Commit 2e7580b0 authored by Linus Torvalds's avatar Linus Torvalds

Merge branch 'kvm-updates/3.4' of git://git.kernel.org/pub/scm/virt/kvm/kvm

Pull kvm updates from Avi Kivity:
 "Changes include timekeeping improvements, support for assigning host
  PCI devices that share interrupt lines, s390 user-controlled guests, a
  large ppc update, and random fixes."

This is with the sign-off's fixed, hopefully next merge window we won't
have rebased commits.

* 'kvm-updates/3.4' of git://git.kernel.org/pub/scm/virt/kvm/kvm: (130 commits)
  KVM: Convert intx_mask_lock to spin lock
  KVM: x86: fix kvm_write_tsc() TSC matching thinko
  x86: kvmclock: abstract save/restore sched_clock_state
  KVM: nVMX: Fix erroneous exception bitmap check
  KVM: Ignore the writes to MSR_K7_HWCR(3)
  KVM: MMU: make use of ->root_level in reset_rsvds_bits_mask
  KVM: PMU: add proper support for fixed counter 2
  KVM: PMU: Fix raw event check
  KVM: PMU: warn when pin control is set in eventsel msr
  KVM: VMX: Fix delayed load of shared MSRs
  KVM: use correct tlbs dirty type in cmpxchg
  KVM: Allow host IRQ sharing for assigned PCI 2.3 devices
  KVM: Ensure all vcpus are consistent with in-kernel irqchip settings
  KVM: x86 emulator: Allow PM/VM86 switch during task switch
  KVM: SVM: Fix CPL updates
  KVM: x86 emulator: VM86 segments must have DPL 3
  KVM: x86 emulator: Fix task switch privilege checks
  arch/powerpc/kvm/book3s_hv.c: included linux/sched.h twice
  KVM: x86 emulator: correctly mask pmc index bits in RDPMC instruction emulation
  KVM: mmu_notifier: Flush TLBs before releasing mmu_lock
  ...
parents d25413ef cf9eeac4
This diff is collapsed.
......@@ -81,28 +81,8 @@ additional registers to the magic page. If you add fields to the magic page,
also define a new hypercall feature to indicate that the host can give you more
registers. Only if the host supports the additional features, make use of them.
The magic page has the following layout as described in
arch/powerpc/include/asm/kvm_para.h:
struct kvm_vcpu_arch_shared {
__u64 scratch1;
__u64 scratch2;
__u64 scratch3;
__u64 critical; /* Guest may not get interrupts if == r1 */
__u64 sprg0;
__u64 sprg1;
__u64 sprg2;
__u64 sprg3;
__u64 srr0;
__u64 srr1;
__u64 dar;
__u64 msr;
__u32 dsisr;
__u32 int_pending; /* Tells the guest if we have an interrupt */
};
Additions to the page must only occur at the end. Struct fields are always 32
or 64 bit aligned, depending on them being 32 or 64 bit wide respectively.
The magic page layout is described by struct kvm_vcpu_arch_shared
in arch/powerpc/include/asm/kvm_para.h.
Magic page features
===================
......
......@@ -261,4 +261,8 @@ struct kvm_debug_exit_arch {
struct kvm_guest_debug_arch {
};
/* definition of registers in kvm_run */
struct kvm_sync_regs {
};
#endif
......@@ -459,6 +459,9 @@ struct kvm_sal_data {
unsigned long boot_gp;
};
struct kvm_arch_memory_slot {
};
struct kvm_arch {
spinlock_t dirty_log_lock;
......
......@@ -809,10 +809,13 @@ static void kvm_build_io_pmt(struct kvm *kvm)
#define GUEST_PHYSICAL_RR4 0x2739
#define VMM_INIT_RR 0x1660
int kvm_arch_init_vm(struct kvm *kvm)
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
BUG_ON(!kvm);
if (type)
return -EINVAL;
kvm->arch.is_sn2 = ia64_platform_is("sn2");
kvm->arch.metaphysical_rr0 = GUEST_PHYSICAL_RR0;
......@@ -1169,6 +1172,11 @@ static enum hrtimer_restart hlt_timer_fn(struct hrtimer *data)
#define PALE_RESET_ENTRY 0x80000000ffffffb0UL
bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu)
{
return irqchip_in_kernel(vcpu->kcm) == (vcpu->arch.apic != NULL);
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
struct kvm_vcpu *v;
......@@ -1563,6 +1571,21 @@ long kvm_arch_vcpu_ioctl(struct file *filp,
return r;
}
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
void kvm_arch_free_memslot(struct kvm_memory_slot *free,
struct kvm_memory_slot *dont)
{
}
int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
{
return 0;
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_memory_slot old,
......
......@@ -265,12 +265,9 @@ struct kvm_debug_exit_arch {
struct kvm_guest_debug_arch {
};
#define KVM_REG_MASK 0x001f
#define KVM_REG_EXT_MASK 0xffe0
#define KVM_REG_GPR 0x0000
#define KVM_REG_FPR 0x0020
#define KVM_REG_QPR 0x0040
#define KVM_REG_FQPR 0x0060
/* definition of registers in kvm_run */
struct kvm_sync_regs {
};
#define KVM_INTERRUPT_SET -1U
#define KVM_INTERRUPT_UNSET -2U
......@@ -292,4 +289,41 @@ struct kvm_allocate_rma {
__u64 rma_size;
};
struct kvm_book3e_206_tlb_entry {
__u32 mas8;
__u32 mas1;
__u64 mas2;
__u64 mas7_3;
};
struct kvm_book3e_206_tlb_params {
/*
* For mmu types KVM_MMU_FSL_BOOKE_NOHV and KVM_MMU_FSL_BOOKE_HV:
*
* - The number of ways of TLB0 must be a power of two between 2 and
* 16.
* - TLB1 must be fully associative.
* - The size of TLB0 must be a multiple of the number of ways, and
* the number of sets must be a power of two.
* - The size of TLB1 may not exceed 64 entries.
* - TLB0 supports 4 KiB pages.
* - The page sizes supported by TLB1 are as indicated by
* TLB1CFG (if MMUCFG[MAVN] = 0) or TLB1PS (if MMUCFG[MAVN] = 1)
* as returned by KVM_GET_SREGS.
* - TLB2 and TLB3 are reserved, and their entries in tlb_sizes[]
* and tlb_ways[] must be zero.
*
* tlb_ways[n] = tlb_sizes[n] means the array is fully associative.
*
* KVM will adjust TLBnCFG based on the sizes configured here,
* though arrays greater than 2048 entries will have TLBnCFG[NENTRY]
* set to zero.
*/
__u32 tlb_sizes[4];
__u32 tlb_ways[4];
__u32 reserved[8];
};
#define KVM_REG_PPC_HIOR (KVM_REG_PPC | KVM_REG_SIZE_U64 | 0x1)
#endif /* __LINUX_KVM_POWERPC_H */
......@@ -90,6 +90,8 @@ struct kvmppc_vcpu_book3s {
#endif
int context_id[SID_CONTEXTS];
bool hior_explicit; /* HIOR is set by ioctl, not PVR */
struct hlist_head hpte_hash_pte[HPTEG_HASH_NUM_PTE];
struct hlist_head hpte_hash_pte_long[HPTEG_HASH_NUM_PTE_LONG];
struct hlist_head hpte_hash_vpte[HPTEG_HASH_NUM_VPTE];
......@@ -119,6 +121,11 @@ extern void kvmppc_mmu_book3s_hv_init(struct kvm_vcpu *vcpu);
extern int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *pte);
extern int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr);
extern void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu);
extern int kvmppc_book3s_hv_page_fault(struct kvm_run *run,
struct kvm_vcpu *vcpu, unsigned long addr,
unsigned long status);
extern long kvmppc_hv_find_lock_hpte(struct kvm *kvm, gva_t eaddr,
unsigned long slb_v, unsigned long valid);
extern void kvmppc_mmu_hpte_cache_map(struct kvm_vcpu *vcpu, struct hpte_cache *pte);
extern struct hpte_cache *kvmppc_mmu_hpte_cache_next(struct kvm_vcpu *vcpu);
......@@ -138,6 +145,21 @@ extern void kvmppc_set_bat(struct kvm_vcpu *vcpu, struct kvmppc_bat *bat,
extern void kvmppc_giveup_ext(struct kvm_vcpu *vcpu, ulong msr);
extern int kvmppc_emulate_paired_single(struct kvm_run *run, struct kvm_vcpu *vcpu);
extern pfn_t kvmppc_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
extern void kvmppc_add_revmap_chain(struct kvm *kvm, struct revmap_entry *rev,
unsigned long *rmap, long pte_index, int realmode);
extern void kvmppc_invalidate_hpte(struct kvm *kvm, unsigned long *hptep,
unsigned long pte_index);
void kvmppc_clear_ref_hpte(struct kvm *kvm, unsigned long *hptep,
unsigned long pte_index);
extern void *kvmppc_pin_guest_page(struct kvm *kvm, unsigned long addr,
unsigned long *nb_ret);
extern void kvmppc_unpin_guest_page(struct kvm *kvm, void *addr);
extern long kvmppc_virtmode_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel);
extern long kvmppc_h_enter(struct kvm_vcpu *vcpu, unsigned long flags,
long pte_index, unsigned long pteh, unsigned long ptel);
extern long kvmppc_hv_get_dirty_log(struct kvm *kvm,
struct kvm_memory_slot *memslot);
extern void kvmppc_entry_trampoline(void);
extern void kvmppc_hv_entry_trampoline(void);
......@@ -183,7 +205,9 @@ static inline void kvmppc_update_int_pending(struct kvm_vcpu *vcpu,
static inline void kvmppc_set_gpr(struct kvm_vcpu *vcpu, int num, ulong val)
{
if ( num < 14 ) {
to_svcpu(vcpu)->gpr[num] = val;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
svcpu->gpr[num] = val;
svcpu_put(svcpu);
to_book3s(vcpu)->shadow_vcpu->gpr[num] = val;
} else
vcpu->arch.gpr[num] = val;
......@@ -191,80 +215,120 @@ static inline void kvmppc_set_gpr(struct kvm_vcpu *vcpu, int num, ulong val)
static inline ulong kvmppc_get_gpr(struct kvm_vcpu *vcpu, int num)
{
if ( num < 14 )
return to_svcpu(vcpu)->gpr[num];
else
if ( num < 14 ) {
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
ulong r = svcpu->gpr[num];
svcpu_put(svcpu);
return r;
} else
return vcpu->arch.gpr[num];
}
static inline void kvmppc_set_cr(struct kvm_vcpu *vcpu, u32 val)
{
to_svcpu(vcpu)->cr = val;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
svcpu->cr = val;
svcpu_put(svcpu);
to_book3s(vcpu)->shadow_vcpu->cr = val;
}
static inline u32 kvmppc_get_cr(struct kvm_vcpu *vcpu)
{
return to_svcpu(vcpu)->cr;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
u32 r;
r = svcpu->cr;
svcpu_put(svcpu);
return r;
}
static inline void kvmppc_set_xer(struct kvm_vcpu *vcpu, u32 val)
{
to_svcpu(vcpu)->xer = val;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
svcpu->xer = val;
to_book3s(vcpu)->shadow_vcpu->xer = val;
svcpu_put(svcpu);
}
static inline u32 kvmppc_get_xer(struct kvm_vcpu *vcpu)
{
return to_svcpu(vcpu)->xer;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
u32 r;
r = svcpu->xer;
svcpu_put(svcpu);
return r;
}
static inline void kvmppc_set_ctr(struct kvm_vcpu *vcpu, ulong val)
{
to_svcpu(vcpu)->ctr = val;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
svcpu->ctr = val;
svcpu_put(svcpu);
}
static inline ulong kvmppc_get_ctr(struct kvm_vcpu *vcpu)
{
return to_svcpu(vcpu)->ctr;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
ulong r;
r = svcpu->ctr;
svcpu_put(svcpu);
return r;
}
static inline void kvmppc_set_lr(struct kvm_vcpu *vcpu, ulong val)
{
to_svcpu(vcpu)->lr = val;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
svcpu->lr = val;
svcpu_put(svcpu);
}
static inline ulong kvmppc_get_lr(struct kvm_vcpu *vcpu)
{
return to_svcpu(vcpu)->lr;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
ulong r;
r = svcpu->lr;
svcpu_put(svcpu);
return r;
}
static inline void kvmppc_set_pc(struct kvm_vcpu *vcpu, ulong val)
{
to_svcpu(vcpu)->pc = val;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
svcpu->pc = val;
svcpu_put(svcpu);
}
static inline ulong kvmppc_get_pc(struct kvm_vcpu *vcpu)
{
return to_svcpu(vcpu)->pc;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
ulong r;
r = svcpu->pc;
svcpu_put(svcpu);
return r;
}
static inline u32 kvmppc_get_last_inst(struct kvm_vcpu *vcpu)
{
ulong pc = kvmppc_get_pc(vcpu);
struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
u32 r;
/* Load the instruction manually if it failed to do so in the
* exit path */
if (svcpu->last_inst == KVM_INST_FETCH_FAILED)
kvmppc_ld(vcpu, &pc, sizeof(u32), &svcpu->last_inst, false);
return svcpu->last_inst;
r = svcpu->last_inst;
svcpu_put(svcpu);
return r;
}
static inline ulong kvmppc_get_fault_dar(struct kvm_vcpu *vcpu)
{
return to_svcpu(vcpu)->fault_dar;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
ulong r;
r = svcpu->fault_dar;
svcpu_put(svcpu);
return r;
}
static inline bool kvmppc_critical_section(struct kvm_vcpu *vcpu)
......
......@@ -20,11 +20,15 @@
#ifndef __ASM_KVM_BOOK3S_32_H__
#define __ASM_KVM_BOOK3S_32_H__
static inline struct kvmppc_book3s_shadow_vcpu *to_svcpu(struct kvm_vcpu *vcpu)
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
{
return to_book3s(vcpu)->shadow_vcpu;
}
static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
{
}
#define PTE_SIZE 12
#define VSID_ALL 0
#define SR_INVALID 0x00000001 /* VSID 1 should always be unused */
......
......@@ -21,14 +21,56 @@
#define __ASM_KVM_BOOK3S_64_H__
#ifdef CONFIG_KVM_BOOK3S_PR
static inline struct kvmppc_book3s_shadow_vcpu *to_svcpu(struct kvm_vcpu *vcpu)
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
{
preempt_disable();
return &get_paca()->shadow_vcpu;
}
static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
{
preempt_enable();
}
#endif
#define SPAPR_TCE_SHIFT 12
#ifdef CONFIG_KVM_BOOK3S_64_HV
/* For now use fixed-size 16MB page table */
#define HPT_ORDER 24
#define HPT_NPTEG (1ul << (HPT_ORDER - 7)) /* 128B per pteg */
#define HPT_NPTE (HPT_NPTEG << 3) /* 8 PTEs per PTEG */
#define HPT_HASH_MASK (HPT_NPTEG - 1)
#endif
#define VRMA_VSID 0x1ffffffUL /* 1TB VSID reserved for VRMA */
/*
* We use a lock bit in HPTE dword 0 to synchronize updates and
* accesses to each HPTE, and another bit to indicate non-present
* HPTEs.
*/
#define HPTE_V_HVLOCK 0x40UL
#define HPTE_V_ABSENT 0x20UL
static inline long try_lock_hpte(unsigned long *hpte, unsigned long bits)
{
unsigned long tmp, old;
asm volatile(" ldarx %0,0,%2\n"
" and. %1,%0,%3\n"
" bne 2f\n"
" ori %0,%0,%4\n"
" stdcx. %0,0,%2\n"
" beq+ 2f\n"
" li %1,%3\n"
"2: isync"
: "=&r" (tmp), "=&r" (old)
: "r" (hpte), "r" (bits), "i" (HPTE_V_HVLOCK)
: "cc", "memory");
return old == 0;
}
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
unsigned long pte_index)
{
......@@ -62,4 +104,140 @@ static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
return rb;
}
static inline unsigned long hpte_page_size(unsigned long h, unsigned long l)
{
/* only handle 4k, 64k and 16M pages for now */
if (!(h & HPTE_V_LARGE))
return 1ul << 12; /* 4k page */
if ((l & 0xf000) == 0x1000 && cpu_has_feature(CPU_FTR_ARCH_206))
return 1ul << 16; /* 64k page */
if ((l & 0xff000) == 0)
return 1ul << 24; /* 16M page */
return 0; /* error */
}
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
{
return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
}
static inline int hpte_is_writable(unsigned long ptel)
{
unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
return pp != PP_RXRX && pp != PP_RXXX;
}
static inline unsigned long hpte_make_readonly(unsigned long ptel)
{
if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
else
ptel |= PP_RXRX;
return ptel;
}
static inline int hpte_cache_flags_ok(unsigned long ptel, unsigned long io_type)
{
unsigned int wimg = ptel & HPTE_R_WIMG;
/* Handle SAO */
if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
cpu_has_feature(CPU_FTR_ARCH_206))
wimg = HPTE_R_M;
if (!io_type)
return wimg == HPTE_R_M;
return (wimg & (HPTE_R_W | HPTE_R_I)) == io_type;
}
/*
* Lock and read a linux PTE. If it's present and writable, atomically
* set dirty and referenced bits and return the PTE, otherwise return 0.
*/
static inline pte_t kvmppc_read_update_linux_pte(pte_t *p, int writing)
{
pte_t pte, tmp;
/* wait until _PAGE_BUSY is clear then set it atomically */
__asm__ __volatile__ (
"1: ldarx %0,0,%3\n"
" andi. %1,%0,%4\n"
" bne- 1b\n"
" ori %1,%0,%4\n"
" stdcx. %1,0,%3\n"
" bne- 1b"
: "=&r" (pte), "=&r" (tmp), "=m" (*p)
: "r" (p), "i" (_PAGE_BUSY)
: "cc");
if (pte_present(pte)) {
pte = pte_mkyoung(pte);
if (writing && pte_write(pte))
pte = pte_mkdirty(pte);
}
*p = pte; /* clears _PAGE_BUSY */
return pte;
}
/* Return HPTE cache control bits corresponding to Linux pte bits */
static inline unsigned long hpte_cache_bits(unsigned long pte_val)
{
#if _PAGE_NO_CACHE == HPTE_R_I && _PAGE_WRITETHRU == HPTE_R_W
return pte_val & (HPTE_R_W | HPTE_R_I);
#else
return ((pte_val & _PAGE_NO_CACHE) ? HPTE_R_I : 0) +
((pte_val & _PAGE_WRITETHRU) ? HPTE_R_W : 0);
#endif
}
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
{
if (key)
return PP_RWRX <= pp && pp <= PP_RXRX;
return 1;
}
static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
{
if (key)
return pp == PP_RWRW;
return pp <= PP_RWRW;
}
static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
{
unsigned long skey;
skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
((hpte_r & HPTE_R_KEY_LO) >> 9);
return (amr >> (62 - 2 * skey)) & 3;
}
static inline void lock_rmap(unsigned long *rmap)
{
do {
while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
cpu_relax();
} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
}
static inline void unlock_rmap(unsigned long *rmap)
{
__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
}
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
unsigned long pagesize)
{
unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
if (pagesize <= PAGE_SIZE)
return 1;
return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
}
#endif /* __ASM_KVM_BOOK3S_64_H__ */
......@@ -22,46 +22,55 @@
#define E500_PID_NUM 3
#define E500_TLB_NUM 2
struct tlbe{
u32 mas1;
u32 mas2;
u32 mas3;
u32 mas7;
};
#define E500_TLB_VALID 1
#define E500_TLB_DIRTY 2
struct tlbe_priv {
struct tlbe_ref {
pfn_t pfn;
unsigned int flags; /* E500_TLB_* */
};
struct tlbe_priv {
struct tlbe_ref ref; /* TLB0 only -- TLB1 uses tlb_refs */
};
struct vcpu_id_table;
struct kvmppc_e500_tlb_params {
int entries, ways, sets;
};
struct kvmppc_vcpu_e500 {
/* Unmodified copy of the guest's TLB. */
struct tlbe *gtlb_arch[E500_TLB_NUM];
/* Unmodified copy of the guest's TLB -- shared with host userspace. */
struct kvm_book3e_206_tlb_entry *gtlb_arch;
/* Starting entry number in gtlb_arch[] */
int gtlb_offset[E500_TLB_NUM];
/* KVM internal information associated with each guest TLB entry */
struct tlbe_priv *gtlb_priv[E500_TLB_NUM];
unsigned int gtlb_size[E500_TLB_NUM];
struct kvmppc_e500_tlb_params gtlb_params[E500_TLB_NUM];
unsigned int gtlb_nv[E500_TLB_NUM];
/*
* information associated with each host TLB entry --
* TLB1 only for now. If/when guest TLB1 entries can be
* mapped with host TLB0, this will be used for that too.
*
* We don't want to use this for guest TLB0 because then we'd
* have the overhead of doing the translation again even if
* the entry is still in the guest TLB (e.g. we swapped out
* and back, and our host TLB entries got evicted).
*/
struct tlbe_ref *tlb_refs[E500_TLB_NUM];
unsigned int host_tlb1_nv;
u32 host_pid[E500_PID_NUM];
u32 pid[E500_PID_NUM];
u32 svr;
u32 mas0;
u32 mas1;
u32 mas2;
u32 mas3;
u32 mas4;
u32 mas5;
u32 mas6;
u32 mas7;
/* vcpu id table */
struct vcpu_id_table *idt;
......@@ -73,6 +82,9 @@ struct kvmppc_vcpu_e500 {
u32 tlb1cfg;
u64 mcar;
struct page **shared_tlb_pages;
int num_shared_tlb_pages;
struct kvm_vcpu vcpu;
};
......
......@@ -32,17 +32,32 @@
#include <linux/atomic.h>
#include <asm/kvm_asm.h>
#include <asm/processor.h>
#include <asm/page.h>
#define KVM_MAX_VCPUS NR_CPUS
#define KVM_MAX_VCORES NR_CPUS
#define KVM_MEMORY_SLOTS 32
/* memory slots that does not exposed to userspace */
#define KVM_PRIVATE_MEM_SLOTS 4
#define KVM_MEM_SLOTS_NUM (KVM_MEMORY_SLOTS + KVM_PRIVATE_MEM_SLOTS)
#ifdef CONFIG_KVM_MMIO
#define KVM_COALESCED_MMIO_PAGE_OFFSET 1
#endif
#ifdef CONFIG_KVM_BOOK3S_64_HV
#include <linux/mmu_notifier.h>
#define KVM_ARCH_WANT_MMU_NOTIFIER
struct kvm;
extern int kvm_unmap_hva(struct kvm *kvm, unsigned long hva);
extern int kvm_age_hva(struct kvm *kvm, unsigned long hva);
extern int kvm_test_age_hva(struct kvm *kvm, unsigned long hva);
extern void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte);
#endif
/* We don't currently support large pages. */
#define KVM_HPAGE_GFN_SHIFT(x) 0
#define KVM_NR_PAGE_SIZES 1
......@@ -158,34 +173,72 @@ struct kvmppc_spapr_tce_table {
struct page *pages[0];
};
struct kvmppc_rma_info {
struct kvmppc_linear_info {
void *base_virt;
unsigned long base_pfn;
unsigned long npages;
struct list_head list;
atomic_t use_count;
atomic_t use_count;
int type;
};
/*
* The reverse mapping array has one entry for each HPTE,
* which stores the guest's view of the second word of the HPTE
* (including the guest physical address of the mapping),
* plus forward and backward pointers in a doubly-linked ring
* of HPTEs that map the same host page. The pointers in this
* ring are 32-bit HPTE indexes, to save space.
*/
struct revmap_entry {
unsigned long guest_rpte;
unsigned int forw, back;
};
/*
* We use the top bit of each memslot->rmap entry as a lock bit,
* and bit 32 as a present flag. The bottom 32 bits are the
* index in the guest HPT of a HPTE that points to the page.
*/
#define KVMPPC_RMAP_LOCK_BIT 63
#define KVMPPC_RMAP_RC_SHIFT 32
#define KVMPPC_RMAP_REFERENCED (HPTE_R_R << KVMPPC_RMAP_RC_SHIFT)
#define KVMPPC_RMAP_CHANGED (HPTE_R_C << KVMPPC_RMAP_RC_SHIFT)
#define KVMPPC_RMAP_PRESENT 0x100000000ul
#define KVMPPC_RMAP_INDEX 0xfffffffful
/* Low-order bits in kvm->arch.slot_phys[][] */
#define KVMPPC_PAGE_ORDER_MASK 0x1f
#define KVMPPC_PAGE_NO_CACHE HPTE_R_I /* 0x20 */
#define KVMPPC_PAGE_WRITETHRU HPTE_R_W /* 0x40 */
#define KVMPPC_GOT_PAGE 0x80
struct kvm_arch_memory_slot {
};
struct kvm_arch {
#ifdef CONFIG_KVM_BOOK3S_64_HV
unsigned long hpt_virt;
unsigned long ram_npages;
unsigned long ram_psize;
unsigned long ram_porder;
struct kvmppc_pginfo *ram_pginfo;
struct revmap_entry *revmap;
unsigned int lpid;
unsigned int host_lpid;
unsigned long host_lpcr;
unsigned long sdr1;
unsigned long host_sdr1;
int tlbie_lock;
int n_rma_pages;
unsigned long lpcr;
unsigned long rmor;
struct kvmppc_rma_info *rma;
struct kvmppc_linear_info *rma;
unsigned long vrma_slb_v;
int rma_setup_done;
int using_mmu_notifiers;
struct list_head spapr_tce_tables;
spinlock_t slot_phys_lock;
unsigned long *slot_phys[KVM_MEM_SLOTS_NUM];
int slot_npages[KVM_MEM_SLOTS_NUM];
unsigned short last_vcpu[NR_CPUS];
struct kvmppc_vcore *vcores[KVM_MAX_VCORES];
struct kvmppc_linear_info *hpt_li;
#endif /* CONFIG_KVM_BOOK3S_64_HV */
};
......@@ -318,10 +371,6 @@ struct kvm_vcpu_arch {
u32 vrsave; /* also USPRG0 */
u32 mmucr;
ulong shadow_msr;
ulong sprg4;
ulong sprg5;
ulong sprg6;
ulong sprg7;
ulong csrr0;
ulong csrr1;
ulong dsrr0;
......@@ -329,16 +378,14 @@ struct kvm_vcpu_arch {
ulong mcsrr0;
ulong mcsrr1;
ulong mcsr;
ulong esr;
u32 dec;
u32 decar;
u32 tbl;
u32 tbu;
u32 tcr;
u32 tsr;
ulong tsr; /* we need to perform set/clr_bits() which requires ulong */
u32 ivor[64];
ulong ivpr;
u32 pir;
u32 pvr;
u32 shadow_pid;
......@@ -427,9 +474,14 @@ struct kvm_vcpu_arch {
#ifdef CONFIG_KVM_BOOK3S_64_HV
struct kvm_vcpu_arch_shared shregs;
unsigned long pgfault_addr;
long pgfault_index;
unsigned long pgfault_hpte[2];
struct list_head run_list;
struct task_struct *run_task;
struct kvm_run *kvm_run;
pgd_t *pgdir;
#endif
};
......@@ -438,4 +490,12 @@ struct kvm_vcpu_arch {
#define KVMPPC_VCPU_BUSY_IN_HOST 1
#define KVMPPC_VCPU_RUNNABLE 2
/* Values for vcpu->arch.io_gpr */
#define KVM_MMIO_REG_MASK 0x001f
#define KVM_MMIO_REG_EXT_MASK 0xffe0
#define KVM_MMIO_REG_GPR 0x0000
#define KVM_MMIO_REG_FPR 0x0020
#define KVM_MMIO_REG_QPR 0x0040
#define KVM_MMIO_REG_FQPR 0x0060
#endif /* __POWERPC_KVM_HOST_H__ */
......@@ -22,6 +22,16 @@
#include <linux/types.h>
/*
* Additions to this struct must only occur at the end, and should be
* accompanied by a KVM_MAGIC_FEAT flag to advertise that they are present
* (albeit not necessarily relevant to the current target hardware platform).
*
* Struct fields are always 32 or 64 bit aligned, depending on them being 32
* or 64 bit wide respectively.
*
* See Documentation/virtual/kvm/ppc-pv.txt
*/
struct kvm_vcpu_arch_shared {
__u64 scratch1;
__u64 scratch2;
......@@ -33,11 +43,35 @@ struct kvm_vcpu_arch_shared {
__u64 sprg3;
__u64 srr0;
__u64 srr1;
__u64 dar;
__u64 dar; /* dear on BookE */
__u64 msr;
__u32 dsisr;
__u32 int_pending; /* Tells the guest if we have an interrupt */
__u32 sr[16];
__u32 mas0;
__u32 mas1;
__u64 mas7_3;
__u64 mas2;
__u32 mas4;
__u32 mas6;
__u32 esr;
__u32 pir;
/*
* SPRG4-7 are user-readable, so we can only keep these consistent
* between the shared area and the real registers when there's an
* intervening exit to KVM. This also applies to SPRG3 on some
* chips.
*
* This suffices for access by guest userspace, since in PR-mode
* KVM, an exit must occur when changing the guest's MSR[PR].
* If the guest kernel writes to SPRG3-7 via the shared area, it
* must also use the shared area for reading while in kernel space.
*/
__u64 sprg4;
__u64 sprg5;
__u64 sprg6;
__u64 sprg7;
};
#define KVM_SC_MAGIC_R0 0x4b564d21 /* "KVM!" */
......@@ -47,7 +81,10 @@ struct kvm_vcpu_arch_shared {
#define KVM_FEATURE_MAGIC_PAGE 1
#define KVM_MAGIC_FEAT_SR (1 << 0)
#define KVM_MAGIC_FEAT_SR (1 << 0)
/* MASn, ESR, PIR, and high SPRGs */
#define KVM_MAGIC_FEAT_MAS0_TO_SPRG7 (1 << 1)
#ifdef __KERNEL__
......
......@@ -66,6 +66,7 @@ extern int kvmppc_emulate_instruction(struct kvm_run *run,
extern int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu);
extern void kvmppc_emulate_dec(struct kvm_vcpu *vcpu);
extern u32 kvmppc_get_dec(struct kvm_vcpu *vcpu, u64 tb);
extern void kvmppc_decrementer_func(unsigned long data);
extern int kvmppc_sanity_check(struct kvm_vcpu *vcpu);
/* Core-specific hooks */
......@@ -94,7 +95,7 @@ extern int kvmppc_core_vcpu_translate(struct kvm_vcpu *vcpu,
extern void kvmppc_core_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
extern void kvmppc_core_vcpu_put(struct kvm_vcpu *vcpu);
extern void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu);
extern void kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu);
extern int kvmppc_core_pending_dec(struct kvm_vcpu *vcpu);
extern void kvmppc_core_queue_program(struct kvm_vcpu *vcpu, ulong flags);
extern void kvmppc_core_queue_dec(struct kvm_vcpu *vcpu);
......@@ -120,15 +121,17 @@ extern long kvmppc_alloc_hpt(struct kvm *kvm);
extern void kvmppc_free_hpt(struct kvm *kvm);
extern long kvmppc_prepare_vrma(struct kvm *kvm,
struct kvm_userspace_memory_region *mem);
extern void kvmppc_map_vrma(struct kvm *kvm,
struct kvm_userspace_memory_region *mem);
extern void kvmppc_map_vrma(struct kvm_vcpu *vcpu,
struct kvm_memory_slot *memslot, unsigned long porder);
extern int kvmppc_pseries_do_hcall(struct kvm_vcpu *vcpu);
extern long kvm_vm_ioctl_create_spapr_tce(struct kvm *kvm,
struct kvm_create_spapr_tce *args);
extern long kvm_vm_ioctl_allocate_rma(struct kvm *kvm,
struct kvm_allocate_rma *rma);
extern struct kvmppc_rma_info *kvm_alloc_rma(void);
extern void kvm_release_rma(struct kvmppc_rma_info *ri);
extern struct kvmppc_linear_info *kvm_alloc_rma(void);
extern void kvm_release_rma(struct kvmppc_linear_info *ri);
extern struct kvmppc_linear_info *kvm_alloc_hpt(void);
extern void kvm_release_hpt(struct kvmppc_linear_info *li);
extern int kvmppc_core_init_vm(struct kvm *kvm);
extern void kvmppc_core_destroy_vm(struct kvm *kvm);
extern int kvmppc_core_prepare_memory_region(struct kvm *kvm,
......@@ -175,6 +178,9 @@ int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs);
void kvmppc_get_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs);
int kvmppc_set_sregs_ivor(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs);
int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg);
int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg);
void kvmppc_set_pid(struct kvm_vcpu *vcpu, u32 pid);
#ifdef CONFIG_KVM_BOOK3S_64_HV
......@@ -183,14 +189,19 @@ static inline void kvmppc_set_xics_phys(int cpu, unsigned long addr)
paca[cpu].kvm_hstate.xics_phys = addr;
}
extern void kvm_rma_init(void);
extern void kvm_linear_init(void);
#else
static inline void kvmppc_set_xics_phys(int cpu, unsigned long addr)
{}
static inline void kvm_rma_init(void)
static inline void kvm_linear_init(void)
{}
#endif
int kvm_vcpu_ioctl_config_tlb(struct kvm_vcpu *vcpu,
struct kvm_config_tlb *cfg);
int kvm_vcpu_ioctl_dirty_tlb(struct kvm_vcpu *vcpu,
struct kvm_dirty_tlb *cfg);
#endif /* __POWERPC_KVM_PPC_H__ */
......@@ -41,9 +41,10 @@
/* MAS registers bit definitions */
#define MAS0_TLBSEL(x) (((x) << 28) & 0x30000000)
#define MAS0_ESEL(x) (((x) << 16) & 0x0FFF0000)
#define MAS0_NV(x) ((x) & 0x00000FFF)
#define MAS0_ESEL_MASK 0x0FFF0000
#define MAS0_ESEL_SHIFT 16
#define MAS0_ESEL(x) (((x) << MAS0_ESEL_SHIFT) & MAS0_ESEL_MASK)
#define MAS0_NV(x) ((x) & 0x00000FFF)
#define MAS0_HES 0x00004000
#define MAS0_WQ_ALLWAYS 0x00000000
#define MAS0_WQ_COND 0x00001000
......@@ -167,6 +168,7 @@
#define TLBnCFG_MAXSIZE 0x000f0000 /* Maximum Page Size (v1.0) */
#define TLBnCFG_MAXSIZE_SHIFT 16
#define TLBnCFG_ASSOC 0xff000000 /* Associativity */
#define TLBnCFG_ASSOC_SHIFT 24
/* TLBnPS encoding */
#define TLBnPS_4K 0x00000004
......
......@@ -108,11 +108,11 @@ extern char initial_stab[];
#define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
/* Values for PP (assumes Ks=0, Kp=1) */
/* pp0 will always be 0 for linux */
#define PP_RWXX 0 /* Supervisor read/write, User none */
#define PP_RWRX 1 /* Supervisor read/write, User read */
#define PP_RWRW 2 /* Supervisor read/write, User read/write */
#define PP_RXRX 3 /* Supervisor read, User read */
#define PP_RXXX (HPTE_R_PP0 | 2) /* Supervisor read, user none */
#ifndef __ASSEMBLY__
......
......@@ -45,6 +45,7 @@
#define PPC_INST_MFSPR_DSCR_MASK 0xfc1fffff
#define PPC_INST_MTSPR_DSCR 0x7c1103a6
#define PPC_INST_MTSPR_DSCR_MASK 0xfc1fffff
#define PPC_INST_SLBFEE 0x7c0007a7
#define PPC_INST_STRING 0x7c00042a
#define PPC_INST_STRING_MASK 0xfc0007fe
......@@ -183,7 +184,8 @@
__PPC_RS(t) | __PPC_RA(a) | __PPC_RB(b))
#define PPC_ERATSX_DOT(t, a, w) stringify_in_c(.long PPC_INST_ERATSX_DOT | \
__PPC_RS(t) | __PPC_RA(a) | __PPC_RB(b))
#define PPC_SLBFEE_DOT(t, b) stringify_in_c(.long PPC_INST_SLBFEE | \
__PPC_RT(t) | __PPC_RB(b))
/*
* Define what the VSX XX1 form instructions will look like, then add
......
......@@ -216,6 +216,7 @@
#define DSISR_ISSTORE 0x02000000 /* access was a store */
#define DSISR_DABRMATCH 0x00400000 /* hit data breakpoint */
#define DSISR_NOSEGMENT 0x00200000 /* STAB/SLB miss */
#define DSISR_KEYFAULT 0x00200000 /* Key fault */
#define SPRN_TBRL 0x10C /* Time Base Read Lower Register (user, R/O) */
#define SPRN_TBRU 0x10D /* Time Base Read Upper Register (user, R/O) */
#define SPRN_TBWL 0x11C /* Time Base Lower Register (super, R/W) */
......@@ -237,6 +238,7 @@
#define LPCR_ISL (1ul << (63-2))
#define LPCR_VC_SH (63-2)
#define LPCR_DPFD_SH (63-11)
#define LPCR_VRMASD (0x1ful << (63-16))
#define LPCR_VRMA_L (1ul << (63-12))
#define LPCR_VRMA_LP0 (1ul << (63-15))
#define LPCR_VRMA_LP1 (1ul << (63-16))
......@@ -493,6 +495,9 @@
#define SPRN_SPRG7 0x117 /* Special Purpose Register General 7 */
#define SPRN_SRR0 0x01A /* Save/Restore Register 0 */
#define SPRN_SRR1 0x01B /* Save/Restore Register 1 */
#define SRR1_ISI_NOPT 0x40000000 /* ISI: Not found in hash */
#define SRR1_ISI_N_OR_G 0x10000000 /* ISI: Access is no-exec or G */
#define SRR1_ISI_PROT 0x08000000 /* ISI: Other protection fault */
#define SRR1_WAKEMASK 0x00380000 /* reason for wakeup */
#define SRR1_WAKESYSERR 0x00300000 /* System error */
#define SRR1_WAKEEE 0x00200000 /* External interrupt */
......
......@@ -412,16 +412,23 @@ int main(void)
DEFINE(VCPU_SPRG2, offsetof(struct kvm_vcpu, arch.shregs.sprg2));
DEFINE(VCPU_SPRG3, offsetof(struct kvm_vcpu, arch.shregs.sprg3));
#endif
DEFINE(VCPU_SPRG4, offsetof(struct kvm_vcpu, arch.sprg4));
DEFINE(VCPU_SPRG5, offsetof(struct kvm_vcpu, arch.sprg5));
DEFINE(VCPU_SPRG6, offsetof(struct kvm_vcpu, arch.sprg6));
DEFINE(VCPU_SPRG7, offsetof(struct kvm_vcpu, arch.sprg7));
DEFINE(VCPU_SHARED_SPRG4, offsetof(struct kvm_vcpu_arch_shared, sprg4));
DEFINE(VCPU_SHARED_SPRG5, offsetof(struct kvm_vcpu_arch_shared, sprg5));
DEFINE(VCPU_SHARED_SPRG6, offsetof(struct kvm_vcpu_arch_shared, sprg6));
DEFINE(VCPU_SHARED_SPRG7, offsetof(struct kvm_vcpu_arch_shared, sprg7));
DEFINE(VCPU_SHADOW_PID, offsetof(struct kvm_vcpu, arch.shadow_pid));
DEFINE(VCPU_SHADOW_PID1, offsetof(struct kvm_vcpu, arch.shadow_pid1));
DEFINE(VCPU_SHARED, offsetof(struct kvm_vcpu, arch.shared));
DEFINE(VCPU_SHARED_MSR, offsetof(struct kvm_vcpu_arch_shared, msr));
DEFINE(VCPU_SHADOW_MSR, offsetof(struct kvm_vcpu, arch.shadow_msr));
DEFINE(VCPU_SHARED_MAS0, offsetof(struct kvm_vcpu_arch_shared, mas0));
DEFINE(VCPU_SHARED_MAS1, offsetof(struct kvm_vcpu_arch_shared, mas1));
DEFINE(VCPU_SHARED_MAS2, offsetof(struct kvm_vcpu_arch_shared, mas2));
DEFINE(VCPU_SHARED_MAS7_3, offsetof(struct kvm_vcpu_arch_shared, mas7_3));
DEFINE(VCPU_SHARED_MAS4, offsetof(struct kvm_vcpu_arch_shared, mas4));
DEFINE(VCPU_SHARED_MAS6, offsetof(struct kvm_vcpu_arch_shared, mas6));
/* book3s */
#ifdef CONFIG_KVM_BOOK3S_64_HV
DEFINE(KVM_LPID, offsetof(struct kvm, arch.lpid));
......@@ -434,6 +441,7 @@ int main(void)
DEFINE(KVM_LAST_VCPU, offsetof(struct kvm, arch.last_vcpu));
DEFINE(KVM_LPCR, offsetof(struct kvm, arch.lpcr));
DEFINE(KVM_RMOR, offsetof(struct kvm, arch.rmor));
DEFINE(KVM_VRMA_SLB_V, offsetof(struct kvm, arch.vrma_slb_v));
DEFINE(VCPU_DSISR, offsetof(struct kvm_vcpu, arch.shregs.dsisr));
DEFINE(VCPU_DAR, offsetof(struct kvm_vcpu, arch.shregs.dar));
#endif
......
......@@ -101,14 +101,14 @@ data_access_not_stab:
END_MMU_FTR_SECTION_IFCLR(MMU_FTR_SLB)
#endif
EXCEPTION_PROLOG_PSERIES(PACA_EXGEN, data_access_common, EXC_STD,
KVMTEST_PR, 0x300)
KVMTEST, 0x300)
. = 0x380
.globl data_access_slb_pSeries
data_access_slb_pSeries:
HMT_MEDIUM
SET_SCRATCH0(r13)
EXCEPTION_PROLOG_1(PACA_EXSLB, KVMTEST_PR, 0x380)
EXCEPTION_PROLOG_1(PACA_EXSLB, KVMTEST, 0x380)
std r3,PACA_EXSLB+EX_R3(r13)
mfspr r3,SPRN_DAR
#ifdef __DISABLED__
......@@ -330,8 +330,8 @@ do_stab_bolted_pSeries:
EXCEPTION_PROLOG_PSERIES_1(.do_stab_bolted, EXC_STD)
#endif /* CONFIG_POWER4_ONLY */
KVM_HANDLER_PR_SKIP(PACA_EXGEN, EXC_STD, 0x300)
KVM_HANDLER_PR_SKIP(PACA_EXSLB, EXC_STD, 0x380)
KVM_HANDLER_SKIP(PACA_EXGEN, EXC_STD, 0x300)
KVM_HANDLER_SKIP(PACA_EXSLB, EXC_STD, 0x380)
KVM_HANDLER_PR(PACA_EXGEN, EXC_STD, 0x400)
KVM_HANDLER_PR(PACA_EXSLB, EXC_STD, 0x480)
KVM_HANDLER_PR(PACA_EXGEN, EXC_STD, 0x900)
......
This diff is collapsed.
......@@ -13,6 +13,7 @@
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright SUSE Linux Products GmbH 2010
* Copyright 2010-2011 Freescale Semiconductor, Inc.
*
* Authors: Alexander Graf <agraf@suse.de>
*/
......@@ -65,6 +66,9 @@ kvm_hypercall_start:
shared->critical == r1 and r2 is always != r1 */ \
STL64(r2, KVM_MAGIC_PAGE + KVM_MAGIC_CRITICAL, 0);
.global kvm_template_start
kvm_template_start:
.global kvm_emulate_mtmsrd
kvm_emulate_mtmsrd:
......@@ -167,6 +171,9 @@ maybe_stay_in_guest:
kvm_emulate_mtmsr_reg2:
ori r30, r0, 0
/* Put MSR into magic page because we don't call mtmsr */
STL64(r30, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
/* Check if we have to fetch an interrupt */
lwz r31, (KVM_MAGIC_PAGE + KVM_MAGIC_INT)(0)
cmpwi r31, 0
......@@ -174,15 +181,10 @@ kvm_emulate_mtmsr_reg2:
/* Check if we may trigger an interrupt */
andi. r31, r30, MSR_EE
beq no_mtmsr
b do_mtmsr
bne do_mtmsr
no_mtmsr:
/* Put MSR into magic page because we don't call mtmsr */
STL64(r30, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
SCRATCH_RESTORE
/* Go back to caller */
......@@ -210,24 +212,80 @@ kvm_emulate_mtmsr_orig_ins_offs:
kvm_emulate_mtmsr_len:
.long (kvm_emulate_mtmsr_end - kvm_emulate_mtmsr) / 4
/* also used for wrteei 1 */
.global kvm_emulate_wrtee
kvm_emulate_wrtee:
SCRATCH_SAVE
/* Fetch old MSR in r31 */
LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
/* Insert new MSR[EE] */
kvm_emulate_wrtee_reg:
ori r30, r0, 0
rlwimi r31, r30, 0, MSR_EE
/*
* If MSR[EE] is now set, check for a pending interrupt.
* We could skip this if MSR[EE] was already on, but that
* should be rare, so don't bother.
*/
andi. r30, r30, MSR_EE
/* Put MSR into magic page because we don't call wrtee */
STL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
beq no_wrtee
/* Check if we have to fetch an interrupt */
lwz r30, (KVM_MAGIC_PAGE + KVM_MAGIC_INT)(0)
cmpwi r30, 0
bne do_wrtee
no_wrtee:
SCRATCH_RESTORE
/* Go back to caller */
kvm_emulate_wrtee_branch:
b .
do_wrtee:
SCRATCH_RESTORE
/* Just fire off the wrtee if it's critical */
kvm_emulate_wrtee_orig_ins:
wrtee r0
.global kvm_emulate_wrteei
kvm_emulate_wrteei:
b kvm_emulate_wrtee_branch
kvm_emulate_wrtee_end:
.global kvm_emulate_wrtee_branch_offs
kvm_emulate_wrtee_branch_offs:
.long (kvm_emulate_wrtee_branch - kvm_emulate_wrtee) / 4
.global kvm_emulate_wrtee_reg_offs
kvm_emulate_wrtee_reg_offs:
.long (kvm_emulate_wrtee_reg - kvm_emulate_wrtee) / 4
.global kvm_emulate_wrtee_orig_ins_offs
kvm_emulate_wrtee_orig_ins_offs:
.long (kvm_emulate_wrtee_orig_ins - kvm_emulate_wrtee) / 4
.global kvm_emulate_wrtee_len
kvm_emulate_wrtee_len:
.long (kvm_emulate_wrtee_end - kvm_emulate_wrtee) / 4
.global kvm_emulate_wrteei_0
kvm_emulate_wrteei_0:
SCRATCH_SAVE
/* Fetch old MSR in r31 */
LL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
/* Remove MSR_EE from old MSR */
li r30, 0
ori r30, r30, MSR_EE
andc r31, r31, r30
/* OR new MSR_EE onto the old MSR */
kvm_emulate_wrteei_ee:
ori r31, r31, 0
rlwinm r31, r31, 0, ~MSR_EE
/* Write new MSR value back */
STL64(r31, KVM_MAGIC_PAGE + KVM_MAGIC_MSR, 0)
......@@ -235,22 +293,17 @@ kvm_emulate_wrteei_ee:
SCRATCH_RESTORE
/* Go back to caller */
kvm_emulate_wrteei_branch:
kvm_emulate_wrteei_0_branch:
b .
kvm_emulate_wrteei_end:
.global kvm_emulate_wrteei_branch_offs
kvm_emulate_wrteei_branch_offs:
.long (kvm_emulate_wrteei_branch - kvm_emulate_wrteei) / 4
kvm_emulate_wrteei_0_end:
.global kvm_emulate_wrteei_ee_offs
kvm_emulate_wrteei_ee_offs:
.long (kvm_emulate_wrteei_ee - kvm_emulate_wrteei) / 4
.global kvm_emulate_wrteei_len
kvm_emulate_wrteei_len:
.long (kvm_emulate_wrteei_end - kvm_emulate_wrteei) / 4
.global kvm_emulate_wrteei_0_branch_offs
kvm_emulate_wrteei_0_branch_offs:
.long (kvm_emulate_wrteei_0_branch - kvm_emulate_wrteei_0) / 4
.global kvm_emulate_wrteei_0_len
kvm_emulate_wrteei_0_len:
.long (kvm_emulate_wrteei_0_end - kvm_emulate_wrteei_0) / 4
.global kvm_emulate_mtsrin
kvm_emulate_mtsrin:
......@@ -300,3 +353,6 @@ kvm_emulate_mtsrin_orig_ins_offs:
.global kvm_emulate_mtsrin_len
kvm_emulate_mtsrin_len:
.long (kvm_emulate_mtsrin_end - kvm_emulate_mtsrin) / 4
.global kvm_template_end
kvm_template_end:
......@@ -598,7 +598,7 @@ void __init setup_arch(char **cmdline_p)
/* Initialize the MMU context management stuff */
mmu_context_init();
kvm_rma_init();
kvm_linear_init();
ppc64_boot_msg(0x15, "Setup Done");
}
......
......@@ -69,6 +69,7 @@ config KVM_BOOK3S_64
config KVM_BOOK3S_64_HV
bool "KVM support for POWER7 and PPC970 using hypervisor mode in host"
depends on KVM_BOOK3S_64
select MMU_NOTIFIER
---help---
Support running unmodified book3s_64 guest kernels in
virtual machines on POWER7 and PPC970 processors that have
......
......@@ -258,7 +258,7 @@ static bool clear_irqprio(struct kvm_vcpu *vcpu, unsigned int priority)
return true;
}
void kvmppc_core_deliver_interrupts(struct kvm_vcpu *vcpu)
void kvmppc_core_prepare_to_enter(struct kvm_vcpu *vcpu)
{
unsigned long *pending = &vcpu->arch.pending_exceptions;
unsigned long old_pending = vcpu->arch.pending_exceptions;
......@@ -423,10 +423,10 @@ int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
regs->sprg1 = vcpu->arch.shared->sprg1;
regs->sprg2 = vcpu->arch.shared->sprg2;
regs->sprg3 = vcpu->arch.shared->sprg3;
regs->sprg4 = vcpu->arch.sprg4;
regs->sprg5 = vcpu->arch.sprg5;
regs->sprg6 = vcpu->arch.sprg6;
regs->sprg7 = vcpu->arch.sprg7;
regs->sprg4 = vcpu->arch.shared->sprg4;
regs->sprg5 = vcpu->arch.shared->sprg5;
regs->sprg6 = vcpu->arch.shared->sprg6;
regs->sprg7 = vcpu->arch.shared->sprg7;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
regs->gpr[i] = kvmppc_get_gpr(vcpu, i);
......@@ -450,10 +450,10 @@ int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
vcpu->arch.shared->sprg1 = regs->sprg1;
vcpu->arch.shared->sprg2 = regs->sprg2;
vcpu->arch.shared->sprg3 = regs->sprg3;
vcpu->arch.sprg4 = regs->sprg4;
vcpu->arch.sprg5 = regs->sprg5;
vcpu->arch.sprg6 = regs->sprg6;
vcpu->arch.sprg7 = regs->sprg7;
vcpu->arch.shared->sprg4 = regs->sprg4;
vcpu->arch.shared->sprg5 = regs->sprg5;
vcpu->arch.shared->sprg6 = regs->sprg6;
vcpu->arch.shared->sprg7 = regs->sprg7;
for (i = 0; i < ARRAY_SIZE(regs->gpr); i++)
kvmppc_set_gpr(vcpu, i, regs->gpr[i]);
......@@ -477,41 +477,10 @@ int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
return 0;
}
/*
* Get (and clear) the dirty memory log for a memory slot.
*/
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
struct kvm_dirty_log *log)
void kvmppc_decrementer_func(unsigned long data)
{
struct kvm_memory_slot *memslot;
struct kvm_vcpu *vcpu;
ulong ga, ga_end;
int is_dirty = 0;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
memslot = id_to_memslot(kvm->memslots, log->slot);
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
ga = memslot->base_gfn << PAGE_SHIFT;
ga_end = ga + (memslot->npages << PAGE_SHIFT);
kvm_for_each_vcpu(n, vcpu, kvm)
kvmppc_mmu_pte_pflush(vcpu, ga, ga_end);
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
kvmppc_core_queue_dec(vcpu);
kvm_vcpu_kick(vcpu);
}
......@@ -151,13 +151,15 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
bool primary = false;
bool evict = false;
struct hpte_cache *pte;
int r = 0;
/* Get host physical address for gpa */
hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
if (is_error_pfn(hpaddr)) {
printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n",
orig_pte->eaddr);
return -EINVAL;
r = -EINVAL;
goto out;
}
hpaddr <<= PAGE_SHIFT;
......@@ -249,7 +251,8 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
kvmppc_mmu_hpte_cache_map(vcpu, pte);
return 0;
out:
return r;
}
static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
......@@ -297,12 +300,14 @@ int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
u64 gvsid;
u32 sr;
struct kvmppc_sid_map *map;
struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
int r = 0;
if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
/* Invalidate an entry */
svcpu->sr[esid] = SR_INVALID;
return -ENOENT;
r = -ENOENT;
goto out;
}
map = find_sid_vsid(vcpu, gvsid);
......@@ -315,17 +320,21 @@ int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
dprintk_sr("MMU: mtsr %d, 0x%x\n", esid, sr);
return 0;
out:
svcpu_put(svcpu);
return r;
}
void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
{
int i;
struct kvmppc_book3s_shadow_vcpu *svcpu = to_svcpu(vcpu);
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
dprintk_sr("MMU: flushing all segments (%d)\n", ARRAY_SIZE(svcpu->sr));
for (i = 0; i < ARRAY_SIZE(svcpu->sr); i++)
svcpu->sr[i] = SR_INVALID;
svcpu_put(svcpu);
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
......
......@@ -88,12 +88,14 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
int vflags = 0;
int attempt = 0;
struct kvmppc_sid_map *map;
int r = 0;
/* Get host physical address for gpa */
hpaddr = kvmppc_gfn_to_pfn(vcpu, orig_pte->raddr >> PAGE_SHIFT);
if (is_error_pfn(hpaddr)) {
printk(KERN_INFO "Couldn't get guest page for gfn %lx!\n", orig_pte->eaddr);
return -EINVAL;
r = -EINVAL;
goto out;
}
hpaddr <<= PAGE_SHIFT;
hpaddr |= orig_pte->raddr & (~0xfffULL & ~PAGE_MASK);
......@@ -110,7 +112,8 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
printk(KERN_ERR "KVM: Segment map for 0x%llx (0x%lx) failed\n",
vsid, orig_pte->eaddr);
WARN_ON(true);
return -EINVAL;
r = -EINVAL;
goto out;
}
vsid = map->host_vsid;
......@@ -131,8 +134,10 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
/* In case we tried normal mapping already, let's nuke old entries */
if (attempt > 1)
if (ppc_md.hpte_remove(hpteg) < 0)
return -1;
if (ppc_md.hpte_remove(hpteg) < 0) {
r = -1;
goto out;
}
ret = ppc_md.hpte_insert(hpteg, va, hpaddr, rflags, vflags, MMU_PAGE_4K, MMU_SEGSIZE_256M);
......@@ -162,7 +167,8 @@ int kvmppc_mmu_map_page(struct kvm_vcpu *vcpu, struct kvmppc_pte *orig_pte)
kvmppc_mmu_hpte_cache_map(vcpu, pte);
}
return 0;
out:
return r;
}
static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
......@@ -207,25 +213,30 @@ static struct kvmppc_sid_map *create_sid_map(struct kvm_vcpu *vcpu, u64 gvsid)
static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
{
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
int i;
int max_slb_size = 64;
int found_inval = -1;
int r;
if (!to_svcpu(vcpu)->slb_max)
to_svcpu(vcpu)->slb_max = 1;
if (!svcpu->slb_max)
svcpu->slb_max = 1;
/* Are we overwriting? */
for (i = 1; i < to_svcpu(vcpu)->slb_max; i++) {
if (!(to_svcpu(vcpu)->slb[i].esid & SLB_ESID_V))
for (i = 1; i < svcpu->slb_max; i++) {
if (!(svcpu->slb[i].esid & SLB_ESID_V))
found_inval = i;
else if ((to_svcpu(vcpu)->slb[i].esid & ESID_MASK) == esid)
return i;
else if ((svcpu->slb[i].esid & ESID_MASK) == esid) {
r = i;
goto out;
}
}
/* Found a spare entry that was invalidated before */
if (found_inval > 0)
return found_inval;
if (found_inval > 0) {
r = found_inval;
goto out;
}
/* No spare invalid entry, so create one */
......@@ -233,30 +244,35 @@ static int kvmppc_mmu_next_segment(struct kvm_vcpu *vcpu, ulong esid)
max_slb_size = mmu_slb_size;
/* Overflowing -> purge */
if ((to_svcpu(vcpu)->slb_max) == max_slb_size)
if ((svcpu->slb_max) == max_slb_size)
kvmppc_mmu_flush_segments(vcpu);
r = to_svcpu(vcpu)->slb_max;
to_svcpu(vcpu)->slb_max++;
r = svcpu->slb_max;
svcpu->slb_max++;
out:
svcpu_put(svcpu);
return r;
}
int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
{
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
u64 esid = eaddr >> SID_SHIFT;
u64 slb_esid = (eaddr & ESID_MASK) | SLB_ESID_V;
u64 slb_vsid = SLB_VSID_USER;
u64 gvsid;
int slb_index;
struct kvmppc_sid_map *map;
int r = 0;
slb_index = kvmppc_mmu_next_segment(vcpu, eaddr & ESID_MASK);
if (vcpu->arch.mmu.esid_to_vsid(vcpu, esid, &gvsid)) {
/* Invalidate an entry */
to_svcpu(vcpu)->slb[slb_index].esid = 0;
return -ENOENT;
svcpu->slb[slb_index].esid = 0;
r = -ENOENT;
goto out;
}
map = find_sid_vsid(vcpu, gvsid);
......@@ -269,18 +285,22 @@ int kvmppc_mmu_map_segment(struct kvm_vcpu *vcpu, ulong eaddr)
slb_vsid &= ~SLB_VSID_KP;
slb_esid |= slb_index;
to_svcpu(vcpu)->slb[slb_index].esid = slb_esid;
to_svcpu(vcpu)->slb[slb_index].vsid = slb_vsid;
svcpu->slb[slb_index].esid = slb_esid;
svcpu->slb[slb_index].vsid = slb_vsid;
trace_kvm_book3s_slbmte(slb_vsid, slb_esid);
return 0;
out:
svcpu_put(svcpu);
return r;
}
void kvmppc_mmu_flush_segments(struct kvm_vcpu *vcpu)
{
to_svcpu(vcpu)->slb_max = 1;
to_svcpu(vcpu)->slb[0].esid = 0;
struct kvmppc_book3s_shadow_vcpu *svcpu = svcpu_get(vcpu);
svcpu->slb_max = 1;
svcpu->slb[0].esid = 0;
svcpu_put(svcpu);
}
void kvmppc_mmu_destroy(struct kvm_vcpu *vcpu)
......
This diff is collapsed.
......@@ -230,9 +230,12 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
r = kvmppc_st(vcpu, &addr, 32, zeros, true);
if ((r == -ENOENT) || (r == -EPERM)) {
struct kvmppc_book3s_shadow_vcpu *svcpu;
svcpu = svcpu_get(vcpu);
*advance = 0;
vcpu->arch.shared->dar = vaddr;
to_svcpu(vcpu)->fault_dar = vaddr;
svcpu->fault_dar = vaddr;
dsisr = DSISR_ISSTORE;
if (r == -ENOENT)
......@@ -241,7 +244,8 @@ int kvmppc_core_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
dsisr |= DSISR_PROTFAULT;
vcpu->arch.shared->dsisr = dsisr;
to_svcpu(vcpu)->fault_dsisr = dsisr;
svcpu->fault_dsisr = dsisr;
svcpu_put(svcpu);
kvmppc_book3s_queue_irqprio(vcpu,
BOOK3S_INTERRUPT_DATA_STORAGE);
......
This diff is collapsed.
......@@ -18,6 +18,15 @@
#include <asm/kvm_ppc.h>
#include <asm/kvm_book3s.h>
#define KVM_LINEAR_RMA 0
#define KVM_LINEAR_HPT 1
static void __init kvm_linear_init_one(ulong size, int count, int type);
static struct kvmppc_linear_info *kvm_alloc_linear(int type);
static void kvm_release_linear(struct kvmppc_linear_info *ri);
/*************** RMA *************/
/*
* This maintains a list of RMAs (real mode areas) for KVM guests to use.
* Each RMA has to be physically contiguous and of a size that the
......@@ -29,32 +38,6 @@
static unsigned long kvm_rma_size = 64 << 20; /* 64MB */
static unsigned long kvm_rma_count;
static int __init early_parse_rma_size(char *p)
{
if (!p)
return 1;
kvm_rma_size = memparse(p, &p);
return 0;
}
early_param("kvm_rma_size", early_parse_rma_size);
static int __init early_parse_rma_count(char *p)
{
if (!p)
return 1;
kvm_rma_count = simple_strtoul(p, NULL, 0);
return 0;
}
early_param("kvm_rma_count", early_parse_rma_count);
static struct kvmppc_rma_info *rma_info;
static LIST_HEAD(free_rmas);
static DEFINE_SPINLOCK(rma_lock);
/* Work out RMLS (real mode limit selector) field value for a given RMA size.
Assumes POWER7 or PPC970. */
static inline int lpcr_rmls(unsigned long rma_size)
......@@ -81,45 +64,106 @@ static inline int lpcr_rmls(unsigned long rma_size)
}
}
static int __init early_parse_rma_size(char *p)
{
if (!p)
return 1;
kvm_rma_size = memparse(p, &p);
return 0;
}
early_param("kvm_rma_size", early_parse_rma_size);
static int __init early_parse_rma_count(char *p)
{
if (!p)
return 1;
kvm_rma_count = simple_strtoul(p, NULL, 0);
return 0;
}
early_param("kvm_rma_count", early_parse_rma_count);
struct kvmppc_linear_info *kvm_alloc_rma(void)
{
return kvm_alloc_linear(KVM_LINEAR_RMA);
}
EXPORT_SYMBOL_GPL(kvm_alloc_rma);
void kvm_release_rma(struct kvmppc_linear_info *ri)
{
kvm_release_linear(ri);
}
EXPORT_SYMBOL_GPL(kvm_release_rma);
/*************** HPT *************/
/*
* Called at boot time while the bootmem allocator is active,
* to allocate contiguous physical memory for the real memory
* areas for guests.
* This maintains a list of big linear HPT tables that contain the GVA->HPA
* memory mappings. If we don't reserve those early on, we might not be able
* to get a big (usually 16MB) linear memory region from the kernel anymore.
*/
void __init kvm_rma_init(void)
static unsigned long kvm_hpt_count;
static int __init early_parse_hpt_count(char *p)
{
if (!p)
return 1;
kvm_hpt_count = simple_strtoul(p, NULL, 0);
return 0;
}
early_param("kvm_hpt_count", early_parse_hpt_count);
struct kvmppc_linear_info *kvm_alloc_hpt(void)
{
return kvm_alloc_linear(KVM_LINEAR_HPT);
}
EXPORT_SYMBOL_GPL(kvm_alloc_hpt);
void kvm_release_hpt(struct kvmppc_linear_info *li)
{
kvm_release_linear(li);
}
EXPORT_SYMBOL_GPL(kvm_release_hpt);
/*************** generic *************/
static LIST_HEAD(free_linears);
static DEFINE_SPINLOCK(linear_lock);
static void __init kvm_linear_init_one(ulong size, int count, int type)
{
unsigned long i;
unsigned long j, npages;
void *rma;
void *linear;
struct page *pg;
const char *typestr;
struct kvmppc_linear_info *linear_info;
/* Only do this on PPC970 in HV mode */
if (!cpu_has_feature(CPU_FTR_HVMODE) ||
!cpu_has_feature(CPU_FTR_ARCH_201))
return;
if (!kvm_rma_size || !kvm_rma_count)
if (!count)
return;
/* Check that the requested size is one supported in hardware */
if (lpcr_rmls(kvm_rma_size) < 0) {
pr_err("RMA size of 0x%lx not supported\n", kvm_rma_size);
return;
}
npages = kvm_rma_size >> PAGE_SHIFT;
rma_info = alloc_bootmem(kvm_rma_count * sizeof(struct kvmppc_rma_info));
for (i = 0; i < kvm_rma_count; ++i) {
rma = alloc_bootmem_align(kvm_rma_size, kvm_rma_size);
pr_info("Allocated KVM RMA at %p (%ld MB)\n", rma,
kvm_rma_size >> 20);
rma_info[i].base_virt = rma;
rma_info[i].base_pfn = __pa(rma) >> PAGE_SHIFT;
rma_info[i].npages = npages;
list_add_tail(&rma_info[i].list, &free_rmas);
atomic_set(&rma_info[i].use_count, 0);
pg = pfn_to_page(rma_info[i].base_pfn);
typestr = (type == KVM_LINEAR_RMA) ? "RMA" : "HPT";
npages = size >> PAGE_SHIFT;
linear_info = alloc_bootmem(count * sizeof(struct kvmppc_linear_info));
for (i = 0; i < count; ++i) {
linear = alloc_bootmem_align(size, size);
pr_info("Allocated KVM %s at %p (%ld MB)\n", typestr, linear,
size >> 20);
linear_info[i].base_virt = linear;
linear_info[i].base_pfn = __pa(linear) >> PAGE_SHIFT;
linear_info[i].npages = npages;
linear_info[i].type = type;
list_add_tail(&linear_info[i].list, &free_linears);
atomic_set(&linear_info[i].use_count, 0);
pg = pfn_to_page(linear_info[i].base_pfn);
for (j = 0; j < npages; ++j) {
atomic_inc(&pg->_count);
++pg;
......@@ -127,30 +171,59 @@ void __init kvm_rma_init(void)
}
}
struct kvmppc_rma_info *kvm_alloc_rma(void)
static struct kvmppc_linear_info *kvm_alloc_linear(int type)
{
struct kvmppc_rma_info *ri;
struct kvmppc_linear_info *ri;
ri = NULL;
spin_lock(&rma_lock);
if (!list_empty(&free_rmas)) {
ri = list_first_entry(&free_rmas, struct kvmppc_rma_info, list);
spin_lock(&linear_lock);
list_for_each_entry(ri, &free_linears, list) {
if (ri->type != type)
continue;
list_del(&ri->list);
atomic_inc(&ri->use_count);
break;
}
spin_unlock(&rma_lock);
spin_unlock(&linear_lock);
memset(ri->base_virt, 0, ri->npages << PAGE_SHIFT);
return ri;
}
EXPORT_SYMBOL_GPL(kvm_alloc_rma);
void kvm_release_rma(struct kvmppc_rma_info *ri)
static void kvm_release_linear(struct kvmppc_linear_info *ri)
{
if (atomic_dec_and_test(&ri->use_count)) {
spin_lock(&rma_lock);
list_add_tail(&ri->list, &free_rmas);
spin_unlock(&rma_lock);
spin_lock(&linear_lock);
list_add_tail(&ri->list, &free_linears);
spin_unlock(&linear_lock);
}
}
EXPORT_SYMBOL_GPL(kvm_release_rma);
/*
* Called at boot time while the bootmem allocator is active,
* to allocate contiguous physical memory for the hash page
* tables for guests.
*/
void __init kvm_linear_init(void)
{
/* HPT */
kvm_linear_init_one(1 << HPT_ORDER, kvm_hpt_count, KVM_LINEAR_HPT);
/* RMA */
/* Only do this on PPC970 in HV mode */
if (!cpu_has_feature(CPU_FTR_HVMODE) ||
!cpu_has_feature(CPU_FTR_ARCH_201))
return;
if (!kvm_rma_size || !kvm_rma_count)
return;
/* Check that the requested size is one supported in hardware */
if (lpcr_rmls(kvm_rma_size) < 0) {
pr_err("RMA size of 0x%lx not supported\n", kvm_rma_size);
return;
}
kvm_linear_init_one(kvm_rma_size, kvm_rma_count, KVM_LINEAR_RMA);
}
This diff is collapsed.
......@@ -601,6 +601,30 @@ kvmppc_interrupt:
stw r12,VCPU_TRAP(r9)
/* Save HEIR (HV emulation assist reg) in last_inst
if this is an HEI (HV emulation interrupt, e40) */
li r3,KVM_INST_FETCH_FAILED
BEGIN_FTR_SECTION
cmpwi r12,BOOK3S_INTERRUPT_H_EMUL_ASSIST
bne 11f
mfspr r3,SPRN_HEIR
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_206)
11: stw r3,VCPU_LAST_INST(r9)
/* these are volatile across C function calls */
mfctr r3
mfxer r4
std r3, VCPU_CTR(r9)
stw r4, VCPU_XER(r9)
BEGIN_FTR_SECTION
/* If this is a page table miss then see if it's theirs or ours */
cmpwi r12, BOOK3S_INTERRUPT_H_DATA_STORAGE
beq kvmppc_hdsi
cmpwi r12, BOOK3S_INTERRUPT_H_INST_STORAGE
beq kvmppc_hisi
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_206)
/* See if this is a leftover HDEC interrupt */
cmpwi r12,BOOK3S_INTERRUPT_HV_DECREMENTER
bne 2f
......@@ -608,7 +632,7 @@ kvmppc_interrupt:
cmpwi r3,0
bge ignore_hdec
2:
/* See if this is something we can handle in real mode */
/* See if this is an hcall we can handle in real mode */
cmpwi r12,BOOK3S_INTERRUPT_SYSCALL
beq hcall_try_real_mode
......@@ -624,6 +648,7 @@ BEGIN_FTR_SECTION
1:
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_206)
nohpte_cont:
hcall_real_cont: /* r9 = vcpu, r12 = trap, r13 = paca */
/* Save DEC */
mfspr r5,SPRN_DEC
......@@ -632,36 +657,21 @@ hcall_real_cont: /* r9 = vcpu, r12 = trap, r13 = paca */
add r5,r5,r6
std r5,VCPU_DEC_EXPIRES(r9)
/* Save HEIR (HV emulation assist reg) in last_inst
if this is an HEI (HV emulation interrupt, e40) */
li r3,-1
BEGIN_FTR_SECTION
cmpwi r12,BOOK3S_INTERRUPT_H_EMUL_ASSIST
bne 11f
mfspr r3,SPRN_HEIR
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_206)
11: stw r3,VCPU_LAST_INST(r9)
/* Save more register state */
mfxer r5
mfdar r6
mfdsisr r7
mfctr r8
stw r5, VCPU_XER(r9)
std r6, VCPU_DAR(r9)
stw r7, VCPU_DSISR(r9)
std r8, VCPU_CTR(r9)
/* grab HDAR & HDSISR if HV data storage interrupt (HDSI) */
BEGIN_FTR_SECTION
/* don't overwrite fault_dar/fault_dsisr if HDSI */
cmpwi r12,BOOK3S_INTERRUPT_H_DATA_STORAGE
beq 6f
END_FTR_SECTION_IFSET(CPU_FTR_ARCH_206)
7: std r6, VCPU_FAULT_DAR(r9)
std r6, VCPU_FAULT_DAR(r9)
stw r7, VCPU_FAULT_DSISR(r9)
/* Save guest CTRL register, set runlatch to 1 */
mfspr r6,SPRN_CTRLF
6: mfspr r6,SPRN_CTRLF
stw r6,VCPU_CTRL(r9)
andi. r0,r6,1
bne 4f
......@@ -1094,9 +1104,131 @@ END_FTR_SECTION_IFSET(CPU_FTR_ARCH_201)
mtspr SPRN_HSRR1, r7
ba 0x500
6: mfspr r6,SPRN_HDAR
mfspr r7,SPRN_HDSISR
b 7b
/*
* Check whether an HDSI is an HPTE not found fault or something else.
* If it is an HPTE not found fault that is due to the guest accessing
* a page that they have mapped but which we have paged out, then
* we continue on with the guest exit path. In all other cases,
* reflect the HDSI to the guest as a DSI.
*/
kvmppc_hdsi:
mfspr r4, SPRN_HDAR
mfspr r6, SPRN_HDSISR
/* HPTE not found fault or protection fault? */
andis. r0, r6, (DSISR_NOHPTE | DSISR_PROTFAULT)@h
beq 1f /* if not, send it to the guest */
andi. r0, r11, MSR_DR /* data relocation enabled? */
beq 3f
clrrdi r0, r4, 28
PPC_SLBFEE_DOT(r5, r0) /* if so, look up SLB */
bne 1f /* if no SLB entry found */
4: std r4, VCPU_FAULT_DAR(r9)
stw r6, VCPU_FAULT_DSISR(r9)
/* Search the hash table. */
mr r3, r9 /* vcpu pointer */
li r7, 1 /* data fault */
bl .kvmppc_hpte_hv_fault
ld r9, HSTATE_KVM_VCPU(r13)
ld r10, VCPU_PC(r9)
ld r11, VCPU_MSR(r9)
li r12, BOOK3S_INTERRUPT_H_DATA_STORAGE
cmpdi r3, 0 /* retry the instruction */
beq 6f
cmpdi r3, -1 /* handle in kernel mode */
beq nohpte_cont
cmpdi r3, -2 /* MMIO emulation; need instr word */
beq 2f
/* Synthesize a DSI for the guest */
ld r4, VCPU_FAULT_DAR(r9)
mr r6, r3
1: mtspr SPRN_DAR, r4
mtspr SPRN_DSISR, r6
mtspr SPRN_SRR0, r10
mtspr SPRN_SRR1, r11
li r10, BOOK3S_INTERRUPT_DATA_STORAGE
li r11, (MSR_ME << 1) | 1 /* synthesize MSR_SF | MSR_ME */
rotldi r11, r11, 63
6: ld r7, VCPU_CTR(r9)
lwz r8, VCPU_XER(r9)
mtctr r7
mtxer r8
mr r4, r9
b fast_guest_return
3: ld r5, VCPU_KVM(r9) /* not relocated, use VRMA */
ld r5, KVM_VRMA_SLB_V(r5)
b 4b
/* If this is for emulated MMIO, load the instruction word */
2: li r8, KVM_INST_FETCH_FAILED /* In case lwz faults */
/* Set guest mode to 'jump over instruction' so if lwz faults
* we'll just continue at the next IP. */
li r0, KVM_GUEST_MODE_SKIP
stb r0, HSTATE_IN_GUEST(r13)
/* Do the access with MSR:DR enabled */
mfmsr r3
ori r4, r3, MSR_DR /* Enable paging for data */
mtmsrd r4
lwz r8, 0(r10)
mtmsrd r3
/* Store the result */
stw r8, VCPU_LAST_INST(r9)
/* Unset guest mode. */
li r0, KVM_GUEST_MODE_NONE
stb r0, HSTATE_IN_GUEST(r13)
b nohpte_cont
/*
* Similarly for an HISI, reflect it to the guest as an ISI unless
* it is an HPTE not found fault for a page that we have paged out.
*/
kvmppc_hisi:
andis. r0, r11, SRR1_ISI_NOPT@h
beq 1f
andi. r0, r11, MSR_IR /* instruction relocation enabled? */
beq 3f
clrrdi r0, r10, 28
PPC_SLBFEE_DOT(r5, r0) /* if so, look up SLB */
bne 1f /* if no SLB entry found */
4:
/* Search the hash table. */
mr r3, r9 /* vcpu pointer */
mr r4, r10
mr r6, r11
li r7, 0 /* instruction fault */
bl .kvmppc_hpte_hv_fault
ld r9, HSTATE_KVM_VCPU(r13)
ld r10, VCPU_PC(r9)
ld r11, VCPU_MSR(r9)
li r12, BOOK3S_INTERRUPT_H_INST_STORAGE
cmpdi r3, 0 /* retry the instruction */
beq 6f
cmpdi r3, -1 /* handle in kernel mode */
beq nohpte_cont
/* Synthesize an ISI for the guest */
mr r11, r3
1: mtspr SPRN_SRR0, r10
mtspr SPRN_SRR1, r11
li r10, BOOK3S_INTERRUPT_INST_STORAGE
li r11, (MSR_ME << 1) | 1 /* synthesize MSR_SF | MSR_ME */
rotldi r11, r11, 63
6: ld r7, VCPU_CTR(r9)
lwz r8, VCPU_XER(r9)
mtctr r7
mtxer r8
mr r4, r9
b fast_guest_return
3: ld r6, VCPU_KVM(r9) /* not relocated, use VRMA */
ld r5, KVM_VRMA_SLB_V(r6)
b 4b
/*
* Try to handle an hcall in real mode.
......
......@@ -196,7 +196,8 @@ static int kvmppc_emulate_fpr_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
kvmppc_inject_pf(vcpu, addr, false);
goto done_load;
} else if (r == EMULATE_DO_MMIO) {
emulated = kvmppc_handle_load(run, vcpu, KVM_REG_FPR | rs, len, 1);
emulated = kvmppc_handle_load(run, vcpu, KVM_MMIO_REG_FPR | rs,
len, 1);
goto done_load;
}
......@@ -286,11 +287,13 @@ static int kvmppc_emulate_psq_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
kvmppc_inject_pf(vcpu, addr, false);
goto done_load;
} else if ((r == EMULATE_DO_MMIO) && w) {
emulated = kvmppc_handle_load(run, vcpu, KVM_REG_FPR | rs, 4, 1);
emulated = kvmppc_handle_load(run, vcpu, KVM_MMIO_REG_FPR | rs,
4, 1);
vcpu->arch.qpr[rs] = tmp[1];
goto done_load;
} else if (r == EMULATE_DO_MMIO) {
emulated = kvmppc_handle_load(run, vcpu, KVM_REG_FQPR | rs, 8, 1);
emulated = kvmppc_handle_load(run, vcpu, KVM_MMIO_REG_FQPR | rs,
8, 1);
goto done_load;
}
......
This diff is collapsed.
This diff is collapsed.
......@@ -55,6 +55,10 @@ extern unsigned long kvmppc_booke_handlers;
void kvmppc_set_msr(struct kvm_vcpu *vcpu, u32 new_msr);
void kvmppc_mmu_msr_notify(struct kvm_vcpu *vcpu, u32 old_msr);
void kvmppc_set_tcr(struct kvm_vcpu *vcpu, u32 new_tcr);
void kvmppc_set_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits);
void kvmppc_clr_tsr_bits(struct kvm_vcpu *vcpu, u32 tsr_bits);
int kvmppc_booke_emulate_op(struct kvm_run *run, struct kvm_vcpu *vcpu,
unsigned int inst, int *advance);
int kvmppc_booke_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt);
......
......@@ -13,6 +13,7 @@
* Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
* Copyright IBM Corp. 2008
* Copyright 2011 Freescale Semiconductor, Inc.
*
* Authors: Hollis Blanchard <hollisb@us.ibm.com>
*/
......@@ -107,7 +108,7 @@ int kvmppc_booke_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
case SPRN_DEAR:
vcpu->arch.shared->dar = spr_val; break;
case SPRN_ESR:
vcpu->arch.esr = spr_val; break;
vcpu->arch.shared->esr = spr_val; break;
case SPRN_DBCR0:
vcpu->arch.dbcr0 = spr_val; break;
case SPRN_DBCR1:
......@@ -115,23 +116,23 @@ int kvmppc_booke_emulate_mtspr(struct kvm_vcpu *vcpu, int sprn, int rs)
case SPRN_DBSR:
vcpu->arch.dbsr &= ~spr_val; break;
case SPRN_TSR:
vcpu->arch.tsr &= ~spr_val; break;
kvmppc_clr_tsr_bits(vcpu, spr_val);
break;
case SPRN_TCR:
vcpu->arch.tcr = spr_val;
kvmppc_emulate_dec(vcpu);
kvmppc_set_tcr(vcpu, spr_val);
break;
/* Note: SPRG4-7 are user-readable. These values are
* loaded into the real SPRGs when resuming the
* guest. */
case SPRN_SPRG4:
vcpu->arch.sprg4 = spr_val; break;
vcpu->arch.shared->sprg4 = spr_val; break;
case SPRN_SPRG5:
vcpu->arch.sprg5 = spr_val; break;
vcpu->arch.shared->sprg5 = spr_val; break;
case SPRN_SPRG6:
vcpu->arch.sprg6 = spr_val; break;
vcpu->arch.shared->sprg6 = spr_val; break;
case SPRN_SPRG7:
vcpu->arch.sprg7 = spr_val; break;
vcpu->arch.shared->sprg7 = spr_val; break;
case SPRN_IVPR:
vcpu->arch.ivpr = spr_val;
......@@ -202,13 +203,17 @@ int kvmppc_booke_emulate_mfspr(struct kvm_vcpu *vcpu, int sprn, int rt)
case SPRN_DEAR:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->dar); break;
case SPRN_ESR:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.esr); break;
kvmppc_set_gpr(vcpu, rt, vcpu->arch.shared->esr); break;
case SPRN_DBCR0:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.dbcr0); break;
case SPRN_DBCR1:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.dbcr1); break;
case SPRN_DBSR:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.dbsr); break;
case SPRN_TSR:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.tsr); break;
case SPRN_TCR:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.tcr); break;
case SPRN_IVOR0:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.ivor[BOOKE_IRQPRIO_CRITICAL]);
......
......@@ -402,19 +402,25 @@ lightweight_exit:
/* Save vcpu pointer for the exception handlers. */
mtspr SPRN_SPRG_WVCPU, r4
lwz r5, VCPU_SHARED(r4)
/* Can't switch the stack pointer until after IVPR is switched,
* because host interrupt handlers would get confused. */
lwz r1, VCPU_GPR(r1)(r4)
/* Host interrupt handlers may have clobbered these guest-readable
* SPRGs, so we need to reload them here with the guest's values. */
lwz r3, VCPU_SPRG4(r4)
/*
* Host interrupt handlers may have clobbered these
* guest-readable SPRGs, or the guest kernel may have
* written directly to the shared area, so we
* need to reload them here with the guest's values.
*/
lwz r3, VCPU_SHARED_SPRG4(r5)
mtspr SPRN_SPRG4W, r3
lwz r3, VCPU_SPRG5(r4)
lwz r3, VCPU_SHARED_SPRG5(r5)
mtspr SPRN_SPRG5W, r3
lwz r3, VCPU_SPRG6(r4)
lwz r3, VCPU_SHARED_SPRG6(r5)
mtspr SPRN_SPRG6W, r3
lwz r3, VCPU_SPRG7(r4)
lwz r3, VCPU_SHARED_SPRG7(r5)
mtspr SPRN_SPRG7W, r3
#ifdef CONFIG_KVM_EXIT_TIMING
......
......@@ -71,9 +71,6 @@ int kvmppc_core_vcpu_setup(struct kvm_vcpu *vcpu)
vcpu->arch.pvr = mfspr(SPRN_PVR);
vcpu_e500->svr = mfspr(SPRN_SVR);
/* Since booke kvm only support one core, update all vcpus' PIR to 0 */
vcpu->vcpu_id = 0;
vcpu->arch.cpu_type = KVM_CPU_E500V2;
return 0;
......@@ -118,12 +115,12 @@ void kvmppc_core_get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
sregs->u.e.impl.fsl.hid0 = vcpu_e500->hid0;
sregs->u.e.impl.fsl.mcar = vcpu_e500->mcar;
sregs->u.e.mas0 = vcpu_e500->mas0;
sregs->u.e.mas1 = vcpu_e500->mas1;
sregs->u.e.mas2 = vcpu_e500->mas2;
sregs->u.e.mas7_3 = ((u64)vcpu_e500->mas7 << 32) | vcpu_e500->mas3;
sregs->u.e.mas4 = vcpu_e500->mas4;
sregs->u.e.mas6 = vcpu_e500->mas6;
sregs->u.e.mas0 = vcpu->arch.shared->mas0;
sregs->u.e.mas1 = vcpu->arch.shared->mas1;
sregs->u.e.mas2 = vcpu->arch.shared->mas2;
sregs->u.e.mas7_3 = vcpu->arch.shared->mas7_3;
sregs->u.e.mas4 = vcpu->arch.shared->mas4;
sregs->u.e.mas6 = vcpu->arch.shared->mas6;
sregs->u.e.mmucfg = mfspr(SPRN_MMUCFG);
sregs->u.e.tlbcfg[0] = vcpu_e500->tlb0cfg;
......@@ -151,13 +148,12 @@ int kvmppc_core_set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
}
if (sregs->u.e.features & KVM_SREGS_E_ARCH206_MMU) {
vcpu_e500->mas0 = sregs->u.e.mas0;
vcpu_e500->mas1 = sregs->u.e.mas1;
vcpu_e500->mas2 = sregs->u.e.mas2;
vcpu_e500->mas7 = sregs->u.e.mas7_3 >> 32;
vcpu_e500->mas3 = (u32)sregs->u.e.mas7_3;
vcpu_e500->mas4 = sregs->u.e.mas4;
vcpu_e500->mas6 = sregs->u.e.mas6;
vcpu->arch.shared->mas0 = sregs->u.e.mas0;
vcpu->arch.shared->mas1 = sregs->u.e.mas1;
vcpu->arch.shared->mas2 = sregs->u.e.mas2;
vcpu->arch.shared->mas7_3 = sregs->u.e.mas7_3;
vcpu->arch.shared->mas4 = sregs->u.e.mas4;
vcpu->arch.shared->mas6 = sregs->u.e.mas6;
}
if (!(sregs->u.e.features & KVM_SREGS_E_IVOR))
......@@ -233,6 +229,10 @@ static int __init kvmppc_e500_init(void)
unsigned long ivor[3];
unsigned long max_ivor = 0;
r = kvmppc_core_check_processor_compat();
if (r)
return r;
r = kvmppc_booke_init();
if (r)
return r;
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
......@@ -12,6 +12,7 @@
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/hugetlb.h>
#include <linux/export.h>
#include <linux/of_fdt.h>
#include <linux/memblock.h>
#include <linux/bootmem.h>
......@@ -103,6 +104,7 @@ pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift
*shift = hugepd_shift(*hpdp);
return hugepte_offset(hpdp, ea, pdshift);
}
EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
{
......
......@@ -41,4 +41,15 @@ struct kvm_debug_exit_arch {
struct kvm_guest_debug_arch {
};
#define KVM_SYNC_PREFIX (1UL << 0)
#define KVM_SYNC_GPRS (1UL << 1)
#define KVM_SYNC_ACRS (1UL << 2)
#define KVM_SYNC_CRS (1UL << 3)
/* definition of registers in kvm_run */
struct kvm_sync_regs {
__u64 prefix; /* prefix register */
__u64 gprs[16]; /* general purpose registers */
__u32 acrs[16]; /* access registers */
__u64 crs[16]; /* control registers */
};
#endif
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment