return;
}
WARN_ONCE(old_nmi_safe_mask != nmi_safe_mask, "CPU %d old state %d new state %d\n", sdp->cpu, old_nmi_safe_mask, nmi_safe_mask);
}
EXPORT_SYMBOL_GPL(srcu_check_nmi_safety);
#endif /* CONFIG_PROVE_RCU */
/*
* Counts the new reader in the appropriate per-CPU element of the
* srcu_struct.
......@@ -636,7 +664,7 @@ int __srcu_read_lock(struct srcu_struct *ssp)
int idx;
idx = READ_ONCE(ssp->srcu_idx) & 0x1;
this_cpu_inc(ssp->sda->srcu_lock_count[idx]);
this_cpu_inc(ssp->sda->srcu_lock_count[idx].counter);
smp_mb(); /* B */ /* Avoid leaking the critical section. */
return idx;
}
......@@ -650,10 +678,45 @@ EXPORT_SYMBOL_GPL(__srcu_read_lock);
void __srcu_read_unlock(struct srcu_struct *ssp, int idx)
{
smp_mb(); /* C */ /* Avoid leaking the critical section. */
this_cpu_inc(ssp->sda->srcu_unlock_count[idx]);
this_cpu_inc(ssp->sda->srcu_unlock_count[idx].counter);
}
EXPORT_SYMBOL_GPL(__srcu_read_unlock);
#ifdef CONFIG_NEED_SRCU_NMI_SAFE
/*
* Counts the new reader in the appropriate per-CPU element of the
* srcu_struct, but in an NMI-safe manner using RMW atomics.
* Returns an index that must be passed to the matching srcu_read_unlock().
*/
int __srcu_read_lock_nmisafe(struct srcu_struct *ssp)
{
int idx;
struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
idx = READ_ONCE(ssp->srcu_idx) & 0x1;
atomic_long_inc(&sdp->srcu_lock_count[idx]);
smp_mb__after_atomic(); /* B */ /* Avoid leaking the critical section. */
return idx;
}
EXPORT_SYMBOL_GPL(__srcu_read_lock_nmisafe);
/*
* Removes the count for the old reader from the appropriate per-CPU
* element of the srcu_struct. Note that this may well be a different
* CPU than that which was incremented by the corresponding srcu_read_lock().
*/
void __srcu_read_unlock_nmisafe(struct srcu_struct *ssp, int idx)
{
struct srcu_data *sdp = raw_cpu_ptr(ssp->sda);
smp_mb__before_atomic(); /* C */ /* Avoid leaking the critical section. */
atomic_long_inc(&sdp->srcu_unlock_count[idx]);
}
EXPORT_SYMBOL_GPL(__srcu_read_unlock_nmisafe);
#endif // CONFIG_NEED_SRCU_NMI_SAFE
/*
* Start an SRCU grace period.
*/
......@@ -1090,7 +1153,12 @@ static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
int ss_state;
check_init_srcu_struct(ssp);
idx = srcu_read_lock(ssp);
/*
* While starting a new grace period, make sure we are in an
* SRCU read-side critical section so that the grace-period
* sequence number cannot wrap around in the meantime.
*/
idx = __srcu_read_lock_nmisafe(ssp);
ss_state = smp_load_acquire(&ssp->srcu_size_state);
if (ss_state < SRCU_SIZE_WAIT_CALL)
sdp = per_cpu_ptr(ssp->sda, 0);
......@@ -1123,7 +1191,7 @@ static unsigned long srcu_gp_start_if_needed(struct srcu_struct *ssp,
srcu_funnel_gp_start(ssp, sdp, s, do_norm);
else if (needexp)
srcu_funnel_exp_start(ssp, sdp_mynode, s);
srcu_read_unlock(ssp, idx);
__srcu_read_unlock_nmisafe(ssp, idx);
return s;
}
......@@ -1427,13 +1495,13 @@ void srcu_barrier(struct srcu_struct *ssp)
/* Initial count prevents reaching zero until all CBs are posted. */
atomic_set(&ssp->srcu_barrier_cpu_cnt, 1);
idx = srcu_read_lock(ssp);
idx = __srcu_read_lock_nmisafe(ssp);
if (smp_load_acquire(&ssp->srcu_size_state) < SRCU_SIZE_WAIT_BARRIER)
srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, 0));
else
for_each_possible_cpu(cpu)
srcu_barrier_one_cpu(ssp, per_cpu_ptr(ssp->sda, cpu));
srcu_read_unlock(ssp, idx);
__srcu_read_unlock_nmisafe(ssp, idx);
/* Remove the initial count, at which point reaching zero can happen. */
if (atomic_dec_and_test(&ssp->srcu_barrier_cpu_cnt))
......@@ -1687,8 +1755,8 @@ void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
struct srcu_data *sdp;
sdp = per_cpu_ptr(ssp->sda, cpu);
u0 = data_race(sdp->srcu_unlock_count[!idx]);
u1 = data_race(sdp->srcu_unlock_count[idx]);
u0 = data_race(atomic_long_read(&sdp->srcu_unlock_count[!idx]));
u1 = data_race(atomic_long_read(&sdp->srcu_unlock_count[idx]));
/*
* Make sure that a lock is always counted if the corresponding
......@@ -1696,8 +1764,8 @@ void srcu_torture_stats_print(struct srcu_struct *ssp, char *tt, char *tf)
*/
smp_rmb();
l0 = data_race(sdp->srcu_lock_count[!idx]);
l1 = data_race(sdp->srcu_lock_count[idx]);
l0 = data_race(atomic_long_read(&sdp->srcu_lock_count[!idx]));
l1 = data_race(atomic_long_read(&sdp->srcu_lock_count[idx]));
c0 = l0 - u0;
c1 = l1 - u1;
......
......@@ -44,7 +44,7 @@ static void rcu_sync_func(struct rcu_head *rhp);
static void rcu_sync_call(struct rcu_sync *rsp)
{
call_rcu(&rsp->cb_head, rcu_sync_func);
call_rcu_hurry(&rsp->cb_head, rcu_sync_func);
}
/**
......
......@@ -728,7 +728,7 @@ static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
lastinfo = j;
rtsi = rtsi * rcu_task_stall_info_mult;
pr_info("%s: %s grace period %lu is %lu jiffies old.\n",
pr_info("%s: %s grace period number %lu (since boot) is %lu jiffies old.\n",
__func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
}
}
......
......@@ -44,7 +44,7 @@ static struct rcu_ctrlblk rcu_ctrlblk = {
void rcu_barrier(void)
{
wait_rcu_gp(call_rcu);
wait_rcu_gp(call_rcu_hurry);
}
EXPORT_SYMBOL(rcu_barrier);
......
......@@ -301,12 +301,6 @@ static bool rcu_dynticks_in_eqs(int snap)
return !(snap & RCU_DYNTICKS_IDX);
}
/* Return true if the specified CPU is currently idle from an RCU viewpoint. */
bool rcu_is_idle_cpu(int cpu)
{
return rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu));
}
/*
* Return true if the CPU corresponding to the specified rcu_data
* structure has spent some time in an extended quiescent state since
......@@ -2108,7 +2102,7 @@ int rcutree_dying_cpu(unsigned int cpu)
if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
return 0;
blkd = !!(rnp->qsmask & rdp->grpmask);
blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
return 0;
......@@ -2418,7 +2412,7 @@ void rcu_force_quiescent_state(void)
struct rcu_node *rnp_old = NULL;
/* Funnel through hierarchy to reduce memory contention. */
rnp = __this_cpu_read(rcu_data.mynode);
rnp = raw_cpu_read(rcu_data.mynode);
for (; rnp != NULL; rnp = rnp->parent) {
ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
!raw_spin_trylock(&rnp->fqslock);
......@@ -2730,47 +2724,8 @@ static void check_cb_ovld(struct rcu_data *rdp)
raw_spin_unlock_rcu_node(rnp);
}
/**
* call_rcu() - Queue an RCU callback for invocation after a grace period.
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed. However, the callback function
* might well execute concurrently with RCU read-side critical sections
* that started after call_rcu() was invoked.
*
* RCU read-side critical sections are delimited by rcu_read_lock()
* and rcu_read_unlock(), and may be nested. In addition, but only in
* v5.0 and later, regions of code across which interrupts, preemption,
* or softirqs have been disabled also serve as RCU read-side critical
* sections. This includes hardware interrupt handlers, softirq handlers,
* and NMI handlers.
*
* Note that all CPUs must agree that the grace period extended beyond
* all pre-existing RCU read-side critical section. On systems with more
* than one CPU, this means that when "func()" is invoked, each CPU is
* guaranteed to have executed a full memory barrier since the end of its
* last RCU read-side critical section whose beginning preceded the call
* to call_rcu(). It also means that each CPU executing an RCU read-side
* critical section that continues beyond the start of "func()" must have
* executed a memory barrier after the call_rcu() but before the beginning
* of that RCU read-side critical section. Note that these guarantees
* include CPUs that are offline, idle, or executing in user mode, as
* well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
* resulting RCU callback function "func()", then both CPU A and CPU B are
* guaranteed to execute a full memory barrier during the time interval
* between the call to call_rcu() and the invocation of "func()" -- even
* if CPU A and CPU B are the same CPU (but again only if the system has
* more than one CPU).
*
* Implementation of these memory-ordering guarantees is described here:
* Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
*/
void call_rcu(struct rcu_head *head, rcu_callback_t func)
static void
__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy)
{
static atomic_t doublefrees;
unsigned long flags;
......@@ -2811,7 +2766,7 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func)
}
check_cb_ovld(rdp);
if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags))
if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
return; // Enqueued onto ->nocb_bypass, so just leave.
// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
rcu_segcblist_enqueue(&rdp->cblist, head);
......@@ -2833,8 +2788,84 @@ void call_rcu(struct rcu_head *head, rcu_callback_t func)
local_irq_restore(flags);
}
}
EXPORT_SYMBOL_GPL(call_rcu);
#ifdef CONFIG_RCU_LAZY
/**
* call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
* flush all lazy callbacks (including the new one) to the main ->cblist while
* doing so.
*
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed.
*
* Use this API instead of call_rcu() if you don't want the callback to be
* invoked after very long periods of time, which can happen on systems without
* memory pressure and on systems which are lightly loaded or mostly idle.
* This function will cause callbacks to be invoked sooner than later at the
* expense of extra power. Other than that, this function is identical to, and
* reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
* ordering and other functionality.
*/
void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
{
return __call_rcu_common(head, func, false);
}
EXPORT_SYMBOL_GPL(call_rcu_hurry);
#endif
/**
* call_rcu() - Queue an RCU callback for invocation after a grace period.
* By default the callbacks are 'lazy' and are kept hidden from the main
* ->cblist to prevent starting of grace periods too soon.
* If you desire grace periods to start very soon, use call_rcu_hurry().
*
* @head: structure to be used for queueing the RCU updates.
* @func: actual callback function to be invoked after the grace period
*
* The callback function will be invoked some time after a full grace
* period elapses, in other words after all pre-existing RCU read-side
* critical sections have completed. However, the callback function
* might well execute concurrently with RCU read-side critical sections
* that started after call_rcu() was invoked.
*
* RCU read-side critical sections are delimited by rcu_read_lock()
* and rcu_read_unlock(), and may be nested. In addition, but only in
* v5.0 and later, regions of code across which interrupts, preemption,
* or softirqs have been disabled also serve as RCU read-side critical
* sections. This includes hardware interrupt handlers, softirq handlers,
* and NMI handlers.
*
* Note that all CPUs must agree that the grace period extended beyond
* all pre-existing RCU read-side critical section. On systems with more
* than one CPU, this means that when "func()" is invoked, each CPU is
* guaranteed to have executed a full memory barrier since the end of its
* last RCU read-side critical section whose beginning preceded the call
* to call_rcu(). It also means that each CPU executing an RCU read-side
* critical section that continues beyond the start of "func()" must have
* executed a memory barrier after the call_rcu() but before the beginning
* of that RCU read-side critical section. Note that these guarantees
* include CPUs that are offline, idle, or executing in user mode, as
* well as CPUs that are executing in the kernel.
*
* Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
* resulting RCU callback function "func()", then both CPU A and CPU B are
* guaranteed to execute a full memory barrier during the time interval
* between the call to call_rcu() and the invocation of "func()" -- even
* if CPU A and CPU B are the same CPU (but again only if the system has
* more than one CPU).
*
* Implementation of these memory-ordering guarantees is described here:
* Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
*/
void call_rcu(struct rcu_head *head, rcu_callback_t func)
{
return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
}
EXPORT_SYMBOL_GPL(call_rcu);
/* Maximum number of jiffies to wait before draining a batch. */
#define KFREE_DRAIN_JIFFIES (5 * HZ)
......@@ -3509,7 +3540,7 @@ void synchronize_rcu(void)
if (rcu_gp_is_expedited())
synchronize_rcu_expedited();
else
wait_rcu_gp(call_rcu);
wait_rcu_gp(call_rcu_hurry);
return;
}
......@@ -3896,6 +3927,8 @@ static void rcu_barrier_entrain(struct rcu_data *rdp)
{
unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
bool wake_nocb = false;
bool was_alldone = false;
lockdep_assert_held(&rcu_state.barrier_lock);
if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
......@@ -3904,7 +3937,14 @@ static void rcu_barrier_entrain(struct rcu_data *rdp)
rdp->barrier_head.func = rcu_barrier_callback;
debug_rcu_head_queue(&rdp->barrier_head);
rcu_nocb_lock(rdp);
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
/*
* Flush bypass and wakeup rcuog if we add callbacks to an empty regular
* queue. This way we don't wait for bypass timer that can reach seconds
* if it's fully lazy.
*/
was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
atomic_inc(&rcu_state.barrier_cpu_count);
} else {
......@@ -3912,6 +3952,8 @@ static void rcu_barrier_entrain(struct rcu_data *rdp)
rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
}
rcu_nocb_unlock(rdp);
if (wake_nocb)
wake_nocb_gp(rdp, false);
smp_store_release(&rdp->barrier_seq_snap, gseq);
}
......@@ -4278,8 +4320,6 @@ void rcu_report_dead(unsigned int cpu)
// Do any dangling deferred wakeups.
do_nocb_deferred_wakeup(rdp);
/* QS for any half-done expedited grace period. */
rcu_report_exp_rdp(rdp);
rcu_preempt_deferred_qs(current);
/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
......@@ -4327,7 +4367,7 @@ void rcutree_migrate_callbacks(int cpu)
my_rdp = this_cpu_ptr(&rcu_data);
my_rnp = my_rdp->mynode;
rcu_nocb_lock(my_rdp); /* irqs already disabled. */
WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
/* Leverage recent GPs and set GP for new callbacks. */
needwake = rcu_advance_cbs(my_rnp, rdp) ||
......
......@@ -263,14 +263,16 @@ struct rcu_data {
unsigned long last_fqs_resched; /* Time of last rcu_resched(). */
unsigned long last_sched_clock; /* Jiffies of last rcu_sched_clock_irq(). */
long lazy_len; /* Length of buffered lazy callbacks. */
int cpu;
};
/* Values for nocb_defer_wakeup field in struct rcu_data. */
#define RCU_NOCB_WAKE_NOT 0
#define RCU_NOCB_WAKE_BYPASS 1
#define RCU_NOCB_WAKE 2
#define RCU_NOCB_WAKE_FORCE 3
#define RCU_NOCB_WAKE_LAZY 2
#define RCU_NOCB_WAKE 3
#define RCU_NOCB_WAKE_FORCE 4
#define RCU_JIFFIES_TILL_FORCE_QS (1 + (HZ > 250) + (HZ > 500))
/* For jiffies_till_first_fqs and */
......@@ -439,10 +441,12 @@ static void zero_cpu_stall_ticks(struct rcu_data *rdp);
static struct swait_queue_head *rcu_nocb_gp_get(struct rcu_node *rnp);
static void rcu_nocb_gp_cleanup(struct swait_queue_head *sq);
static void rcu_init_one_nocb(struct rcu_node *rnp);
static bool wake_nocb_gp(struct rcu_data *rdp, bool force);
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j);
unsigned long j, bool lazy);
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
bool *was_alldone, unsigned long flags);
bool *was_alldone, unsigned long flags,
bool lazy);
static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_empty,
unsigned long flags);
static int rcu_nocb_need_deferred_wakeup(struct rcu_data *rdp, int level);
......
......@@ -937,7 +937,7 @@ void synchronize_rcu_expedited(void)
/* If expedited grace periods are prohibited, fall back to normal. */
if (rcu_gp_is_normal()) {
wait_rcu_gp(call_rcu);
wait_rcu_gp(call_rcu_hurry);
return;
}
......
......@@ -256,6 +256,31 @@ static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
return __wake_nocb_gp(rdp_gp, rdp, force, flags);
}
/*
* LAZY_FLUSH_JIFFIES decides the maximum amount of time that
* can elapse before lazy callbacks are flushed. Lazy callbacks
* could be flushed much earlier for a number of other reasons
* however, LAZY_FLUSH_JIFFIES will ensure no lazy callbacks are
* left unsubmitted to RCU after those many jiffies.
*/
#define LAZY_FLUSH_JIFFIES (10 * HZ)
static unsigned long jiffies_till_flush = LAZY_FLUSH_JIFFIES;
#ifdef CONFIG_RCU_LAZY
// To be called only from test code.
void rcu_lazy_set_jiffies_till_flush(unsigned long jif)
{
jiffies_till_flush = jif;
}
EXPORT_SYMBOL(rcu_lazy_set_jiffies_till_flush);
unsigned long rcu_lazy_get_jiffies_till_flush(void)
{
return jiffies_till_flush;
}
EXPORT_SYMBOL(rcu_lazy_get_jiffies_till_flush);
#endif
/*
* Arrange to wake the GP kthread for this NOCB group at some future
* time when it is safe to do so.
......@@ -269,10 +294,14 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
raw_spin_lock_irqsave(&rdp_gp->nocb_gp_lock, flags);
/*
* Bypass wakeup overrides previous deferments. In case
* of callback storm, no need to wake up too early.
* Bypass wakeup overrides previous deferments. In case of
* callback storms, no need to wake up too early.
*/
if (waketype == RCU_NOCB_WAKE_BYPASS) {
if (waketype == RCU_NOCB_WAKE_LAZY &&
rdp->nocb_defer_wakeup == RCU_NOCB_WAKE_NOT) {
mod_timer(&rdp_gp->nocb_timer, jiffies + jiffies_till_flush);
WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
} else if (waketype == RCU_NOCB_WAKE_BYPASS) {
mod_timer(&rdp_gp->nocb_timer, jiffies + 2);
WRITE_ONCE(rdp_gp->nocb_defer_wakeup, waketype);
} else {
......@@ -293,12 +322,16 @@ static void wake_nocb_gp_defer(struct rcu_data *rdp, int waketype,
* proves to be initially empty, just return false because the no-CB GP
* kthread may need to be awakened in this case.
*
* Return true if there was something to be flushed and it succeeded, otherwise
* false.
*
* Note that this function always returns true if rhp is NULL.
*/
static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j)
static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp_in,
unsigned long j, bool lazy)
{
struct rcu_cblist rcl;
struct rcu_head *rhp = rhp_in;
WARN_ON_ONCE(!rcu_rdp_is_offloaded(rdp));
rcu_lockdep_assert_cblist_protected(rdp);
......@@ -310,7 +343,20 @@ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
/* Note: ->cblist.len already accounts for ->nocb_bypass contents. */
if (rhp)
rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
/*
* If the new CB requested was a lazy one, queue it onto the main
* ->cblist so that we can take advantage of the grace-period that will
* happen regardless. But queue it onto the bypass list first so that
* the lazy CB is ordered with the existing CBs in the bypass list.
*/
if (lazy && rhp) {
rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
rhp = NULL;
}
rcu_cblist_flush_enqueue(&rcl, &rdp->nocb_bypass, rhp);
WRITE_ONCE(rdp->lazy_len, 0);
rcu_segcblist_insert_pend_cbs(&rdp->cblist, &rcl);
WRITE_ONCE(rdp->nocb_bypass_first, j);
rcu_nocb_bypass_unlock(rdp);
......@@ -326,13 +372,13 @@ static bool rcu_nocb_do_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
* Note that this function always returns true if rhp is NULL.
*/
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j)
unsigned long j, bool lazy)
{
if (!rcu_rdp_is_offloaded(rdp))
return true;
rcu_lockdep_assert_cblist_protected(rdp);
rcu_nocb_bypass_lock(rdp);
return rcu_nocb_do_flush_bypass(rdp, rhp, j);
return rcu_nocb_do_flush_bypass(rdp, rhp, j, lazy);
}
/*
......@@ -345,7 +391,7 @@ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
if (!rcu_rdp_is_offloaded(rdp) ||
!rcu_nocb_bypass_trylock(rdp))
return;
WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j));
WARN_ON_ONCE(!rcu_nocb_do_flush_bypass(rdp, NULL, j, false));
}
/*
......@@ -367,12 +413,14 @@ static void rcu_nocb_try_flush_bypass(struct rcu_data *rdp, unsigned long j)
* there is only one CPU in operation.
*/
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
bool *was_alldone, unsigned long flags)
bool *was_alldone, unsigned long flags,
bool lazy)
{
unsigned long c;
unsigned long cur_gp_seq;
unsigned long j = jiffies;
long ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
bool bypass_is_lazy = (ncbs == READ_ONCE(rdp->lazy_len));
lockdep_assert_irqs_disabled();
......@@ -417,24 +465,29 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
// If there hasn't yet been all that many ->cblist enqueues
// this jiffy, tell the caller to enqueue onto ->cblist. But flush
// ->nocb_bypass first.
if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy) {
// Lazy CBs throttle this back and do immediate bypass queuing.
if (rdp->nocb_nobypass_count < nocb_nobypass_lim_per_jiffy && !lazy) {
rcu_nocb_lock(rdp);
*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
if (*was_alldone)
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("FirstQ"));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, j, false));
WARN_ON_ONCE(rcu_cblist_n_cbs(&rdp->nocb_bypass));
return false; // Caller must enqueue the callback.
}
// If ->nocb_bypass has been used too long or is too full,
// flush ->nocb_bypass to ->cblist.
if ((ncbs && j != READ_ONCE(rdp->nocb_bypass_first)) ||
if ((ncbs && !bypass_is_lazy && j != READ_ONCE(rdp->nocb_bypass_first)) ||
(ncbs && bypass_is_lazy &&
(time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush))) ||
ncbs >= qhimark) {
rcu_nocb_lock(rdp);
if (!rcu_nocb_flush_bypass(rdp, rhp, j)) {
*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
*was_alldone = !rcu_segcblist_pend_cbs(&rdp->cblist);
if (!rcu_nocb_flush_bypass(rdp, rhp, j, lazy)) {
if (*was_alldone)
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("FirstQ"));
......@@ -447,7 +500,12 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
rcu_advance_cbs_nowake(rdp->mynode, rdp);
rdp->nocb_gp_adv_time = j;
}
rcu_nocb_unlock_irqrestore(rdp, flags);
// The flush succeeded and we moved CBs into the regular list.
// Don't wait for the wake up timer as it may be too far ahead.
// Wake up the GP thread now instead, if the cblist was empty.
__call_rcu_nocb_wake(rdp, *was_alldone, flags);
return true; // Callback already enqueued.
}
......@@ -457,13 +515,24 @@ static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
rcu_segcblist_inc_len(&rdp->cblist); /* Must precede enqueue. */
rcu_cblist_enqueue(&rdp->nocb_bypass, rhp);
if (lazy)
WRITE_ONCE(rdp->lazy_len, rdp->lazy_len + 1);
if (!ncbs) {
WRITE_ONCE(rdp->nocb_bypass_first, j);
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("FirstBQ"));
}
rcu_nocb_bypass_unlock(rdp);
smp_mb(); /* Order enqueue before wake. */
if (ncbs) {
// A wake up of the grace period kthread or timer adjustment
// needs to be done only if:
// 1. Bypass list was fully empty before (this is the first
// bypass list entry), or:
// 2. Both of these conditions are met:
// a. The bypass list previously had only lazy CBs, and:
// b. The new CB is non-lazy.
if (ncbs && (!bypass_is_lazy || lazy)) {
local_irq_restore(flags);
} else {
// No-CBs GP kthread might be indefinitely asleep, if so, wake.
......@@ -491,8 +560,10 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
unsigned long flags)
__releases(rdp->nocb_lock)
{
long bypass_len;
unsigned long cur_gp_seq;
unsigned long j;
long lazy_len;
long len;
struct task_struct *t;
......@@ -506,9 +577,16 @@ static void __call_rcu_nocb_wake(struct rcu_data *rdp, bool was_alldone,
}
// Need to actually to a wakeup.
len = rcu_segcblist_n_cbs(&rdp->cblist);
bypass_len = rcu_cblist_n_cbs(&rdp->nocb_bypass);
lazy_len = READ_ONCE(rdp->lazy_len);
if (was_alldone) {
rdp->qlen_last_fqs_check = len;
if (!irqs_disabled_flags(flags)) {
// Only lazy CBs in bypass list
if (lazy_len && bypass_len == lazy_len) {
rcu_nocb_unlock_irqrestore(rdp, flags);
wake_nocb_gp_defer(rdp, RCU_NOCB_WAKE_LAZY,
TPS("WakeLazy"));
} else if (!irqs_disabled_flags(flags)) {
/* ... if queue was empty ... */
rcu_nocb_unlock_irqrestore(rdp, flags);
wake_nocb_gp(rdp, false);
......@@ -599,12 +677,12 @@ static void nocb_gp_sleep(struct rcu_data *my_rdp, int cpu)
static void nocb_gp_wait(struct rcu_data *my_rdp)
{
bool bypass = false;
long bypass_ncbs;
int __maybe_unused cpu = my_rdp->cpu;
unsigned long cur_gp_seq;
unsigned long flags;
bool gotcbs = false;
unsigned long j = jiffies;
bool lazy = false;
bool needwait_gp = false; // This prevents actual uninitialized use.
bool needwake;
bool needwake_gp;
......@@ -634,24 +712,43 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
* won't be ignored for long.
*/
list_for_each_entry(rdp, &my_rdp->nocb_head_rdp, nocb_entry_rdp) {
long bypass_ncbs;
bool flush_bypass = false;
long lazy_ncbs;
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu, TPS("Check"));
rcu_nocb_lock_irqsave(rdp, flags);
lockdep_assert_held(&rdp->nocb_lock);
bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
if (bypass_ncbs &&
lazy_ncbs = READ_ONCE(rdp->lazy_len);
if (bypass_ncbs && (lazy_ncbs == bypass_ncbs) &&
(time_after(j, READ_ONCE(rdp->nocb_bypass_first) + jiffies_till_flush) ||
bypass_ncbs > 2 * qhimark)) {
flush_bypass = true;
} else if (bypass_ncbs && (lazy_ncbs != bypass_ncbs) &&
(time_after(j, READ_ONCE(rdp->nocb_bypass_first) + 1) ||
bypass_ncbs > 2 * qhimark)) {
// Bypass full or old, so flush it.
(void)rcu_nocb_try_flush_bypass(rdp, j);
bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
flush_bypass = true;
} else if (!bypass_ncbs && rcu_segcblist_empty(&rdp->cblist)) {
rcu_nocb_unlock_irqrestore(rdp, flags);
continue; /* No callbacks here, try next. */
}
if (flush_bypass) {
// Bypass full or old, so flush it.
(void)rcu_nocb_try_flush_bypass(rdp, j);
bypass_ncbs = rcu_cblist_n_cbs(&rdp->nocb_bypass);
lazy_ncbs = READ_ONCE(rdp->lazy_len);
}
if (bypass_ncbs) {
trace_rcu_nocb_wake(rcu_state.name, rdp->cpu,
TPS("Bypass"));
bypass = true;
bypass_ncbs == lazy_ncbs ? TPS("Lazy") : TPS("Bypass"));
if (bypass_ncbs == lazy_ncbs)
lazy = true;
else
bypass = true;
}
rnp = rdp->mynode;
......@@ -699,12 +796,20 @@ static void nocb_gp_wait(struct rcu_data *my_rdp)
my_rdp->nocb_gp_gp = needwait_gp;
my_rdp->nocb_gp_seq = needwait_gp ? wait_gp_seq : 0;
if (bypass && !rcu_nocb_poll) {
// At least one child with non-empty ->nocb_bypass, so set
// timer in order to avoid stranding its callbacks.
wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
TPS("WakeBypassIsDeferred"));
// At least one child with non-empty ->nocb_bypass, so set
// timer in order to avoid stranding its callbacks.
if (!rcu_nocb_poll) {
// If bypass list only has lazy CBs. Add a deferred lazy wake up.
if (lazy && !bypass) {
wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_LAZY,
TPS("WakeLazyIsDeferred"));
// Otherwise add a deferred bypass wake up.
} else if (bypass) {
wake_nocb_gp_defer(my_rdp, RCU_NOCB_WAKE_BYPASS,
TPS("WakeBypassIsDeferred"));
}
}
if (rcu_nocb_poll) {
/* Polling, so trace if first poll in the series. */
if (gotcbs)
......@@ -1030,7 +1135,7 @@ static long rcu_nocb_rdp_deoffload(void *arg)
* return false, which means that future calls to rcu_nocb_try_bypass()
* will refuse to put anything into the bypass.
*/
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies));
WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
/*
* Start with invoking rcu_core() early. This way if the current thread
* happens to preempt an ongoing call to rcu_core() in the middle,
......@@ -1207,47 +1312,87 @@ int rcu_nocb_cpu_offload(int cpu)
}
EXPORT_SYMBOL_GPL(rcu_nocb_cpu_offload);
void __init rcu_init_nohz(void)
static unsigned long
lazy_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
{
int cpu;
bool need_rcu_nocb_mask = false;
bool offload_all = false;
struct rcu_data *rdp;
unsigned long count = 0;
#if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL)
if (!rcu_state.nocb_is_setup) {
need_rcu_nocb_mask = true;
offload_all = true;
/* Snapshot count of all CPUs */
for_each_possible_cpu(cpu) {
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
count += READ_ONCE(rdp->lazy_len);
}
#endif /* #if defined(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) */
#if defined(CONFIG_NO_HZ_FULL)
if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask)) {
need_rcu_nocb_mask = true;
offload_all = false; /* NO_HZ_FULL has its own mask. */
return count ? count : SHRINK_EMPTY;
}
static unsigned long
lazy_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
{
int cpu;
unsigned long flags;
unsigned long count = 0;
/* Snapshot count of all CPUs */
for_each_possible_cpu(cpu) {
struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
int _count = READ_ONCE(rdp->lazy_len);
if (_count == 0)
continue;
rcu_nocb_lock_irqsave(rdp, flags);
WRITE_ONCE(rdp->lazy_len, 0);
rcu_nocb_unlock_irqrestore(rdp, flags);
wake_nocb_gp(rdp, false);
sc->nr_to_scan -= _count;
count += _count;
if (sc->nr_to_scan <= 0)
break;
}
#endif /* #if defined(CONFIG_NO_HZ_FULL) */
return count ? count : SHRINK_STOP;
}
static struct shrinker lazy_rcu_shrinker = {
.count_objects = lazy_rcu_shrink_count,
.scan_objects = lazy_rcu_shrink_scan,
.batch = 0,
.seeks = DEFAULT_SEEKS,
};
void __init rcu_init_nohz(void)
{
int cpu;
struct rcu_data *rdp;
const struct cpumask *cpumask = NULL;
#if defined(CONFIG_NO_HZ_FULL)
if (tick_nohz_full_running && !cpumask_empty(tick_nohz_full_mask))
cpumask = tick_nohz_full_mask;
#endif
if (need_rcu_nocb_mask) {
if (IS_ENABLED(CONFIG_RCU_NOCB_CPU_DEFAULT_ALL) &&
!rcu_state.nocb_is_setup && !cpumask)
cpumask = cpu_possible_mask;
if (cpumask) {
if (!cpumask_available(rcu_nocb_mask)) {
if (!zalloc_cpumask_var(&rcu_nocb_mask, GFP_KERNEL)) {
pr_info("rcu_nocb_mask allocation failed, callback offloading disabled.\n");
return;
}
}
cpumask_or(rcu_nocb_mask, rcu_nocb_mask, cpumask);
rcu_state.nocb_is_setup = true;
}
if (!rcu_state.nocb_is_setup)
return;
#if defined(CONFIG_NO_HZ_FULL)
if (tick_nohz_full_running)
cpumask_or(rcu_nocb_mask, rcu_nocb_mask, tick_nohz_full_mask);
#endif /* #if defined(CONFIG_NO_HZ_FULL) */
if (offload_all)
cpumask_setall(rcu_nocb_mask);
if (register_shrinker(&lazy_rcu_shrinker, "rcu-lazy"))
pr_err("Failed to register lazy_rcu shrinker!\n");
if (!cpumask_subset(rcu_nocb_mask, cpu_possible_mask)) {
pr_info("\tNote: kernel parameter 'rcu_nocbs=', 'nohz_full', or 'isolcpus=' contains nonexistent CPUs.\n");
......@@ -1284,6 +1429,7 @@ static void __init rcu_boot_init_nocb_percpu_data(struct rcu_data *rdp)
raw_spin_lock_init(&rdp->nocb_gp_lock);
timer_setup(&rdp->nocb_timer, do_nocb_deferred_wakeup_timer, 0);
rcu_cblist_init(&rdp->nocb_bypass);
WRITE_ONCE(rdp->lazy_len, 0);
mutex_init(&rdp->nocb_gp_kthread_mutex);
}
......@@ -1564,14 +1710,19 @@ static void rcu_init_one_nocb(struct rcu_node *rnp)
{
}
static bool wake_nocb_gp(struct rcu_data *rdp, bool force)
{
return false;
}
static bool rcu_nocb_flush_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
unsigned long j)
unsigned long j, bool lazy)
{
return true;
}
static bool rcu_nocb_try_bypass(struct rcu_data *rdp, struct rcu_head *rhp,
bool *was_alldone, unsigned long flags)
bool *was_alldone, unsigned long flags, bool lazy)
{
return false;
}
......
......@@ -1221,11 +1221,13 @@ static void rcu_spawn_one_boost_kthread(struct rcu_node *rnp)
* We don't include outgoingcpu in the affinity set, use -1 if there is
* no outgoing CPU. If there are no CPUs left in the affinity set,
* this function allows the kthread to execute on any CPU.
*
* Any future concurrent calls are serialized via ->boost_kthread_mutex.
*/
static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
{
struct task_struct *t = rnp->boost_kthread_task;
unsigned long mask = rcu_rnp_online_cpus(rnp);
unsigned long mask;
cpumask_var_t cm;
int cpu;
......@@ -1234,6 +1236,7 @@ static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu)
if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
return;
mutex_lock(&rnp->boost_kthread_mutex);
mask = rcu_rnp_online_cpus(rnp);
for_each_leaf_node_possible_cpu(rnp, cpu)
if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
cpu != outgoingcpu)
......
......@@ -1771,7 +1771,7 @@ bool queue_rcu_work(struct workqueue_struct *wq, struct rcu_work *rwork)
if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
rwork->wq = wq;
call_rcu(&rwork->rcu, rcu_work_rcufn);
call_rcu_hurry(&rwork->rcu, rcu_work_rcufn);
return true;
}
......
......@@ -230,7 +230,8 @@ static void __percpu_ref_switch_to_atomic(struct percpu_ref *ref,
percpu_ref_noop_confirm_switch;
percpu_ref_get(ref); /* put after confirmation */
call_rcu(&ref->data->rcu, percpu_ref_switch_to_atomic_rcu);
call_rcu_hurry(&ref->data->rcu,
percpu_ref_switch_to_atomic_rcu);
}
static void __percpu_ref_switch_to_percpu(struct percpu_ref *ref)
......
......@@ -174,7 +174,7 @@ void dst_release(struct dst_entry *dst)
net_warn_ratelimited("%s: dst:%p refcnt:%d\n",
__func__, dst, newrefcnt);
if (!newrefcnt)
call_rcu(&dst->rcu_head, dst_destroy_rcu);
call_rcu_hurry(&dst->rcu_head, dst_destroy_rcu);
}
}
EXPORT_SYMBOL(dst_release);
......
......@@ -234,13 +234,20 @@ static void inet_free_ifa(struct in_ifaddr *ifa)
call_rcu(&ifa->rcu_head, inet_rcu_free_ifa);
}
static void in_dev_free_rcu(struct rcu_head *head)
{
struct in_device *idev = container_of(head, struct in_device, rcu_head);
kfree(rcu_dereference_protected(idev->mc_hash, 1));
kfree(idev);
}
void in_dev_finish_destroy(struct in_device *idev)
{
struct net_device *dev = idev->dev;
WARN_ON(idev->ifa_list);
WARN_ON(idev->mc_list);
kfree(rcu_dereference_protected(idev->mc_hash, 1));
#ifdef NET_REFCNT_DEBUG
pr_debug("%s: %p=%s\n", __func__, idev, dev ? dev->name : "NIL");
#endif
......@@ -248,7 +255,7 @@ void in_dev_finish_destroy(struct in_device *idev)
if (!idev->dead)
pr_err("Freeing alive in_device %p\n", idev);
else
kfree(idev);
call_rcu(&idev->rcu_head, in_dev_free_rcu);
}
EXPORT_SYMBOL(in_dev_finish_destroy);
......@@ -298,12 +305,6 @@ static struct in_device *inetdev_init(struct net_device *dev)
goto out;
}
static void in_dev_rcu_put(struct rcu_head *head)
{
struct in_device *idev = container_of(head, struct in_device, rcu_head);
in_dev_put(idev);
}
static void inetdev_destroy(struct in_device *in_dev)
{
struct net_device *dev;
......@@ -328,7 +329,7 @@ static void inetdev_destroy(struct in_device *in_dev)
neigh_parms_release(&arp_tbl, in_dev->arp_parms);
arp_ifdown(dev);
call_rcu(&in_dev->rcu_head, in_dev_rcu_put);
in_dev_put(in_dev);
}
int inet_addr_onlink(struct in_device *in_dev, __be32 a, __be32 b)
......
......@@ -30,9 +30,8 @@ else
fi
scenarios="`echo $scenariosarg | sed -e "s/\<CFLIST\>/$defaultconfigs/g"`"
T=/tmp/config2latex.sh.$$
T=`mktemp -d /tmp/config2latex.sh.XXXXXX`
trap 'rm -rf $T' 0
mkdir $T
cat << '---EOF---' >> $T/p.awk
END {
......
......@@ -29,9 +29,8 @@ else
exit 1
fi
T=${TMPDIR-/tmp}/config_override.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/config_override.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
sed < $override -e 's/^/grep -v "/' -e 's/=.*$/="/' |
awk '
......
......@@ -7,9 +7,8 @@
#
# Authors: Paul E. McKenney <paulmck@linux.ibm.com>
T=${TMPDIR-/tmp}/abat-chk-config.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/configcheck.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
cat $1 > $T/.config
......
......@@ -15,9 +15,8 @@
#
# Authors: Paul E. McKenney <paulmck@linux.ibm.com>
T=${TMPDIR-/tmp}/configinit.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/configinit.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
# Capture config spec file.
......
......@@ -12,9 +12,8 @@
scriptname=$0
args="$*"
T=${TMPDIR-/tmp}/kvm-again.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/kvm-again.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
if ! test -d tools/testing/selftests/rcutorture/bin
then
......@@ -51,27 +50,56 @@ RCUTORTURE="`pwd`/tools/testing/selftests/rcutorture"; export RCUTORTURE
PATH=${RCUTORTURE}/bin:$PATH; export PATH
. functions.sh
bootargs=
dryrun=
dur=
default_link="cp -R"
rundir="`pwd`/tools/testing/selftests/rcutorture/res/`date +%Y.%m.%d-%H.%M.%S-again`"
resdir="`pwd`/tools/testing/selftests/rcutorture/res"
rundir="$resdir/`date +%Y.%m.%d-%H.%M.%S-again`"
got_datestamp=
got_rundir=
startdate="`date`"
starttime="`get_starttime`"
usage () {
echo "Usage: $scriptname $oldrun [ arguments ]:"
echo " --bootargs kernel-boot-arguments"
echo " --datestamp string"
echo " --dryrun"
echo " --duration minutes | <seconds>s | <hours>h | <days>d"
echo " --link hard|soft|copy"
echo " --remote"
echo " --rundir /new/res/path"
echo "Command line: $scriptname $args"
exit 1
}
while test $# -gt 0
do
case "$1" in
--bootargs|--bootarg)
checkarg --bootargs "(list of kernel boot arguments)" "$#" "$2" '.*' '^--'
bootargs="$bootargs $2"
shift
;;
--datestamp)
checkarg --datestamp "(relative pathname)" "$#" "$2" '^[a-zA-Z0-9._/-]*$' '^--'
if test -n "$got_rundir" || test -n "$got_datestamp"
then
echo Only one of --datestamp or --rundir may be specified
usage
fi
got_datestamp=y
ds=$2
rundir="$resdir/$ds"
if test -e "$rundir"
then
echo "--datestamp $2: Already exists."
usage
fi
shift
;;
--dryrun)
dryrun=1
;;
......@@ -113,6 +141,12 @@ do
;;
--rundir)
checkarg --rundir "(absolute pathname)" "$#" "$2" '^/' '^error'
if test -n "$got_rundir" || test -n "$got_datestamp"
then
echo Only one of --datestamp or --rundir may be specified
usage
fi
got_rundir=y
rundir=$2
if test -e "$rundir"
then
......@@ -122,8 +156,11 @@ do
shift
;;
*)
echo Unknown argument $1
usage
if test -n "$1"
then
echo Unknown argument $1
usage
fi
;;
esac
shift
......@@ -156,7 +193,7 @@ do
qemu_cmd_dir="`dirname "$i"`"
kernel_dir="`echo $qemu_cmd_dir | sed -e 's/\.[0-9]\+$//'`"
jitter_dir="`dirname "$kernel_dir"`"
kvm-transform.sh "$kernel_dir/bzImage" "$qemu_cmd_dir/console.log" "$jitter_dir" $dur < $T/qemu-cmd > $i
kvm-transform.sh "$kernel_dir/bzImage" "$qemu_cmd_dir/console.log" "$jitter_dir" $dur "$bootargs" < $T/qemu-cmd > $i
if test -n "$arg_remote"
then
echo "# TORTURE_KCONFIG_GDB_ARG=''" >> $i
......
......@@ -7,9 +7,8 @@
#
# Usage: kvm-assign-cpus.sh /path/to/sysfs
T=/tmp/kvm-assign-cpus.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/kvm-assign-cpus.sh.XXXXXX`"
trap 'rm -rf $T' 0 2
mkdir $T
sysfsdir=${1-/sys/devices/system/node}
if ! cd "$sysfsdir" > $T/msg 2>&1
......
......@@ -23,9 +23,8 @@ then
fi
resdir=${2}
T=${TMPDIR-/tmp}/test-linux.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/kvm-build.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
cp ${config_template} $T/config
cat << ___EOF___ >> $T/config
......
......@@ -18,9 +18,8 @@ then
exit 1
fi
T=${TMPDIR-/tmp}/kvm-end-run-stats.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/kvm-end-run-stats.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
RCUTORTURE="`pwd`/tools/testing/selftests/rcutorture"; export RCUTORTURE
PATH=${RCUTORTURE}/bin:$PATH; export PATH
......
......@@ -30,7 +30,7 @@ do
resdir=`echo $i | sed -e 's,/$,,' -e 's,/[^/]*$,,'`
head -1 $resdir/log
fi
TORTURE_SUITE="`cat $i/../torture_suite`"
TORTURE_SUITE="`cat $i/../torture_suite`" ; export TORTURE_SUITE
configfile=`echo $i | sed -e 's,^.*/,,'`
rm -f $i/console.log.*.diags
case "${TORTURE_SUITE}" in
......
......@@ -34,19 +34,18 @@ fi
shift
# Pathnames:
# T: /tmp/kvm-remote.sh.$$
# resdir: /tmp/kvm-remote.sh.$$/res
# rundir: /tmp/kvm-remote.sh.$$/res/$ds ("-remote" suffix)
# T: /tmp/kvm-remote.sh.NNNNNN where "NNNNNN" is set by mktemp
# resdir: /tmp/kvm-remote.sh.NNNNNN/res
# rundir: /tmp/kvm-remote.sh.NNNNNN/res/$ds ("-remote" suffix)
# oldrun: `pwd`/tools/testing/.../res/$otherds
#
# Pathname segments:
# TD: kvm-remote.sh.$$
# TD: kvm-remote.sh.NNNNNN
# ds: yyyy.mm.dd-hh.mm.ss-remote
TD=kvm-remote.sh.$$
T=${TMPDIR-/tmp}/$TD
T="`mktemp -d ${TMPDIR-/tmp}/kvm-remote.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
TD="`basename "$T"`"
resdir="$T/res"
ds=`date +%Y.%m.%d-%H.%M.%S`-remote
......
......@@ -13,9 +13,8 @@
#
# Authors: Paul E. McKenney <paulmck@kernel.org>
T=${TMPDIR-/tmp}/kvm-test-1-run-batch.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/kvm-test-1-run-batch.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
echo ---- Running batch $*
# Check arguments
......
......@@ -17,9 +17,8 @@
#
# Authors: Paul E. McKenney <paulmck@kernel.org>
T=${TMPDIR-/tmp}/kvm-test-1-run-qemu.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/kvm-test-1-run-qemu.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
resdir="$1"
if ! test -d "$resdir"
......@@ -109,7 +108,7 @@ do
if test $kruntime -lt $seconds
then
echo Completed in $kruntime vs. $seconds >> $resdir/Warnings 2>&1
grep "^(qemu) qemu:" $resdir/kvm-test-1-run.sh.out >> $resdir/Warnings 2>&1
grep "^(qemu) qemu:" $resdir/kvm-test-1-run*.sh.out >> $resdir/Warnings 2>&1
killpid="`sed -n "s/^(qemu) qemu: terminating on signal [0-9]* from pid \([0-9]*\).*$/\1/p" $resdir/Warnings`"
if test -n "$killpid"
then
......
......@@ -25,9 +25,8 @@
#
# Authors: Paul E. McKenney <paulmck@linux.ibm.com>
T=${TMPDIR-/tmp}/kvm-test-1-run.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/kvm-test-1-run.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
. functions.sh
. $CONFIGFRAG/ver_functions.sh
......
......@@ -3,10 +3,14 @@
#
# Transform a qemu-cmd file to allow reuse.
#
# Usage: kvm-transform.sh bzImage console.log jitter_dir [ seconds ] < qemu-cmd-in > qemu-cmd-out
# Usage: kvm-transform.sh bzImage console.log jitter_dir seconds [ bootargs ] < qemu-cmd-in > qemu-cmd-out
#
# bzImage: Kernel and initrd from the same prior kvm.sh run.
# console.log: File into which to place console output.
# jitter_dir: Jitter directory for TORTURE_JITTER_START and
# TORTURE_JITTER_STOP environment variables.
# seconds: Run duaration for *.shutdown_secs module parameter.
# bootargs: New kernel boot parameters. Beware of Robert Tables.
#
# The original qemu-cmd file is provided on standard input.
# The transformed qemu-cmd file is on standard output.
......@@ -17,6 +21,9 @@
#
# Authors: Paul E. McKenney <paulmck@kernel.org>
T=`mktemp -d /tmp/kvm-transform.sh.XXXXXXXXXX`
trap 'rm -rf $T' 0 2
image="$1"
if test -z "$image"
then
......@@ -41,9 +48,17 @@ then
echo "Invalid duration, should be numeric in seconds: '$seconds'"
exit 1
fi
bootargs="$5"
# Build awk program.
echo "BEGIN {" > $T/bootarg.awk
echo $bootargs | tr -s ' ' '\012' |
awk -v dq='"' '/./ { print "\tbootarg[" NR "] = " dq $1 dq ";" }' >> $T/bootarg.awk
echo $bootargs | tr -s ' ' '\012' | sed -e 's/=.*$//' |
awk -v dq='"' '/./ { print "\tbootpar[" NR "] = " dq $1 dq ";" }' >> $T/bootarg.awk
cat >> $T/bootarg.awk << '___EOF___'
}
awk -v image="$image" -v consolelog="$consolelog" -v jitter_dir="$jitter_dir" \
-v seconds="$seconds" '
/^# seconds=/ {
if (seconds == "")
print $0;
......@@ -70,13 +85,7 @@ awk -v image="$image" -v consolelog="$consolelog" -v jitter_dir="$jitter_dir" \
{
line = "";
for (i = 1; i <= NF; i++) {
if ("" seconds != "" && $i ~ /\.shutdown_secs=[0-9]*$/) {
sub(/[0-9]*$/, seconds, $i);
if (line == "")
line = $i;
else
line = line " " $i;
} else if (line == "") {
if (line == "") {
line = $i;
} else {
line = line " " $i;
......@@ -87,7 +96,44 @@ awk -v image="$image" -v consolelog="$consolelog" -v jitter_dir="$jitter_dir" \
} else if ($i == "-kernel") {
i++;
line = line " " image;
} else if ($i == "-append") {
for (i++; i <= NF; i++) {
arg = $i;
lq = "";
rq = "";
if ("" seconds != "" && $i ~ /\.shutdown_secs=[0-9]*$/)
sub(/[0-9]*$/, seconds, arg);
if (arg ~ /^"/) {
lq = substr(arg, 1, 1);
arg = substr(arg, 2);
}
if (arg ~ /"$/) {
rq = substr(arg, length($i), 1);
arg = substr(arg, 1, length($i) - 1);
}
par = arg;
gsub(/=.*$/, "", par);
j = 1;
while (bootpar[j] != "") {
if (bootpar[j] == par) {
arg = "";
break;
}
j++;
}
if (line == "")
line = lq arg;
else
line = line " " lq arg;
}
for (j in bootarg)
line = line " " bootarg[j];
line = line rq;
}
}
print line;
}'
}
___EOF___
awk -v image="$image" -v consolelog="$consolelog" -v jitter_dir="$jitter_dir" \
-v seconds="$seconds" -f $T/bootarg.awk
......@@ -14,9 +14,8 @@
scriptname=$0
args="$*"
T=${TMPDIR-/tmp}/kvm.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/kvm.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
cd `dirname $scriptname`/../../../../../
......
......@@ -15,9 +15,8 @@
F=$1
title=$2
T=${TMPDIR-/tmp}/parse-build.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/parse-build.sh.XXXXXX`"
trap 'rm -rf $T' 0
mkdir $T
. functions.sh
......
......@@ -206,9 +206,8 @@ ds="`date +%Y.%m.%d-%H.%M.%S`-torture"
startdate="`date`"
starttime="`get_starttime`"
T=/tmp/torture.sh.$$
T="`mktemp -d ${TMPDIR-/tmp}/torture.sh.XXXXXX`"
trap 'rm -rf $T' 0 2
mkdir $T
echo " --- " $scriptname $args | tee -a $T/log
echo " --- Results directory: " $ds | tee -a $T/log
......@@ -278,6 +277,8 @@ function torture_one {
then
cat $T/$curflavor.out | tee -a $T/log
echo retcode=$retcode | tee -a $T/log
else
echo $resdir > $T/last-resdir
fi
if test "$retcode" == 0
then
......@@ -303,10 +304,12 @@ function torture_set {
shift
curflavor=$flavor
torture_one "$@"
mv $T/last-resdir $T/last-resdir-nodebug || :
if test "$do_kasan" = "yes"
then
curflavor=${flavor}-kasan
torture_one "$@" --kasan
mv $T/last-resdir $T/last-resdir-kasan || :
fi
if test "$do_kcsan" = "yes"
then
......@@ -317,6 +320,7 @@ function torture_set {
cur_kcsan_kmake_args="$kcsan_kmake_args"
fi
torture_one "$@" --kconfig "CONFIG_DEBUG_LOCK_ALLOC=y CONFIG_PROVE_LOCKING=y" $kcsan_kmake_tag $cur_kcsan_kmake_args --kcsan
mv $T/last-resdir $T/last-resdir-kcsan || :
fi
}
......@@ -326,20 +330,34 @@ then
echo " --- allmodconfig:" Start `date` | tee -a $T/log
amcdir="tools/testing/selftests/rcutorture/res/$ds/allmodconfig"
mkdir -p "$amcdir"
echo " --- make clean" > "$amcdir/Make.out" 2>&1
echo " --- make clean" | tee $amcdir/log > "$amcdir/Make.out" 2>&1
make -j$MAKE_ALLOTED_CPUS clean >> "$amcdir/Make.out" 2>&1
echo " --- make allmodconfig" >> "$amcdir/Make.out" 2>&1
cp .config $amcdir
make -j$MAKE_ALLOTED_CPUS allmodconfig >> "$amcdir/Make.out" 2>&1
echo " --- make " >> "$amcdir/Make.out" 2>&1
make -j$MAKE_ALLOTED_CPUS >> "$amcdir/Make.out" 2>&1
retcode="$?"
echo $retcode > "$amcdir/Make.exitcode"
if test "$retcode" == 0
retcode=$?
buildphase='"make clean"'
if test "$retcode" -eq 0
then
echo " --- make allmodconfig" | tee -a $amcdir/log >> "$amcdir/Make.out" 2>&1
cp .config $amcdir
make -j$MAKE_ALLOTED_CPUS allmodconfig >> "$amcdir/Make.out" 2>&1
retcode=$?
buildphase='"make allmodconfig"'
fi
if test "$retcode" -eq 0
then
echo " --- make " | tee -a $amcdir/log >> "$amcdir/Make.out" 2>&1
make -j$MAKE_ALLOTED_CPUS >> "$amcdir/Make.out" 2>&1
retcode="$?"
echo $retcode > "$amcdir/Make.exitcode"
buildphase='"make"'
fi
if test "$retcode" -eq 0
then
echo "allmodconfig($retcode)" $amcdir >> $T/successes
echo Success >> $amcdir/log
else
echo "allmodconfig($retcode)" $amcdir >> $T/failures
echo " --- allmodconfig Test summary:" >> $amcdir/log
echo " --- Summary: Exit code $retcode from $buildphase, see Make.out" >> $amcdir/log
fi
fi
......@@ -379,11 +397,48 @@ then
else
primlist=
fi
firsttime=1
do_kasan_save="$do_kasan"
do_kcsan_save="$do_kcsan"
for prim in $primlist
do
torture_bootargs="refscale.scale_type="$prim" refscale.nreaders=$HALF_ALLOTED_CPUS refscale.loops=10000 refscale.holdoff=20 torture.disable_onoff_at_boot"
torture_set "refscale-$prim" tools/testing/selftests/rcutorture/bin/kvm.sh --torture refscale --allcpus --duration 5 --kconfig "CONFIG_TASKS_TRACE_RCU=y CONFIG_NR_CPUS=$HALF_ALLOTED_CPUS" --bootargs "verbose_batched=$VERBOSE_BATCH_CPUS torture.verbose_sleep_frequency=8 torture.verbose_sleep_duration=$VERBOSE_BATCH_CPUS" --trust-make
if test -n "$firsttime"
then
torture_bootargs="refscale.scale_type="$prim" refscale.nreaders=$HALF_ALLOTED_CPUS refscale.loops=10000 refscale.holdoff=20 torture.disable_onoff_at_boot"
torture_set "refscale-$prim" tools/testing/selftests/rcutorture/bin/kvm.sh --torture refscale --allcpus --duration 5 --kconfig "CONFIG_TASKS_TRACE_RCU=y CONFIG_NR_CPUS=$HALF_ALLOTED_CPUS" --bootargs "verbose_batched=$VERBOSE_BATCH_CPUS torture.verbose_sleep_frequency=8 torture.verbose_sleep_duration=$VERBOSE_BATCH_CPUS" --trust-make
mv $T/last-resdir-nodebug $T/first-resdir-nodebug || :
if test -f "$T/last-resdir-kasan"
then
mv $T/last-resdir-kasan $T/first-resdir-kasan || :
fi
if test -f "$T/last-resdir-kcsan"
then
mv $T/last-resdir-kcsan $T/first-resdir-kcsan || :
fi
firsttime=
do_kasan=
do_kcsan=
else
torture_bootargs=
for i in $T/first-resdir-*
do
case "$i" in
*-nodebug)
torture_suffix=
;;
*-kasan)
torture_suffix="-kasan"
;;
*-kcsan)
torture_suffix="-kcsan"
;;
esac
torture_set "refscale-$prim$torture_suffix" tools/testing/selftests/rcutorture/bin/kvm-again.sh "`cat "$i"`" --duration 5 --bootargs "refscale.scale_type=$prim"
done
fi
done
do_kasan="$do_kasan_save"
do_kcsan="$do_kcsan_save"
if test "$do_rcuscale" = yes
then
......@@ -391,11 +446,48 @@ then
else
primlist=
fi
firsttime=1
do_kasan_save="$do_kasan"
do_kcsan_save="$do_kcsan"
for prim in $primlist
do
torture_bootargs="rcuscale.scale_type="$prim" rcuscale.nwriters=$HALF_ALLOTED_CPUS rcuscale.holdoff=20 torture.disable_onoff_at_boot"
torture_set "rcuscale-$prim" tools/testing/selftests/rcutorture/bin/kvm.sh --torture rcuscale --allcpus --duration 5 --kconfig "CONFIG_TASKS_TRACE_RCU=y CONFIG_NR_CPUS=$HALF_ALLOTED_CPUS" --trust-make
if test -n "$firsttime"
then
torture_bootargs="rcuscale.scale_type="$prim" rcuscale.nwriters=$HALF_ALLOTED_CPUS rcuscale.holdoff=20 torture.disable_onoff_at_boot"
torture_set "rcuscale-$prim" tools/testing/selftests/rcutorture/bin/kvm.sh --torture rcuscale --allcpus --duration 5 --kconfig "CONFIG_TASKS_TRACE_RCU=y CONFIG_NR_CPUS=$HALF_ALLOTED_CPUS" --trust-make
mv $T/last-resdir-nodebug $T/first-resdir-nodebug || :
if test -f "$T/last-resdir-kasan"
then
mv $T/last-resdir-kasan $T/first-resdir-kasan || :
fi
if test -f "$T/last-resdir-kcsan"
then
mv $T/last-resdir-kcsan $T/first-resdir-kcsan || :
fi
firsttime=
do_kasan=
do_kcsan=
else
torture_bootargs=
for i in $T/first-resdir-*
do
case "$i" in
*-nodebug)
torture_suffix=
;;
*-kasan)
torture_suffix="-kasan"
;;
*-kcsan)
torture_suffix="-kcsan"
;;
esac
torture_set "rcuscale-$prim$torture_suffix" tools/testing/selftests/rcutorture/bin/kvm-again.sh "`cat "$i"`" --duration 5 --bootargs "rcuscale.scale_type=$prim"
done
fi
done
do_kasan="$do_kasan_save"
do_kcsan="$do_kcsan_save"
if test "$do_kvfree" = "yes"
then
......@@ -458,7 +550,10 @@ if test -n "$tdir" && test $compress_concurrency -gt 0
then
# KASAN vmlinux files can approach 1GB in size, so compress them.
echo Looking for K[AC]SAN files to compress: `date` > "$tdir/log-xz" 2>&1
find "$tdir" -type d -name '*-k[ac]san' -print > $T/xz-todo
find "$tdir" -type d -name '*-k[ac]san' -print > $T/xz-todo-all
find "$tdir" -type f -name 're-run' -print | sed -e 's,/re-run,,' |
grep -e '-k[ac]san$' > $T/xz-todo-copy
sort $T/xz-todo-all $T/xz-todo-copy | uniq -u > $T/xz-todo
ncompresses=0
batchno=1
if test -s $T/xz-todo
......@@ -490,6 +585,24 @@ then
echo Waiting for final batch $batchno of $ncompresses compressions `date` | tee -a "$tdir/log-xz" | tee -a $T/log
fi
wait
if test -s $T/xz-todo-copy
then
# The trick here is that we need corresponding
# vmlinux files from corresponding scenarios.
echo Linking vmlinux.xz files to re-use scenarios `date` | tee -a "$tdir/log-xz" | tee -a $T/log
dirstash="`pwd`"
for i in `cat $T/xz-todo-copy`
do
cd $i
find . -name vmlinux -print > $T/xz-todo-copy-vmlinux
for v in `cat $T/xz-todo-copy-vmlinux`
do
rm -f "$v"
cp -l `cat $i/re-run`/"$i/$v".xz "`dirname "$v"`"
done
cd "$dirstash"
done
fi
echo Size after compressing $n2compress files: `du -sh $tdir | awk '{ print $1 }'` `date` 2>&1 | tee -a "$tdir/log-xz" | tee -a $T/log
echo Total duration `get_starttime_duration $starttime`. | tee -a $T/log
else
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment