Commit 352c417d authored by Stephen Hemminger's avatar Stephen Hemminger Committed by Jeff Garzik

[PATCH] chelsio: add 1G swcixw aupport

Add support for 1G versions of Chelsio devices.
Signed-off-by: default avatarStephen Hemminger <shemminger@osdl.org>
Signed-off-by: default avatarJeff Garzik <jeff@garzik.org>
parent f1d3d38a
......@@ -2376,6 +2376,13 @@ config CHELSIO_T1
To compile this driver as a module, choose M here: the module
will be called cxgb.
config CHELSIO_T1_1G
bool "Chelsio gigabit Ethernet support"
depends on CHELSIO_T1
help
Enables support for Chelsio's gigabit Ethernet PCI cards. If you
are using only 10G cards say 'N' here.
config EHEA
tristate "eHEA Ethernet support"
depends on IBMEBUS
......
......@@ -4,6 +4,7 @@
obj-$(CONFIG_CHELSIO_T1) += cxgb.o
cxgb-$(CONFIG_CHELSIO_T1_1G) += ixf1010.o mac.o mv88e1xxx.o vsc7326.o vsc8244.o
cxgb-objs := cxgb2.o espi.o tp.o pm3393.o sge.o subr.o \
mv88x201x.o my3126.o $(cxgb-y)
......
......@@ -283,6 +283,8 @@ struct adapter {
spinlock_t tpi_lock;
spinlock_t work_lock;
spinlock_t mac_lock;
/* guards async operations */
spinlock_t async_lock ____cacheline_aligned;
u32 slow_intr_mask;
......
......@@ -1094,6 +1094,7 @@ static int __devinit init_one(struct pci_dev *pdev,
spin_lock_init(&adapter->tpi_lock);
spin_lock_init(&adapter->work_lock);
spin_lock_init(&adapter->async_lock);
spin_lock_init(&adapter->mac_lock);
INIT_WORK(&adapter->ext_intr_handler_task,
ext_intr_task, adapter);
......
This diff is collapsed.
/* $Date: 2005/10/22 00:42:59 $ $RCSfile: mac.c,v $ $Revision: 1.32 $ */
#include "gmac.h"
#include "regs.h"
#include "fpga_defs.h"
#define MAC_CSR_INTERFACE_GMII 0x0
#define MAC_CSR_INTERFACE_TBI 0x1
#define MAC_CSR_INTERFACE_MII 0x2
#define MAC_CSR_INTERFACE_RMII 0x3
/* Chelsio's MAC statistics. */
struct mac_statistics {
/* Transmit */
u32 TxFramesTransmittedOK;
u32 TxReserved1;
u32 TxReserved2;
u32 TxOctetsTransmittedOK;
u32 TxFramesWithDeferredXmissions;
u32 TxLateCollisions;
u32 TxFramesAbortedDueToXSCollisions;
u32 TxFramesLostDueToIntMACXmitError;
u32 TxReserved3;
u32 TxMulticastFrameXmittedOK;
u32 TxBroadcastFramesXmittedOK;
u32 TxFramesWithExcessiveDeferral;
u32 TxPAUSEMACCtrlFramesTransmitted;
/* Receive */
u32 RxFramesReceivedOK;
u32 RxFrameCheckSequenceErrors;
u32 RxAlignmentErrors;
u32 RxOctetsReceivedOK;
u32 RxFramesLostDueToIntMACRcvError;
u32 RxMulticastFramesReceivedOK;
u32 RxBroadcastFramesReceivedOK;
u32 RxInRangeLengthErrors;
u32 RxTxOutOfRangeLengthField;
u32 RxFrameTooLongErrors;
u32 RxPAUSEMACCtrlFramesReceived;
};
static int static_aPorts[] = {
FPGA_GMAC_INTERRUPT_PORT0,
FPGA_GMAC_INTERRUPT_PORT1,
FPGA_GMAC_INTERRUPT_PORT2,
FPGA_GMAC_INTERRUPT_PORT3
};
struct _cmac_instance {
u32 index;
};
static int mac_intr_enable(struct cmac *mac)
{
u32 mac_intr;
if (t1_is_asic(mac->adapter)) {
/* ASIC */
/* We don't use the on chip MAC for ASIC products. */
} else {
/* FPGA */
/* Set parent gmac interrupt. */
mac_intr = readl(mac->adapter->regs + A_PL_ENABLE);
mac_intr |= FPGA_PCIX_INTERRUPT_GMAC;
writel(mac_intr, mac->adapter->regs + A_PL_ENABLE);
mac_intr = readl(mac->adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_ENABLE);
mac_intr |= static_aPorts[mac->instance->index];
writel(mac_intr,
mac->adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_ENABLE);
}
return 0;
}
static int mac_intr_disable(struct cmac *mac)
{
u32 mac_intr;
if (t1_is_asic(mac->adapter)) {
/* ASIC */
/* We don't use the on chip MAC for ASIC products. */
} else {
/* FPGA */
/* Set parent gmac interrupt. */
mac_intr = readl(mac->adapter->regs + A_PL_ENABLE);
mac_intr &= ~FPGA_PCIX_INTERRUPT_GMAC;
writel(mac_intr, mac->adapter->regs + A_PL_ENABLE);
mac_intr = readl(mac->adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_ENABLE);
mac_intr &= ~(static_aPorts[mac->instance->index]);
writel(mac_intr,
mac->adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_ENABLE);
}
return 0;
}
static int mac_intr_clear(struct cmac *mac)
{
u32 mac_intr;
if (t1_is_asic(mac->adapter)) {
/* ASIC */
/* We don't use the on chip MAC for ASIC products. */
} else {
/* FPGA */
/* Set parent gmac interrupt. */
writel(FPGA_PCIX_INTERRUPT_GMAC,
mac->adapter->regs + A_PL_CAUSE);
mac_intr = readl(mac->adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
mac_intr |= (static_aPorts[mac->instance->index]);
writel(mac_intr,
mac->adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
}
return 0;
}
static int mac_get_address(struct cmac *mac, u8 addr[6])
{
u32 data32_lo, data32_hi;
data32_lo = readl(mac->adapter->regs
+ MAC_REG_IDLO(mac->instance->index));
data32_hi = readl(mac->adapter->regs
+ MAC_REG_IDHI(mac->instance->index));
addr[0] = (u8) ((data32_hi >> 8) & 0xFF);
addr[1] = (u8) ((data32_hi) & 0xFF);
addr[2] = (u8) ((data32_lo >> 24) & 0xFF);
addr[3] = (u8) ((data32_lo >> 16) & 0xFF);
addr[4] = (u8) ((data32_lo >> 8) & 0xFF);
addr[5] = (u8) ((data32_lo) & 0xFF);
return 0;
}
static int mac_reset(struct cmac *mac)
{
u32 data32;
int mac_in_reset, time_out = 100;
int idx = mac->instance->index;
data32 = readl(mac->adapter->regs + MAC_REG_CSR(idx));
writel(data32 | F_MAC_RESET,
mac->adapter->regs + MAC_REG_CSR(idx));
do {
data32 = readl(mac->adapter->regs + MAC_REG_CSR(idx));
mac_in_reset = data32 & F_MAC_RESET;
if (mac_in_reset)
udelay(1);
} while (mac_in_reset && --time_out);
if (mac_in_reset) {
CH_ERR("%s: MAC %d reset timed out\n",
mac->adapter->name, idx);
return 2;
}
return 0;
}
static int mac_set_rx_mode(struct cmac *mac, struct t1_rx_mode *rm)
{
u32 val;
val = readl(mac->adapter->regs
+ MAC_REG_CSR(mac->instance->index));
val &= ~(F_MAC_PROMISC | F_MAC_MC_ENABLE);
val |= V_MAC_PROMISC(t1_rx_mode_promisc(rm) != 0);
val |= V_MAC_MC_ENABLE(t1_rx_mode_allmulti(rm) != 0);
writel(val,
mac->adapter->regs + MAC_REG_CSR(mac->instance->index));
return 0;
}
static int mac_set_speed_duplex_fc(struct cmac *mac, int speed, int duplex,
int fc)
{
u32 data32;
data32 = readl(mac->adapter->regs
+ MAC_REG_CSR(mac->instance->index));
data32 &= ~(F_MAC_HALF_DUPLEX | V_MAC_SPEED(M_MAC_SPEED) |
V_INTERFACE(M_INTERFACE) | F_MAC_TX_PAUSE_ENABLE |
F_MAC_RX_PAUSE_ENABLE);
switch (speed) {
case SPEED_10:
case SPEED_100:
data32 |= V_INTERFACE(MAC_CSR_INTERFACE_MII);
data32 |= V_MAC_SPEED(speed == SPEED_10 ? 0 : 1);
break;
case SPEED_1000:
data32 |= V_INTERFACE(MAC_CSR_INTERFACE_GMII);
data32 |= V_MAC_SPEED(2);
break;
}
if (duplex >= 0)
data32 |= V_MAC_HALF_DUPLEX(duplex == DUPLEX_HALF);
if (fc >= 0) {
data32 |= V_MAC_RX_PAUSE_ENABLE((fc & PAUSE_RX) != 0);
data32 |= V_MAC_TX_PAUSE_ENABLE((fc & PAUSE_TX) != 0);
}
writel(data32,
mac->adapter->regs + MAC_REG_CSR(mac->instance->index));
return 0;
}
static int mac_enable(struct cmac *mac, int which)
{
u32 val;
val = readl(mac->adapter->regs
+ MAC_REG_CSR(mac->instance->index));
if (which & MAC_DIRECTION_RX)
val |= F_MAC_RX_ENABLE;
if (which & MAC_DIRECTION_TX)
val |= F_MAC_TX_ENABLE;
writel(val,
mac->adapter->regs + MAC_REG_CSR(mac->instance->index));
return 0;
}
static int mac_disable(struct cmac *mac, int which)
{
u32 val;
val = readl(mac->adapter->regs
+ MAC_REG_CSR(mac->instance->index));
if (which & MAC_DIRECTION_RX)
val &= ~F_MAC_RX_ENABLE;
if (which & MAC_DIRECTION_TX)
val &= ~F_MAC_TX_ENABLE;
writel(val,
mac->adapter->regs + MAC_REG_CSR(mac->instance->index));
return 0;
}
#if 0
static int mac_set_ifs(struct cmac *mac, u32 mode)
{
t1_write_reg_4(mac->adapter,
MAC_REG_IFS(mac->instance->index),
mode);
return 0;
}
static int mac_enable_isl(struct cmac *mac)
{
u32 data32 = readl(mac->adapter->regs
+ MAC_REG_CSR(mac->instance->index));
data32 |= F_MAC_RX_ENABLE | F_MAC_TX_ENABLE;
t1_write_reg_4(mac->adapter,
MAC_REG_CSR(mac->instance->index),
data32);
return 0;
}
#endif
static int mac_set_mtu(struct cmac *mac, int mtu)
{
if (mtu > 9600)
return -EINVAL;
writel(mtu + ETH_HLEN + VLAN_HLEN,
mac->adapter->regs + MAC_REG_LARGEFRAMELENGTH(mac->instance->index));
return 0;
}
static const struct cmac_statistics *mac_update_statistics(struct cmac *mac,
int flag)
{
struct mac_statistics st;
u32 *p = (u32 *) & st, i;
writel(0,
mac->adapter->regs + MAC_REG_RMCNT(mac->instance->index));
for (i = 0; i < sizeof(st) / sizeof(u32); i++)
*p++ = readl(mac->adapter->regs
+ MAC_REG_RMDATA(mac->instance->index));
/* XXX convert stats */
return &mac->stats;
}
static void mac_destroy(struct cmac *mac)
{
kfree(mac);
}
static struct cmac_ops chelsio_mac_ops = {
.destroy = mac_destroy,
.reset = mac_reset,
.interrupt_enable = mac_intr_enable,
.interrupt_disable = mac_intr_disable,
.interrupt_clear = mac_intr_clear,
.enable = mac_enable,
.disable = mac_disable,
.set_mtu = mac_set_mtu,
.set_rx_mode = mac_set_rx_mode,
.set_speed_duplex_fc = mac_set_speed_duplex_fc,
.macaddress_get = mac_get_address,
.statistics_update = mac_update_statistics,
};
static struct cmac *mac_create(adapter_t *adapter, int index)
{
struct cmac *mac;
u32 data32;
if (index >= 4)
return NULL;
mac = kzalloc(sizeof(*mac) + sizeof(cmac_instance), GFP_KERNEL);
if (!mac)
return NULL;
mac->ops = &chelsio_mac_ops;
mac->instance = (cmac_instance *) (mac + 1);
mac->instance->index = index;
mac->adapter = adapter;
data32 = readl(adapter->regs + MAC_REG_CSR(mac->instance->index));
data32 &= ~(F_MAC_RESET | F_MAC_PROMISC | F_MAC_PROMISC |
F_MAC_LB_ENABLE | F_MAC_RX_ENABLE | F_MAC_TX_ENABLE);
data32 |= F_MAC_JUMBO_ENABLE;
writel(data32, adapter->regs + MAC_REG_CSR(mac->instance->index));
/* Initialize the random backoff seed. */
data32 = 0x55aa + (3 * index);
writel(data32,
adapter->regs + MAC_REG_GMRANDBACKOFFSEED(mac->instance->index));
/* Check to see if the mac address needs to be set manually. */
data32 = readl(adapter->regs + MAC_REG_IDLO(mac->instance->index));
if (data32 == 0 || data32 == 0xffffffff) {
/*
* Add a default MAC address if we can't read one.
*/
writel(0x43FFFFFF - index,
adapter->regs + MAC_REG_IDLO(mac->instance->index));
writel(0x0007,
adapter->regs + MAC_REG_IDHI(mac->instance->index));
}
(void) mac_set_mtu(mac, 1500);
return mac;
}
struct gmac t1_chelsio_mac_ops = {
.create = mac_create
};
This diff is collapsed.
......@@ -185,6 +185,66 @@ static int t1_pci_intr_handler(adapter_t *adapter)
return 0;
}
#ifdef CONFIG_CHELSIO_T1_COUGAR
#include "cspi.h"
#endif
#ifdef CONFIG_CHELSIO_T1_1G
#include "fpga_defs.h"
/*
* PHY interrupt handler for FPGA boards.
*/
static int fpga_phy_intr_handler(adapter_t *adapter)
{
int p;
u32 cause = readl(adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
for_each_port(adapter, p)
if (cause & (1 << p)) {
struct cphy *phy = adapter->port[p].phy;
int phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, p);
}
writel(cause, adapter->regs + FPGA_GMAC_ADDR_INTERRUPT_CAUSE);
return 0;
}
/*
* Slow path interrupt handler for FPGAs.
*/
static int fpga_slow_intr(adapter_t *adapter)
{
u32 cause = readl(adapter->regs + A_PL_CAUSE);
cause &= ~F_PL_INTR_SGE_DATA;
if (cause & F_PL_INTR_SGE_ERR)
t1_sge_intr_error_handler(adapter->sge);
if (cause & FPGA_PCIX_INTERRUPT_GMAC)
fpga_phy_intr_handler(adapter);
if (cause & FPGA_PCIX_INTERRUPT_TP) {
/*
* FPGA doesn't support MC4 interrupts and it requires
* this odd layer of indirection for MC5.
*/
u32 tp_cause = readl(adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
/* Clear TP interrupt */
writel(tp_cause, adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
}
if (cause & FPGA_PCIX_INTERRUPT_PCIX)
t1_pci_intr_handler(adapter);
/* Clear the interrupts just processed. */
if (cause)
writel(cause, adapter->regs + A_PL_CAUSE);
return cause != 0;
}
#endif
/*
* Wait until Elmer's MI1 interface is ready for new operations.
......@@ -221,6 +281,56 @@ static void mi1_mdio_init(adapter_t *adapter, const struct board_info *bi)
t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_CFG, val);
}
#if defined(CONFIG_CHELSIO_T1_1G) || defined(CONFIG_CHELSIO_T1_COUGAR)
/*
* Elmer MI1 MDIO read/write operations.
*/
static int mi1_mdio_read(adapter_t *adapter, int phy_addr, int mmd_addr,
int reg_addr, unsigned int *valp)
{
u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
if (mmd_addr)
return -EINVAL;
spin_lock(&adapter->tpi_lock);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
__t1_tpi_write(adapter,
A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_READ);
mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
__t1_tpi_read(adapter, A_ELMER0_PORT0_MI1_DATA, valp);
spin_unlock(&adapter->tpi_lock);
return 0;
}
static int mi1_mdio_write(adapter_t *adapter, int phy_addr, int mmd_addr,
int reg_addr, unsigned int val)
{
u32 addr = V_MI1_REG_ADDR(reg_addr) | V_MI1_PHY_ADDR(phy_addr);
if (mmd_addr)
return -EINVAL;
spin_lock(&adapter->tpi_lock);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_ADDR, addr);
__t1_tpi_write(adapter, A_ELMER0_PORT0_MI1_DATA, val);
__t1_tpi_write(adapter,
A_ELMER0_PORT0_MI1_OP, MI1_OP_DIRECT_WRITE);
mi1_wait_until_ready(adapter, A_ELMER0_PORT0_MI1_OP);
spin_unlock(&adapter->tpi_lock);
return 0;
}
#if defined(CONFIG_CHELSIO_T1_1G) || defined(CONFIG_CHELSIO_T1_COUGAR)
static struct mdio_ops mi1_mdio_ops = {
mi1_mdio_init,
mi1_mdio_read,
mi1_mdio_write
};
#endif
#endif
static int mi1_mdio_ext_read(adapter_t *adapter, int phy_addr, int mmd_addr,
int reg_addr, unsigned int *valp)
{
......@@ -330,6 +440,17 @@ static struct board_info t1_board[] = {
&t1_my3126_ops, &mi1_mdio_ext_ops,
"Chelsio T210 1x10GBase-CX4 TOE" },
#ifdef CONFIG_CHELSIO_T1_1G
{ CHBT_BOARD_CHN204, 4/*ports#*/,
SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half |
SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full | SUPPORTED_Autoneg |
SUPPORTED_PAUSE | SUPPORTED_TP /*caps*/, CHBT_TERM_T2, CHBT_MAC_VSC7321, CHBT_PHY_88E1111,
100000000/*clk-core*/, 0/*clk-mc3*/, 0/*clk-mc4*/,
4/*espi-ports*/, 0/*clk-cspi*/, 44/*clk-elmer0*/, 0/*mdien*/,
0/*mdiinv*/, 1/*mdc*/, 4/*phybaseaddr*/, &t1_vsc7326_ops,
&t1_mv88e1xxx_ops, &mi1_mdio_ops,
"Chelsio N204 4x100/1000BaseT NIC" },
#endif
};
......@@ -483,6 +604,48 @@ int t1_elmer0_ext_intr_handler(adapter_t *adapter)
t1_tpi_read(adapter, A_ELMER0_INT_CAUSE, &cause);
switch (board_info(adapter)->board) {
#ifdef CONFIG_CHELSIO_T1_1G
case CHBT_BOARD_CHT204:
case CHBT_BOARD_CHT204E:
case CHBT_BOARD_CHN204:
case CHBT_BOARD_CHT204V: {
int i, port_bit;
for_each_port(adapter, i) {
port_bit = i + 1;
if (!(cause & (1 << port_bit))) continue;
phy = adapter->port[i].phy;
phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, i);
}
break;
}
case CHBT_BOARD_CHT101:
if (cause & ELMER0_GP_BIT1) { /* Marvell 88E1111 interrupt */
phy = adapter->port[0].phy;
phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, 0);
}
break;
case CHBT_BOARD_7500: {
int p;
/*
* Elmer0's interrupt cause isn't useful here because there is
* only one bit that can be set for all 4 ports. This means
* we are forced to check every PHY's interrupt status
* register to see who initiated the interrupt.
*/
for_each_port(adapter, p) {
phy = adapter->port[p].phy;
phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, p);
}
break;
}
#endif
case CHBT_BOARD_CHT210:
case CHBT_BOARD_N210:
case CHBT_BOARD_N110:
......@@ -511,6 +674,30 @@ int t1_elmer0_ext_intr_handler(adapter_t *adapter)
mod_detect ? "removed" : "inserted");
}
break;
#ifdef CONFIG_CHELSIO_T1_COUGAR
case CHBT_BOARD_COUGAR:
if (adapter->params.nports == 1) {
if (cause & ELMER0_GP_BIT1) { /* Vitesse MAC */
struct cmac *mac = adapter->port[0].mac;
mac->ops->interrupt_handler(mac);
}
if (cause & ELMER0_GP_BIT5) { /* XPAK MOD_DETECT */
}
} else {
int i, port_bit;
for_each_port(adapter, i) {
port_bit = i ? i + 1 : 0;
if (!(cause & (1 << port_bit))) continue;
phy = adapter->port[i].phy;
phy_cause = phy->ops->interrupt_handler(phy);
if (phy_cause & cphy_cause_link_change)
t1_link_changed(adapter, i);
}
}
break;
#endif
}
t1_tpi_write(adapter, A_ELMER0_INT_CAUSE, cause);
return 0;
......@@ -633,6 +820,10 @@ static int asic_slow_intr(adapter_t *adapter)
int t1_slow_intr_handler(adapter_t *adapter)
{
#ifdef CONFIG_CHELSIO_T1_1G
if (!t1_is_asic(adapter))
return fpga_slow_intr(adapter);
#endif
return asic_slow_intr(adapter);
}
......@@ -698,6 +889,21 @@ static int board_init(adapter_t *adapter, const struct board_info *bi)
*/
power_sequence_xpak(adapter);
break;
#ifdef CONFIG_CHELSIO_T1_1G
case CHBT_BOARD_CHT204E:
/* add config space write here */
case CHBT_BOARD_CHT204:
case CHBT_BOARD_CHT204V:
case CHBT_BOARD_CHN204:
t1_tpi_par(adapter, 0xf);
t1_tpi_write(adapter, A_ELMER0_GPO, 0x804);
break;
case CHBT_BOARD_CHT101:
case CHBT_BOARD_7500:
t1_tpi_par(adapter, 0xf);
t1_tpi_write(adapter, A_ELMER0_GPO, 0x1804);
break;
#endif
}
return 0;
}
......@@ -719,6 +925,10 @@ int t1_init_hw_modules(adapter_t *adapter)
adapter->regs + A_MC5_CONFIG);
}
#ifdef CONFIG_CHELSIO_T1_COUGAR
if (adapter->cspi && t1_cspi_init(adapter->cspi))
goto out_err;
#endif
if (adapter->espi && t1_espi_init(adapter->espi, bi->chip_mac,
bi->espi_nports))
goto out_err;
......@@ -772,6 +982,10 @@ void t1_free_sw_modules(adapter_t *adapter)
t1_tp_destroy(adapter->tp);
if (adapter->espi)
t1_espi_destroy(adapter->espi);
#ifdef CONFIG_CHELSIO_T1_COUGAR
if (adapter->cspi)
t1_cspi_destroy(adapter->cspi);
#endif
}
static void __devinit init_link_config(struct link_config *lc,
......@@ -791,6 +1005,13 @@ static void __devinit init_link_config(struct link_config *lc,
}
}
#ifdef CONFIG_CHELSIO_T1_COUGAR
if (bi->clock_cspi && !(adapter->cspi = t1_cspi_create(adapter))) {
CH_ERR("%s: CSPI initialization failed\n",
adapter->name);
goto error;
}
#endif
/*
* Allocate and initialize the data structures that hold the SW state of
......
......@@ -2,6 +2,9 @@
#include "common.h"
#include "regs.h"
#include "tp.h"
#ifdef CONFIG_CHELSIO_T1_1G
#include "fpga_defs.h"
#endif
struct petp {
adapter_t *adapter;
......@@ -70,6 +73,15 @@ void t1_tp_intr_enable(struct petp *tp)
{
u32 tp_intr = readl(tp->adapter->regs + A_PL_ENABLE);
#ifdef CONFIG_CHELSIO_T1_1G
if (!t1_is_asic(tp->adapter)) {
/* FPGA */
writel(0xffffffff,
tp->adapter->regs + FPGA_TP_ADDR_INTERRUPT_ENABLE);
writel(tp_intr | FPGA_PCIX_INTERRUPT_TP,
tp->adapter->regs + A_PL_ENABLE);
} else
#endif
{
/* We don't use any TP interrupts */
writel(0, tp->adapter->regs + A_TP_INT_ENABLE);
......@@ -82,6 +94,14 @@ void t1_tp_intr_disable(struct petp *tp)
{
u32 tp_intr = readl(tp->adapter->regs + A_PL_ENABLE);
#ifdef CONFIG_CHELSIO_T1_1G
if (!t1_is_asic(tp->adapter)) {
/* FPGA */
writel(0, tp->adapter->regs + FPGA_TP_ADDR_INTERRUPT_ENABLE);
writel(tp_intr & ~FPGA_PCIX_INTERRUPT_TP,
tp->adapter->regs + A_PL_ENABLE);
} else
#endif
{
writel(0, tp->adapter->regs + A_TP_INT_ENABLE);
writel(tp_intr & ~F_PL_INTR_TP,
......@@ -91,6 +111,14 @@ void t1_tp_intr_disable(struct petp *tp)
void t1_tp_intr_clear(struct petp *tp)
{
#ifdef CONFIG_CHELSIO_T1_1G
if (!t1_is_asic(tp->adapter)) {
writel(0xffffffff,
tp->adapter->regs + FPGA_TP_ADDR_INTERRUPT_CAUSE);
writel(FPGA_PCIX_INTERRUPT_TP, tp->adapter->regs + A_PL_CAUSE);
return;
}
#endif
writel(0xffffffff, tp->adapter->regs + A_TP_INT_CAUSE);
writel(F_PL_INTR_TP, tp->adapter->regs + A_PL_CAUSE);
}
......@@ -99,6 +127,11 @@ int t1_tp_intr_handler(struct petp *tp)
{
u32 cause;
#ifdef CONFIG_CHELSIO_T1_1G
/* FPGA doesn't support TP interrupts. */
if (!t1_is_asic(tp->adapter))
return 1;
#endif
cause = readl(tp->adapter->regs + A_TP_INT_CAUSE);
writel(cause, tp->adapter->regs + A_TP_INT_CAUSE);
......
This diff is collapsed.
/*
* This file is part of the Chelsio T2 Ethernet driver.
*
* Copyright (C) 2005 Chelsio Communications. All rights reserved.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
* release for licensing terms and conditions.
*/
#include "common.h"
#include "cphy.h"
#include "elmer0.h"
#ifndef ADVERTISE_PAUSE_CAP
# define ADVERTISE_PAUSE_CAP 0x400
#endif
#ifndef ADVERTISE_PAUSE_ASYM
# define ADVERTISE_PAUSE_ASYM 0x800
#endif
/* Gigabit MII registers */
#ifndef MII_CTRL1000
# define MII_CTRL1000 9
#endif
#ifndef ADVERTISE_1000FULL
# define ADVERTISE_1000FULL 0x200
# define ADVERTISE_1000HALF 0x100
#endif
/* VSC8244 PHY specific registers. */
enum {
VSC8244_INTR_ENABLE = 25,
VSC8244_INTR_STATUS = 26,
VSC8244_AUX_CTRL_STAT = 28,
};
enum {
VSC_INTR_RX_ERR = 1 << 0,
VSC_INTR_MS_ERR = 1 << 1, /* master/slave resolution error */
VSC_INTR_CABLE = 1 << 2, /* cable impairment */
VSC_INTR_FALSE_CARR = 1 << 3, /* false carrier */
VSC_INTR_MEDIA_CHG = 1 << 4, /* AMS media change */
VSC_INTR_RX_FIFO = 1 << 5, /* Rx FIFO over/underflow */
VSC_INTR_TX_FIFO = 1 << 6, /* Tx FIFO over/underflow */
VSC_INTR_DESCRAMBL = 1 << 7, /* descrambler lock-lost */
VSC_INTR_SYMBOL_ERR = 1 << 8, /* symbol error */
VSC_INTR_NEG_DONE = 1 << 10, /* autoneg done */
VSC_INTR_NEG_ERR = 1 << 11, /* autoneg error */
VSC_INTR_LINK_CHG = 1 << 13, /* link change */
VSC_INTR_ENABLE = 1 << 15, /* interrupt enable */
};
#define CFG_CHG_INTR_MASK (VSC_INTR_LINK_CHG | VSC_INTR_NEG_ERR | \
VSC_INTR_NEG_DONE)
#define INTR_MASK (CFG_CHG_INTR_MASK | VSC_INTR_TX_FIFO | VSC_INTR_RX_FIFO | \
VSC_INTR_ENABLE)
/* PHY specific auxiliary control & status register fields */
#define S_ACSR_ACTIPHY_TMR 0
#define M_ACSR_ACTIPHY_TMR 0x3
#define V_ACSR_ACTIPHY_TMR(x) ((x) << S_ACSR_ACTIPHY_TMR)
#define S_ACSR_SPEED 3
#define M_ACSR_SPEED 0x3
#define G_ACSR_SPEED(x) (((x) >> S_ACSR_SPEED) & M_ACSR_SPEED)
#define S_ACSR_DUPLEX 5
#define F_ACSR_DUPLEX (1 << S_ACSR_DUPLEX)
#define S_ACSR_ACTIPHY 6
#define F_ACSR_ACTIPHY (1 << S_ACSR_ACTIPHY)
/*
* Reset the PHY. This PHY completes reset immediately so we never wait.
*/
static int vsc8244_reset(struct cphy *cphy, int wait)
{
int err;
unsigned int ctl;
err = simple_mdio_read(cphy, MII_BMCR, &ctl);
if (err)
return err;
ctl &= ~BMCR_PDOWN;
ctl |= BMCR_RESET;
return simple_mdio_write(cphy, MII_BMCR, ctl);
}
static int vsc8244_intr_enable(struct cphy *cphy)
{
simple_mdio_write(cphy, VSC8244_INTR_ENABLE, INTR_MASK);
/* Enable interrupts through Elmer */
if (t1_is_asic(cphy->adapter)) {
u32 elmer;
t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
elmer |= ELMER0_GP_BIT1;
if (is_T2(cphy->adapter)) {
elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
}
t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
}
return 0;
}
static int vsc8244_intr_disable(struct cphy *cphy)
{
simple_mdio_write(cphy, VSC8244_INTR_ENABLE, 0);
if (t1_is_asic(cphy->adapter)) {
u32 elmer;
t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
elmer &= ~ELMER0_GP_BIT1;
if (is_T2(cphy->adapter)) {
elmer &= ~(ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4);
}
t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
}
return 0;
}
static int vsc8244_intr_clear(struct cphy *cphy)
{
u32 val;
u32 elmer;
/* Clear PHY interrupts by reading the register. */
simple_mdio_read(cphy, VSC8244_INTR_ENABLE, &val);
if (t1_is_asic(cphy->adapter)) {
t1_tpi_read(cphy->adapter, A_ELMER0_INT_CAUSE, &elmer);
elmer |= ELMER0_GP_BIT1;
if (is_T2(cphy->adapter)) {
elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
}
t1_tpi_write(cphy->adapter, A_ELMER0_INT_CAUSE, elmer);
}
return 0;
}
/*
* Force the PHY speed and duplex. This also disables auto-negotiation, except
* for 1Gb/s, where auto-negotiation is mandatory.
*/
static int vsc8244_set_speed_duplex(struct cphy *phy, int speed, int duplex)
{
int err;
unsigned int ctl;
err = simple_mdio_read(phy, MII_BMCR, &ctl);
if (err)
return err;
if (speed >= 0) {
ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
if (speed == SPEED_100)
ctl |= BMCR_SPEED100;
else if (speed == SPEED_1000)
ctl |= BMCR_SPEED1000;
}
if (duplex >= 0) {
ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
if (duplex == DUPLEX_FULL)
ctl |= BMCR_FULLDPLX;
}
if (ctl & BMCR_SPEED1000) /* auto-negotiation required for 1Gb/s */
ctl |= BMCR_ANENABLE;
return simple_mdio_write(phy, MII_BMCR, ctl);
}
int t1_mdio_set_bits(struct cphy *phy, int mmd, int reg, unsigned int bits)
{
int ret;
unsigned int val;
ret = mdio_read(phy, mmd, reg, &val);
if (!ret)
ret = mdio_write(phy, mmd, reg, val | bits);
return ret;
}
static int vsc8244_autoneg_enable(struct cphy *cphy)
{
return t1_mdio_set_bits(cphy, 0, MII_BMCR,
BMCR_ANENABLE | BMCR_ANRESTART);
}
static int vsc8244_autoneg_restart(struct cphy *cphy)
{
return t1_mdio_set_bits(cphy, 0, MII_BMCR, BMCR_ANRESTART);
}
static int vsc8244_advertise(struct cphy *phy, unsigned int advertise_map)
{
int err;
unsigned int val = 0;
err = simple_mdio_read(phy, MII_CTRL1000, &val);
if (err)
return err;
val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
if (advertise_map & ADVERTISED_1000baseT_Half)
val |= ADVERTISE_1000HALF;
if (advertise_map & ADVERTISED_1000baseT_Full)
val |= ADVERTISE_1000FULL;
err = simple_mdio_write(phy, MII_CTRL1000, val);
if (err)
return err;
val = 1;
if (advertise_map & ADVERTISED_10baseT_Half)
val |= ADVERTISE_10HALF;
if (advertise_map & ADVERTISED_10baseT_Full)
val |= ADVERTISE_10FULL;
if (advertise_map & ADVERTISED_100baseT_Half)
val |= ADVERTISE_100HALF;
if (advertise_map & ADVERTISED_100baseT_Full)
val |= ADVERTISE_100FULL;
if (advertise_map & ADVERTISED_PAUSE)
val |= ADVERTISE_PAUSE_CAP;
if (advertise_map & ADVERTISED_ASYM_PAUSE)
val |= ADVERTISE_PAUSE_ASYM;
return simple_mdio_write(phy, MII_ADVERTISE, val);
}
static int vsc8244_get_link_status(struct cphy *cphy, int *link_ok,
int *speed, int *duplex, int *fc)
{
unsigned int bmcr, status, lpa, adv;
int err, sp = -1, dplx = -1, pause = 0;
err = simple_mdio_read(cphy, MII_BMCR, &bmcr);
if (!err)
err = simple_mdio_read(cphy, MII_BMSR, &status);
if (err)
return err;
if (link_ok) {
/*
* BMSR_LSTATUS is latch-low, so if it is 0 we need to read it
* once more to get the current link state.
*/
if (!(status & BMSR_LSTATUS))
err = simple_mdio_read(cphy, MII_BMSR, &status);
if (err)
return err;
*link_ok = (status & BMSR_LSTATUS) != 0;
}
if (!(bmcr & BMCR_ANENABLE)) {
dplx = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF;
if (bmcr & BMCR_SPEED1000)
sp = SPEED_1000;
else if (bmcr & BMCR_SPEED100)
sp = SPEED_100;
else
sp = SPEED_10;
} else if (status & BMSR_ANEGCOMPLETE) {
err = simple_mdio_read(cphy, VSC8244_AUX_CTRL_STAT, &status);
if (err)
return err;
dplx = (status & F_ACSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF;
sp = G_ACSR_SPEED(status);
if (sp == 0)
sp = SPEED_10;
else if (sp == 1)
sp = SPEED_100;
else
sp = SPEED_1000;
if (fc && dplx == DUPLEX_FULL) {
err = simple_mdio_read(cphy, MII_LPA, &lpa);
if (!err)
err = simple_mdio_read(cphy, MII_ADVERTISE,
&adv);
if (err)
return err;
if (lpa & adv & ADVERTISE_PAUSE_CAP)
pause = PAUSE_RX | PAUSE_TX;
else if ((lpa & ADVERTISE_PAUSE_CAP) &&
(lpa & ADVERTISE_PAUSE_ASYM) &&
(adv & ADVERTISE_PAUSE_ASYM))
pause = PAUSE_TX;
else if ((lpa & ADVERTISE_PAUSE_ASYM) &&
(adv & ADVERTISE_PAUSE_CAP))
pause = PAUSE_RX;
}
}
if (speed)
*speed = sp;
if (duplex)
*duplex = dplx;
if (fc)
*fc = pause;
return 0;
}
static int vsc8244_intr_handler(struct cphy *cphy)
{
unsigned int cause;
int err, cphy_cause = 0;
err = simple_mdio_read(cphy, VSC8244_INTR_STATUS, &cause);
if (err)
return err;
cause &= INTR_MASK;
if (cause & CFG_CHG_INTR_MASK)
cphy_cause |= cphy_cause_link_change;
if (cause & (VSC_INTR_RX_FIFO | VSC_INTR_TX_FIFO))
cphy_cause |= cphy_cause_fifo_error;
return cphy_cause;
}
static void vsc8244_destroy(struct cphy *cphy)
{
kfree(cphy);
}
static struct cphy_ops vsc8244_ops = {
.destroy = vsc8244_destroy,
.reset = vsc8244_reset,
.interrupt_enable = vsc8244_intr_enable,
.interrupt_disable = vsc8244_intr_disable,
.interrupt_clear = vsc8244_intr_clear,
.interrupt_handler = vsc8244_intr_handler,
.autoneg_enable = vsc8244_autoneg_enable,
.autoneg_restart = vsc8244_autoneg_restart,
.advertise = vsc8244_advertise,
.set_speed_duplex = vsc8244_set_speed_duplex,
.get_link_status = vsc8244_get_link_status
};
static struct cphy* vsc8244_phy_create(adapter_t *adapter, int phy_addr, struct mdio_ops *mdio_ops)
{
struct cphy *cphy = kzalloc(sizeof(*cphy), GFP_KERNEL);
if (!cphy) return NULL;
cphy_init(cphy, adapter, phy_addr, &vsc8244_ops, mdio_ops);
return cphy;
}
static int vsc8244_phy_reset(adapter_t* adapter)
{
return 0;
}
struct gphy t1_vsc8244_ops = {
vsc8244_phy_create,
vsc8244_phy_reset
};
/* $Date: 2005/11/23 16:28:53 $ $RCSfile: vsc8244_reg.h,v $ $Revision: 1.1 $ */
#ifndef CHELSIO_MV8E1XXX_H
#define CHELSIO_MV8E1XXX_H
#ifndef BMCR_SPEED1000
# define BMCR_SPEED1000 0x40
#endif
#ifndef ADVERTISE_PAUSE
# define ADVERTISE_PAUSE 0x400
#endif
#ifndef ADVERTISE_PAUSE_ASYM
# define ADVERTISE_PAUSE_ASYM 0x800
#endif
/* Gigabit MII registers */
#define MII_GBMR 1 /* 1000Base-T mode register */
#define MII_GBCR 9 /* 1000Base-T control register */
#define MII_GBSR 10 /* 1000Base-T status register */
/* 1000Base-T control register fields */
#define GBCR_ADV_1000HALF 0x100
#define GBCR_ADV_1000FULL 0x200
#define GBCR_PREFER_MASTER 0x400
#define GBCR_MANUAL_AS_MASTER 0x800
#define GBCR_MANUAL_CONFIG_ENABLE 0x1000
/* 1000Base-T status register fields */
#define GBSR_LP_1000HALF 0x400
#define GBSR_LP_1000FULL 0x800
#define GBSR_REMOTE_OK 0x1000
#define GBSR_LOCAL_OK 0x2000
#define GBSR_LOCAL_MASTER 0x4000
#define GBSR_MASTER_FAULT 0x8000
/* Vitesse PHY interrupt status bits. */
#if 0
#define VSC8244_INTR_JABBER 0x0001
#define VSC8244_INTR_POLARITY_CHNG 0x0002
#define VSC8244_INTR_ENG_DETECT_CHNG 0x0010
#define VSC8244_INTR_DOWNSHIFT 0x0020
#define VSC8244_INTR_MDI_XOVER_CHNG 0x0040
#define VSC8244_INTR_FIFO_OVER_UNDER 0x0080
#define VSC8244_INTR_FALSE_CARRIER 0x0100
#define VSC8244_INTR_SYMBOL_ERROR 0x0200
#define VSC8244_INTR_LINK_CHNG 0x0400
#define VSC8244_INTR_AUTONEG_DONE 0x0800
#define VSC8244_INTR_PAGE_RECV 0x1000
#define VSC8244_INTR_DUPLEX_CHNG 0x2000
#define VSC8244_INTR_SPEED_CHNG 0x4000
#define VSC8244_INTR_AUTONEG_ERR 0x8000
#else
//#define VSC8244_INTR_JABBER 0x0001
//#define VSC8244_INTR_POLARITY_CHNG 0x0002
//#define VSC8244_INTR_BIT2 0x0004
//#define VSC8244_INTR_BIT3 0x0008
#define VSC8244_INTR_RX_ERR 0x0001
#define VSC8244_INTR_MASTER_SLAVE 0x0002
#define VSC8244_INTR_CABLE_IMPAIRED 0x0004
#define VSC8244_INTR_FALSE_CARRIER 0x0008
//#define VSC8244_INTR_ENG_DETECT_CHNG 0x0010
//#define VSC8244_INTR_DOWNSHIFT 0x0020
//#define VSC8244_INTR_MDI_XOVER_CHNG 0x0040
//#define VSC8244_INTR_FIFO_OVER_UNDER 0x0080
#define VSC8244_INTR_BIT4 0x0010
#define VSC8244_INTR_FIFO_RX 0x0020
#define VSC8244_INTR_FIFO_OVER_UNDER 0x0040
#define VSC8244_INTR_LOCK_LOST 0x0080
//#define VSC8244_INTR_FALSE_CARRIER 0x0100
//#define VSC8244_INTR_SYMBOL_ERROR 0x0200
//#define VSC8244_INTR_LINK_CHNG 0x0400
//#define VSC8244_INTR_AUTONEG_DONE 0x0800
#define VSC8244_INTR_SYMBOL_ERROR 0x0100
#define VSC8244_INTR_ENG_DETECT_CHNG 0x0200
#define VSC8244_INTR_AUTONEG_DONE 0x0400
#define VSC8244_INTR_AUTONEG_ERR 0x0800
//#define VSC8244_INTR_PAGE_RECV 0x1000
//#define VSC8244_INTR_DUPLEX_CHNG 0x2000
//#define VSC8244_INTR_SPEED_CHNG 0x4000
//#define VSC8244_INTR_AUTONEG_ERR 0x8000
#define VSC8244_INTR_DUPLEX_CHNG 0x1000
#define VSC8244_INTR_LINK_CHNG 0x2000
#define VSC8244_INTR_SPEED_CHNG 0x4000
#define VSC8244_INTR_STATUS 0x8000
#endif
/* Vitesse PHY specific registers. */
#define VSC8244_SPECIFIC_CNTRL_REGISTER 16
#define VSC8244_SPECIFIC_STATUS_REGISTER 0x1c
#define VSC8244_INTERRUPT_ENABLE_REGISTER 0x19
#define VSC8244_INTERRUPT_STATUS_REGISTER 0x1a
#define VSC8244_EXT_PHY_SPECIFIC_CNTRL_REGISTER 20
#define VSC8244_RECV_ERR_CNTR_REGISTER 21
#define VSC8244_RES_REGISTER 22
#define VSC8244_GLOBAL_STATUS_REGISTER 23
#define VSC8244_LED_CONTROL_REGISTER 24
#define VSC8244_MANUAL_LED_OVERRIDE_REGISTER 25
#define VSC8244_EXT_PHY_SPECIFIC_CNTRL_2_REGISTER 26
#define VSC8244_EXT_PHY_SPECIFIC_STATUS_REGISTER 27
#define VSC8244_VIRTUAL_CABLE_TESTER_REGISTER 28
#define VSC8244_EXTENDED_ADDR_REGISTER 29
#define VSC8244_EXTENDED_REGISTER 30
/* PHY specific control register fields */
#define S_PSCR_MDI_XOVER_MODE 5
#define M_PSCR_MDI_XOVER_MODE 0x3
#define V_PSCR_MDI_XOVER_MODE(x) ((x) << S_PSCR_MDI_XOVER_MODE)
#define G_PSCR_MDI_XOVER_MODE(x) (((x) >> S_PSCR_MDI_XOVER_MODE) & M_PSCR_MDI_XOVER_MODE)
/* Extended PHY specific control register fields */
#define S_DOWNSHIFT_ENABLE 8
#define V_DOWNSHIFT_ENABLE (1 << S_DOWNSHIFT_ENABLE)
#define S_DOWNSHIFT_CNT 9
#define M_DOWNSHIFT_CNT 0x7
#define V_DOWNSHIFT_CNT(x) ((x) << S_DOWNSHIFT_CNT)
#define G_DOWNSHIFT_CNT(x) (((x) >> S_DOWNSHIFT_CNT) & M_DOWNSHIFT_CNT)
/* PHY specific status register fields */
#define S_PSSR_JABBER 0
#define V_PSSR_JABBER (1 << S_PSSR_JABBER)
#define S_PSSR_POLARITY 1
#define V_PSSR_POLARITY (1 << S_PSSR_POLARITY)
#define S_PSSR_RX_PAUSE 2
#define V_PSSR_RX_PAUSE (1 << S_PSSR_RX_PAUSE)
#define S_PSSR_TX_PAUSE 3
#define V_PSSR_TX_PAUSE (1 << S_PSSR_TX_PAUSE)
#define S_PSSR_ENERGY_DETECT 4
#define V_PSSR_ENERGY_DETECT (1 << S_PSSR_ENERGY_DETECT)
#define S_PSSR_DOWNSHIFT_STATUS 5
#define V_PSSR_DOWNSHIFT_STATUS (1 << S_PSSR_DOWNSHIFT_STATUS)
#define S_PSSR_MDI 6
#define V_PSSR_MDI (1 << S_PSSR_MDI)
#define S_PSSR_CABLE_LEN 7
#define M_PSSR_CABLE_LEN 0x7
#define V_PSSR_CABLE_LEN(x) ((x) << S_PSSR_CABLE_LEN)
#define G_PSSR_CABLE_LEN(x) (((x) >> S_PSSR_CABLE_LEN) & M_PSSR_CABLE_LEN)
//#define S_PSSR_LINK 10
//#define S_PSSR_LINK 13
#define S_PSSR_LINK 2
#define V_PSSR_LINK (1 << S_PSSR_LINK)
//#define S_PSSR_STATUS_RESOLVED 11
//#define S_PSSR_STATUS_RESOLVED 10
#define S_PSSR_STATUS_RESOLVED 15
#define V_PSSR_STATUS_RESOLVED (1 << S_PSSR_STATUS_RESOLVED)
#define S_PSSR_PAGE_RECEIVED 12
#define V_PSSR_PAGE_RECEIVED (1 << S_PSSR_PAGE_RECEIVED)
//#define S_PSSR_DUPLEX 13
//#define S_PSSR_DUPLEX 12
#define S_PSSR_DUPLEX 5
#define V_PSSR_DUPLEX (1 << S_PSSR_DUPLEX)
//#define S_PSSR_SPEED 14
//#define S_PSSR_SPEED 14
#define S_PSSR_SPEED 3
#define M_PSSR_SPEED 0x3
#define V_PSSR_SPEED(x) ((x) << S_PSSR_SPEED)
#define G_PSSR_SPEED(x) (((x) >> S_PSSR_SPEED) & M_PSSR_SPEED)
#endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment