Commit 2fa9d1cf authored by Dave Hansen's avatar Dave Hansen Committed by Ingo Molnar

x86/pkeys: Do not special case protection key 0

mm_pkey_is_allocated() treats pkey 0 as unallocated.  That is
inconsistent with the manpages, and also inconsistent with
mm->context.pkey_allocation_map.  Stop special casing it and only
disallow values that are actually bad (< 0).

The end-user visible effect of this is that you can now use
mprotect_pkey() to set pkey=0.

This is a bit nicer than what Ram proposed[1] because it is simpler
and removes special-casing for pkey 0.  On the other hand, it does
allow applications to pkey_free() pkey-0, but that's just a silly
thing to do, so we are not going to protect against it.

The scenario that could happen is similar to what happens if you free
any other pkey that is in use: it might get reallocated later and used
to protect some other data.  The most likely scenario is that pkey-0
comes back from pkey_alloc(), an access-disable or write-disable bit
is set in PKRU for it, and the next stack access will SIGSEGV.  It's
not horribly different from if you mprotect()'d your stack or heap to
be unreadable or unwritable, which is generally very foolish, but also
not explicitly prevented by the kernel.

1. http://lkml.kernel.org/r/1522112702-27853-1-git-send-email-linuxram@us.ibm.comSigned-off-by: default avatarDave Hansen <dave.hansen@linux.intel.com>
Cc: Andrew Morton <akpm@linux-foundation.org>p
Cc: Dave Hansen <dave.hansen@intel.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Michael Ellermen <mpe@ellerman.id.au>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Ram Pai <linuxram@us.ibm.com>
Cc: Shuah Khan <shuah@kernel.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-mm@kvack.org
Cc: stable@vger.kernel.org
Fixes: 58ab9a08 ("x86/pkeys: Check against max pkey to avoid overflows")
Link: http://lkml.kernel.org/r/20180509171358.47FD785E@viggo.jf.intel.comSigned-off-by: default avatarIngo Molnar <mingo@kernel.org>
parent 3488a600
...@@ -193,7 +193,7 @@ static inline int init_new_context(struct task_struct *tsk, ...@@ -193,7 +193,7 @@ static inline int init_new_context(struct task_struct *tsk,
#ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
if (cpu_feature_enabled(X86_FEATURE_OSPKE)) { if (cpu_feature_enabled(X86_FEATURE_OSPKE)) {
/* pkey 0 is the default and always allocated */ /* pkey 0 is the default and allocated implicitly */
mm->context.pkey_allocation_map = 0x1; mm->context.pkey_allocation_map = 0x1;
/* -1 means unallocated or invalid */ /* -1 means unallocated or invalid */
mm->context.execute_only_pkey = -1; mm->context.execute_only_pkey = -1;
......
...@@ -51,10 +51,10 @@ bool mm_pkey_is_allocated(struct mm_struct *mm, int pkey) ...@@ -51,10 +51,10 @@ bool mm_pkey_is_allocated(struct mm_struct *mm, int pkey)
{ {
/* /*
* "Allocated" pkeys are those that have been returned * "Allocated" pkeys are those that have been returned
* from pkey_alloc(). pkey 0 is special, and never * from pkey_alloc() or pkey 0 which is allocated
* returned from pkey_alloc(). * implicitly when the mm is created.
*/ */
if (pkey <= 0) if (pkey < 0)
return false; return false;
if (pkey >= arch_max_pkey()) if (pkey >= arch_max_pkey())
return false; return false;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment