Commit 3f0564c1 authored by Matt Mackall's avatar Matt Mackall Committed by Linus Torvalds

[PATCH] random: Remove dead MD5 copy

Remove long-dead md5 code.
Signed-off-by: default avatarMatt Mackall <mpm@selenic.com>
Signed-off-by: default avatarAndrew Morton <akpm@osdl.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@osdl.org>
parent 9c3ddb14
......@@ -220,10 +220,6 @@
*
* The code for SHA transform was taken from Peter Gutmann's
* implementation, which has been placed in the public domain.
* The code for MD5 transform was taken from Colin Plumb's
* implementation, which has been placed in the public domain.
* The MD5 cryptographic checksum was devised by Ronald Rivest, and is
* documented in RFC 1321, "The MD5 Message Digest Algorithm".
*
* Further background information on this topic may be obtained from
* RFC 1750, "Randomness Recommendations for Security", by Donald
......@@ -259,7 +255,6 @@
#define INPUT_POOL_WORDS 128
#define OUTPUT_POOL_WORDS 32
#define BATCH_ENTROPY_SIZE 256
#define USE_SHA
/*
* The minimum number of bits of entropy before we wake up a read on
......@@ -802,7 +797,7 @@ EXPORT_SYMBOL(add_disk_randomness);
/*
* This chunk of code defines a function
* void HASH_TRANSFORM(__u32 digest[HASH_BUFFER_SIZE + HASH_EXTRA_SIZE],
* void sha_transform(__u32 digest[HASH_BUFFER_SIZE + HASH_EXTRA_SIZE],
* __u32 const data[16])
*
* The function hashes the input data to produce a digest in the first
......@@ -812,24 +807,13 @@ EXPORT_SYMBOL(add_disk_randomness);
* and tacking it onto the end of the digest[] array is the quick and
* dirty way of doing it.)
*
* It so happens that MD5 and SHA share most of the initial vector
* used to initialize the digest[] array before the first call:
* 1) 0x67452301
* 2) 0xefcdab89
* 3) 0x98badcfe
* 4) 0x10325476
* 5) 0xc3d2e1f0 (SHA only)
*
* For /dev/random purposes, the length of the data being hashed is
* fixed in length, so appending a bit count in the usual way is not
* cryptographically necessary.
*/
#ifdef USE_SHA
#define HASH_BUFFER_SIZE 5
#define HASH_EXTRA_SIZE 80
#define HASH_TRANSFORM SHATransform
/* Various size/speed tradeoffs are available. Choose 0..3. */
#define SHA_CODE_SIZE 0
......@@ -856,7 +840,7 @@ EXPORT_SYMBOL(add_disk_randomness);
#define subRound(a, b, c, d, e, f, k, data) \
(e += rol32(a, 5) + f(b, c, d) + k + data, b = rol32(b, 30))
static void SHATransform(__u32 digest[85], __u32 const data[16])
static void sha_transform(__u32 digest[85], __u32 const data[16])
{
__u32 A, B, C, D, E; /* Local vars */
__u32 TEMP;
......@@ -1058,125 +1042,6 @@ static void SHATransform(__u32 digest[85], __u32 const data[16])
#undef K4
#undef subRound
#else /* !USE_SHA - Use MD5 */
#define HASH_BUFFER_SIZE 4
#define HASH_EXTRA_SIZE 0
#define HASH_TRANSFORM MD5Transform
/*
* MD5 transform algorithm, taken from code written by Colin Plumb,
* and put into the public domain
*/
/* The four core functions - F1 is optimized somewhat */
/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))
/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
(w += f(x, y, z) + data, w = w << s | w >> (32 - s), w += x )
/*
* The core of the MD5 algorithm, this alters an existing MD5 hash to
* reflect the addition of 16 longwords of new data. MD5Update blocks
* the data and converts bytes into longwords for this routine.
*/
static void MD5Transform(__u32 buf[HASH_BUFFER_SIZE], __u32 const in[16])
{
__u32 a, b, c, d;
a = buf[0];
b = buf[1];
c = buf[2];
d = buf[3];
MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478, 7);
MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf, 7);
MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8, 7);
MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
MD5STEP(F1, a, b, c, d, in[12]+0x6b901122, 7);
MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);
MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562, 5);
MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340, 9);
MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d, 5);
MD5STEP(F2, d, a, b, c, in[10]+0x02441453, 9);
MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6, 5);
MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6, 9);
MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905, 5);
MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8, 9);
MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);
MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942, 4);
MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44, 4);
MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6, 4);
MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039, 4);
MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);
MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244, 6);
MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3, 6);
MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f, 6);
MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82, 6);
MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);
buf[0] += a;
buf[1] += b;
buf[2] += c;
buf[3] += d;
}
#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP
#endif /* !USE_SHA */
/*********************************************************************
*
* Entropy extraction routines
......@@ -1274,9 +1139,7 @@ static void extract_buf(struct entropy_store *r, __u32 *buf)
buf[1] = 0xefcdab89;
buf[2] = 0x98badcfe;
buf[3] = 0x10325476;
#ifdef USE_SHA
buf[4] = 0xc3d2e1f0;
#endif
/*
* As we hash the pool, we mix intermediate values of
......@@ -1287,7 +1150,7 @@ static void extract_buf(struct entropy_store *r, __u32 *buf)
* function can be inverted.
*/
for (i = 0, x = 0; i < r->poolinfo->poolwords; i += 16, x+=2) {
HASH_TRANSFORM(buf, r->pool+i);
sha_transform(buf, r->pool+i);
add_entropy_words(r, &buf[x%HASH_BUFFER_SIZE], 1);
}
......@@ -1297,7 +1160,7 @@ static void extract_buf(struct entropy_store *r, __u32 *buf)
* final time.
*/
__add_entropy_words(r, &buf[x%HASH_BUFFER_SIZE], 1, data);
HASH_TRANSFORM(buf, data);
sha_transform(buf, data);
/*
* In case the hash function has some recognizable
......@@ -2196,7 +2059,7 @@ __u32 secure_tcp_syn_cookie(__u32 saddr, __u32 daddr, __u16 sport,
tmp[0]=saddr;
tmp[1]=daddr;
tmp[2]=(sport << 16) + dport;
HASH_TRANSFORM(tmp+16, tmp);
sha_transform(tmp+16, tmp);
seq = tmp[17] + sseq + (count << COOKIEBITS);
memcpy(tmp + 3, syncookie_secret[1], sizeof(syncookie_secret[1]));
......@@ -2204,7 +2067,7 @@ __u32 secure_tcp_syn_cookie(__u32 saddr, __u32 daddr, __u16 sport,
tmp[1]=daddr;
tmp[2]=(sport << 16) + dport;
tmp[3] = count; /* minute counter */
HASH_TRANSFORM(tmp + 16, tmp);
sha_transform(tmp + 16, tmp);
/* Add in the second hash and the data */
return seq + ((tmp[17] + data) & COOKIEMASK);
......@@ -2233,7 +2096,7 @@ __u32 check_tcp_syn_cookie(__u32 cookie, __u32 saddr, __u32 daddr, __u16 sport,
tmp[0]=saddr;
tmp[1]=daddr;
tmp[2]=(sport << 16) + dport;
HASH_TRANSFORM(tmp + 16, tmp);
sha_transform(tmp + 16, tmp);
cookie -= tmp[17] + sseq;
/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
......@@ -2246,7 +2109,7 @@ __u32 check_tcp_syn_cookie(__u32 cookie, __u32 saddr, __u32 daddr, __u16 sport,
tmp[1] = daddr;
tmp[2] = (sport << 16) + dport;
tmp[3] = count - diff; /* minute counter */
HASH_TRANSFORM(tmp + 16, tmp);
sha_transform(tmp + 16, tmp);
return (cookie - tmp[17]) & COOKIEMASK; /* Leaving the data behind */
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment