Commit 3a47c54f authored by Mike Kravetz's avatar Mike Kravetz Committed by Andrew Morton

hugetlbfs: revert use i_mmap_rwsem for more pmd sharing synchronization

Commit c0d0381a ("hugetlbfs: use i_mmap_rwsem for more pmd sharing
synchronization") added code to take i_mmap_rwsem in read mode for the
duration of fault processing.  However, this has been shown to cause
performance/scaling issues.  Revert the code and go back to only taking
the semaphore in huge_pmd_share during the fault path.

Keep the code that takes i_mmap_rwsem in write mode before calling
try_to_unmap as this is required if huge_pmd_unshare is called.

NOTE: Reverting this code does expose the following race condition.

Faulting thread                                 Unsharing thread
...                                                  ...
ptep = huge_pte_offset()
      or
ptep = huge_pte_alloc()
...
                                                i_mmap_lock_write
                                                lock page table
ptep invalid   <------------------------        huge_pmd_unshare()
Could be in a previously                        unlock_page_table
sharing process or worse                        i_mmap_unlock_write
...
ptl = huge_pte_lock(ptep)
get/update pte
set_pte_at(pte, ptep)

It is unknown if the above race was ever experienced by a user.  It was
discovered via code inspection when initially addressed.

In subsequent patches, a new synchronization mechanism will be added to
coordinate pmd sharing and eliminate this race.

Link: https://lkml.kernel.org/r/20220914221810.95771-3-mike.kravetz@oracle.comSigned-off-by: default avatarMike Kravetz <mike.kravetz@oracle.com>
Reviewed-by: default avatarMiaohe Lin <linmiaohe@huawei.com>
Cc: Andrea Arcangeli <aarcange@redhat.com>
Cc: "Aneesh Kumar K.V" <aneesh.kumar@linux.vnet.ibm.com>
Cc: Axel Rasmussen <axelrasmussen@google.com>
Cc: David Hildenbrand <david@redhat.com>
Cc: Davidlohr Bueso <dave@stgolabs.net>
Cc: James Houghton <jthoughton@google.com>
Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com>
Cc: Michal Hocko <mhocko@suse.com>
Cc: Mina Almasry <almasrymina@google.com>
Cc: Muchun Song <songmuchun@bytedance.com>
Cc: Naoya Horiguchi <naoya.horiguchi@linux.dev>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Xu <peterx@redhat.com>
Cc: Prakash Sangappa <prakash.sangappa@oracle.com>
Cc: Sven Schnelle <svens@linux.ibm.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
parent 188a3972
...@@ -467,9 +467,7 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart, ...@@ -467,9 +467,7 @@ static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
if (unlikely(folio_mapped(folio))) { if (unlikely(folio_mapped(folio))) {
BUG_ON(truncate_op); BUG_ON(truncate_op);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_lock_write(mapping); i_mmap_lock_write(mapping);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
hugetlb_vmdelete_list(&mapping->i_mmap, hugetlb_vmdelete_list(&mapping->i_mmap,
index * pages_per_huge_page(h), index * pages_per_huge_page(h),
(index + 1) * pages_per_huge_page(h), (index + 1) * pages_per_huge_page(h),
......
...@@ -4770,7 +4770,6 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, ...@@ -4770,7 +4770,6 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
struct hstate *h = hstate_vma(src_vma); struct hstate *h = hstate_vma(src_vma);
unsigned long sz = huge_page_size(h); unsigned long sz = huge_page_size(h);
unsigned long npages = pages_per_huge_page(h); unsigned long npages = pages_per_huge_page(h);
struct address_space *mapping = src_vma->vm_file->f_mapping;
struct mmu_notifier_range range; struct mmu_notifier_range range;
unsigned long last_addr_mask; unsigned long last_addr_mask;
int ret = 0; int ret = 0;
...@@ -4782,14 +4781,6 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, ...@@ -4782,14 +4781,6 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
mmu_notifier_invalidate_range_start(&range); mmu_notifier_invalidate_range_start(&range);
mmap_assert_write_locked(src); mmap_assert_write_locked(src);
raw_write_seqcount_begin(&src->write_protect_seq); raw_write_seqcount_begin(&src->write_protect_seq);
} else {
/*
* For shared mappings i_mmap_rwsem must be held to call
* huge_pte_alloc, otherwise the returned ptep could go
* away if part of a shared pmd and another thread calls
* huge_pmd_unshare.
*/
i_mmap_lock_read(mapping);
} }
last_addr_mask = hugetlb_mask_last_page(h); last_addr_mask = hugetlb_mask_last_page(h);
...@@ -4936,8 +4927,6 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src, ...@@ -4936,8 +4927,6 @@ int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
if (cow) { if (cow) {
raw_write_seqcount_end(&src->write_protect_seq); raw_write_seqcount_end(&src->write_protect_seq);
mmu_notifier_invalidate_range_end(&range); mmu_notifier_invalidate_range_end(&range);
} else {
i_mmap_unlock_read(mapping);
} }
return ret; return ret;
...@@ -5346,29 +5335,8 @@ static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -5346,29 +5335,8 @@ static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
* may get SIGKILLed if it later faults. * may get SIGKILLed if it later faults.
*/ */
if (outside_reserve) { if (outside_reserve) {
struct address_space *mapping = vma->vm_file->f_mapping;
pgoff_t idx;
u32 hash;
put_page(old_page); put_page(old_page);
/*
* Drop hugetlb_fault_mutex and i_mmap_rwsem before
* unmapping. unmapping needs to hold i_mmap_rwsem
* in write mode. Dropping i_mmap_rwsem in read mode
* here is OK as COW mappings do not interact with
* PMD sharing.
*
* Reacquire both after unmap operation.
*/
idx = vma_hugecache_offset(h, vma, haddr);
hash = hugetlb_fault_mutex_hash(mapping, idx);
mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
unmap_ref_private(mm, vma, old_page, haddr); unmap_ref_private(mm, vma, old_page, haddr);
i_mmap_lock_read(mapping);
mutex_lock(&hugetlb_fault_mutex_table[hash]);
spin_lock(ptl); spin_lock(ptl);
ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
if (likely(ptep && if (likely(ptep &&
...@@ -5523,9 +5491,7 @@ static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma, ...@@ -5523,9 +5491,7 @@ static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
*/ */
hash = hugetlb_fault_mutex_hash(mapping, idx); hash = hugetlb_fault_mutex_hash(mapping, idx);
mutex_unlock(&hugetlb_fault_mutex_table[hash]); mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
ret = handle_userfault(&vmf, reason); ret = handle_userfault(&vmf, reason);
i_mmap_lock_read(mapping);
mutex_lock(&hugetlb_fault_mutex_table[hash]); mutex_lock(&hugetlb_fault_mutex_table[hash]);
return ret; return ret;
...@@ -5760,11 +5726,6 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -5760,11 +5726,6 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
ptep = huge_pte_offset(mm, haddr, huge_page_size(h)); ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
if (ptep) { if (ptep) {
/*
* Since we hold no locks, ptep could be stale. That is
* OK as we are only making decisions based on content and
* not actually modifying content here.
*/
entry = huge_ptep_get(ptep); entry = huge_ptep_get(ptep);
if (unlikely(is_hugetlb_entry_migration(entry))) { if (unlikely(is_hugetlb_entry_migration(entry))) {
migration_entry_wait_huge(vma, ptep); migration_entry_wait_huge(vma, ptep);
...@@ -5772,31 +5733,20 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -5772,31 +5733,20 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
} else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
return VM_FAULT_HWPOISON_LARGE | return VM_FAULT_HWPOISON_LARGE |
VM_FAULT_SET_HINDEX(hstate_index(h)); VM_FAULT_SET_HINDEX(hstate_index(h));
} else {
ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
if (!ptep)
return VM_FAULT_OOM;
} }
/*
* Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
* until finished with ptep. This prevents huge_pmd_unshare from
* being called elsewhere and making the ptep no longer valid.
*
* ptep could have already be assigned via huge_pte_offset. That
* is OK, as huge_pte_alloc will return the same value unless
* something has changed.
*/
mapping = vma->vm_file->f_mapping; mapping = vma->vm_file->f_mapping;
i_mmap_lock_read(mapping); idx = vma_hugecache_offset(h, vma, haddr);
ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
if (!ptep) {
i_mmap_unlock_read(mapping);
return VM_FAULT_OOM;
}
/* /*
* Serialize hugepage allocation and instantiation, so that we don't * Serialize hugepage allocation and instantiation, so that we don't
* get spurious allocation failures if two CPUs race to instantiate * get spurious allocation failures if two CPUs race to instantiate
* the same page in the page cache. * the same page in the page cache.
*/ */
idx = vma_hugecache_offset(h, vma, haddr);
hash = hugetlb_fault_mutex_hash(mapping, idx); hash = hugetlb_fault_mutex_hash(mapping, idx);
mutex_lock(&hugetlb_fault_mutex_table[hash]); mutex_lock(&hugetlb_fault_mutex_table[hash]);
...@@ -5861,7 +5811,6 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -5861,7 +5811,6 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
put_page(pagecache_page); put_page(pagecache_page);
} }
mutex_unlock(&hugetlb_fault_mutex_table[hash]); mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
return handle_userfault(&vmf, VM_UFFD_WP); return handle_userfault(&vmf, VM_UFFD_WP);
} }
...@@ -5905,7 +5854,6 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -5905,7 +5854,6 @@ vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
} }
out_mutex: out_mutex:
mutex_unlock(&hugetlb_fault_mutex_table[hash]); mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
/* /*
* Generally it's safe to hold refcount during waiting page lock. But * Generally it's safe to hold refcount during waiting page lock. But
* here we just wait to defer the next page fault to avoid busy loop and * here we just wait to defer the next page fault to avoid busy loop and
...@@ -6745,12 +6693,10 @@ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma, ...@@ -6745,12 +6693,10 @@ void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
* Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc() * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
* and returns the corresponding pte. While this is not necessary for the * and returns the corresponding pte. While this is not necessary for the
* !shared pmd case because we can allocate the pmd later as well, it makes the * !shared pmd case because we can allocate the pmd later as well, it makes the
* code much cleaner. * code much cleaner. pmd allocation is essential for the shared case because
* * pud has to be populated inside the same i_mmap_rwsem section - otherwise
* This routine must be called with i_mmap_rwsem held in at least read mode if * racing tasks could either miss the sharing (see huge_pte_offset) or select a
* sharing is possible. For hugetlbfs, this prevents removal of any page * bad pmd for sharing.
* table entries associated with the address space. This is important as we
* are setting up sharing based on existing page table entries (mappings).
*/ */
pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
unsigned long addr, pud_t *pud) unsigned long addr, pud_t *pud)
...@@ -6764,7 +6710,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -6764,7 +6710,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
pte_t *pte; pte_t *pte;
spinlock_t *ptl; spinlock_t *ptl;
i_mmap_assert_locked(mapping); i_mmap_lock_read(mapping);
vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) { vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
if (svma == vma) if (svma == vma)
continue; continue;
...@@ -6794,6 +6740,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -6794,6 +6740,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
spin_unlock(ptl); spin_unlock(ptl);
out: out:
pte = (pte_t *)pmd_alloc(mm, pud, addr); pte = (pte_t *)pmd_alloc(mm, pud, addr);
i_mmap_unlock_read(mapping);
return pte; return pte;
} }
...@@ -6804,7 +6751,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma, ...@@ -6804,7 +6751,7 @@ pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
* indicated by page_count > 1, unmap is achieved by clearing pud and * indicated by page_count > 1, unmap is achieved by clearing pud and
* decrementing the ref count. If count == 1, the pte page is not shared. * decrementing the ref count. If count == 1, the pte page is not shared.
* *
* Called with page table lock held and i_mmap_rwsem held in write mode. * Called with page table lock held.
* *
* returns: 1 successfully unmapped a shared pte page * returns: 1 successfully unmapped a shared pte page
* 0 the underlying pte page is not shared, or it is the last user * 0 the underlying pte page is not shared, or it is the last user
......
...@@ -23,10 +23,9 @@ ...@@ -23,10 +23,9 @@
* inode->i_rwsem (while writing or truncating, not reading or faulting) * inode->i_rwsem (while writing or truncating, not reading or faulting)
* mm->mmap_lock * mm->mmap_lock
* mapping->invalidate_lock (in filemap_fault) * mapping->invalidate_lock (in filemap_fault)
* page->flags PG_locked (lock_page) * (see hugetlbfs below) * page->flags PG_locked (lock_page)
* hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share) * hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
* mapping->i_mmap_rwsem * mapping->i_mmap_rwsem
* hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
* anon_vma->rwsem * anon_vma->rwsem
* mm->page_table_lock or pte_lock * mm->page_table_lock or pte_lock
* swap_lock (in swap_duplicate, swap_info_get) * swap_lock (in swap_duplicate, swap_info_get)
...@@ -45,11 +44,6 @@ ...@@ -45,11 +44,6 @@
* anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon) * anon_vma->rwsem,mapping->i_mmap_rwsem (memory_failure, collect_procs_anon)
* ->tasklist_lock * ->tasklist_lock
* pte map lock * pte map lock
*
* * hugetlbfs PageHuge() pages take locks in this order:
* mapping->i_mmap_rwsem
* hugetlb_fault_mutex (hugetlbfs specific page fault mutex)
* page->flags PG_locked (lock_page)
*/ */
#include <linux/mm.h> #include <linux/mm.h>
......
...@@ -379,14 +379,10 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm, ...@@ -379,14 +379,10 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
BUG_ON(dst_addr >= dst_start + len); BUG_ON(dst_addr >= dst_start + len);
/* /*
* Serialize via i_mmap_rwsem and hugetlb_fault_mutex. * Serialize via hugetlb_fault_mutex.
* i_mmap_rwsem ensures the dst_pte remains valid even
* in the case of shared pmds. fault mutex prevents
* races with other faulting threads.
*/ */
mapping = dst_vma->vm_file->f_mapping;
i_mmap_lock_read(mapping);
idx = linear_page_index(dst_vma, dst_addr); idx = linear_page_index(dst_vma, dst_addr);
mapping = dst_vma->vm_file->f_mapping;
hash = hugetlb_fault_mutex_hash(mapping, idx); hash = hugetlb_fault_mutex_hash(mapping, idx);
mutex_lock(&hugetlb_fault_mutex_table[hash]); mutex_lock(&hugetlb_fault_mutex_table[hash]);
...@@ -394,7 +390,6 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm, ...@@ -394,7 +390,6 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize); dst_pte = huge_pte_alloc(dst_mm, dst_vma, dst_addr, vma_hpagesize);
if (!dst_pte) { if (!dst_pte) {
mutex_unlock(&hugetlb_fault_mutex_table[hash]); mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
goto out_unlock; goto out_unlock;
} }
...@@ -402,7 +397,6 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm, ...@@ -402,7 +397,6 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
!huge_pte_none_mostly(huge_ptep_get(dst_pte))) { !huge_pte_none_mostly(huge_ptep_get(dst_pte))) {
err = -EEXIST; err = -EEXIST;
mutex_unlock(&hugetlb_fault_mutex_table[hash]); mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
goto out_unlock; goto out_unlock;
} }
...@@ -411,7 +405,6 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm, ...@@ -411,7 +405,6 @@ static __always_inline ssize_t __mcopy_atomic_hugetlb(struct mm_struct *dst_mm,
wp_copy); wp_copy);
mutex_unlock(&hugetlb_fault_mutex_table[hash]); mutex_unlock(&hugetlb_fault_mutex_table[hash]);
i_mmap_unlock_read(mapping);
cond_resched(); cond_resched();
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment