Commit 6613d82e authored by Pawan Gupta's avatar Pawan Gupta Committed by Dave Hansen

x86/bugs: Use ALTERNATIVE() instead of mds_user_clear static key

The VERW mitigation at exit-to-user is enabled via a static branch
mds_user_clear. This static branch is never toggled after boot, and can
be safely replaced with an ALTERNATIVE() which is convenient to use in
asm.

Switch to ALTERNATIVE() to use the VERW mitigation late in exit-to-user
path. Also remove the now redundant VERW in exc_nmi() and
arch_exit_to_user_mode().
Signed-off-by: default avatarPawan Gupta <pawan.kumar.gupta@linux.intel.com>
Signed-off-by: default avatarDave Hansen <dave.hansen@linux.intel.com>
Link: https://lore.kernel.org/all/20240213-delay-verw-v8-4-a6216d83edb7%40linux.intel.com
parent a0e2dab4
...@@ -95,6 +95,9 @@ The kernel provides a function to invoke the buffer clearing: ...@@ -95,6 +95,9 @@ The kernel provides a function to invoke the buffer clearing:
mds_clear_cpu_buffers() mds_clear_cpu_buffers()
Also macro CLEAR_CPU_BUFFERS can be used in ASM late in exit-to-user path.
Other than CFLAGS.ZF, this macro doesn't clobber any registers.
The mitigation is invoked on kernel/userspace, hypervisor/guest and C-state The mitigation is invoked on kernel/userspace, hypervisor/guest and C-state
(idle) transitions. (idle) transitions.
...@@ -138,17 +141,30 @@ Mitigation points ...@@ -138,17 +141,30 @@ Mitigation points
When transitioning from kernel to user space the CPU buffers are flushed When transitioning from kernel to user space the CPU buffers are flushed
on affected CPUs when the mitigation is not disabled on the kernel on affected CPUs when the mitigation is not disabled on the kernel
command line. The migitation is enabled through the static key command line. The mitigation is enabled through the feature flag
mds_user_clear. X86_FEATURE_CLEAR_CPU_BUF.
The mitigation is invoked in prepare_exit_to_usermode() which covers The mitigation is invoked just before transitioning to userspace after
all but one of the kernel to user space transitions. The exception user registers are restored. This is done to minimize the window in
is when we return from a Non Maskable Interrupt (NMI), which is which kernel data could be accessed after VERW e.g. via an NMI after
handled directly in do_nmi(). VERW.
(The reason that NMI is special is that prepare_exit_to_usermode() can **Corner case not handled**
enable IRQs. In NMI context, NMIs are blocked, and we don't want to Interrupts returning to kernel don't clear CPUs buffers since the
enable IRQs with NMIs blocked.) exit-to-user path is expected to do that anyways. But, there could be
a case when an NMI is generated in kernel after the exit-to-user path
has cleared the buffers. This case is not handled and NMI returning to
kernel don't clear CPU buffers because:
1. It is rare to get an NMI after VERW, but before returning to userspace.
2. For an unprivileged user, there is no known way to make that NMI
less rare or target it.
3. It would take a large number of these precisely-timed NMIs to mount
an actual attack. There's presumably not enough bandwidth.
4. The NMI in question occurs after a VERW, i.e. when user state is
restored and most interesting data is already scrubbed. Whats left
is only the data that NMI touches, and that may or may not be of
any interest.
2. C-State transition 2. C-State transition
......
...@@ -91,7 +91,6 @@ static inline void arch_exit_to_user_mode_prepare(struct pt_regs *regs, ...@@ -91,7 +91,6 @@ static inline void arch_exit_to_user_mode_prepare(struct pt_regs *regs,
static __always_inline void arch_exit_to_user_mode(void) static __always_inline void arch_exit_to_user_mode(void)
{ {
mds_user_clear_cpu_buffers();
amd_clear_divider(); amd_clear_divider();
} }
#define arch_exit_to_user_mode arch_exit_to_user_mode #define arch_exit_to_user_mode arch_exit_to_user_mode
......
...@@ -540,7 +540,6 @@ DECLARE_STATIC_KEY_FALSE(switch_to_cond_stibp); ...@@ -540,7 +540,6 @@ DECLARE_STATIC_KEY_FALSE(switch_to_cond_stibp);
DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); DECLARE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb); DECLARE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
DECLARE_STATIC_KEY_FALSE(mds_user_clear);
DECLARE_STATIC_KEY_FALSE(mds_idle_clear); DECLARE_STATIC_KEY_FALSE(mds_idle_clear);
DECLARE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush); DECLARE_STATIC_KEY_FALSE(switch_mm_cond_l1d_flush);
...@@ -574,17 +573,6 @@ static __always_inline void mds_clear_cpu_buffers(void) ...@@ -574,17 +573,6 @@ static __always_inline void mds_clear_cpu_buffers(void)
asm volatile("verw %[ds]" : : [ds] "m" (ds) : "cc"); asm volatile("verw %[ds]" : : [ds] "m" (ds) : "cc");
} }
/**
* mds_user_clear_cpu_buffers - Mitigation for MDS and TAA vulnerability
*
* Clear CPU buffers if the corresponding static key is enabled
*/
static __always_inline void mds_user_clear_cpu_buffers(void)
{
if (static_branch_likely(&mds_user_clear))
mds_clear_cpu_buffers();
}
/** /**
* mds_idle_clear_cpu_buffers - Mitigation for MDS vulnerability * mds_idle_clear_cpu_buffers - Mitigation for MDS vulnerability
* *
......
...@@ -111,9 +111,6 @@ DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb); ...@@ -111,9 +111,6 @@ DEFINE_STATIC_KEY_FALSE(switch_mm_cond_ibpb);
/* Control unconditional IBPB in switch_mm() */ /* Control unconditional IBPB in switch_mm() */
DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb); DEFINE_STATIC_KEY_FALSE(switch_mm_always_ibpb);
/* Control MDS CPU buffer clear before returning to user space */
DEFINE_STATIC_KEY_FALSE(mds_user_clear);
EXPORT_SYMBOL_GPL(mds_user_clear);
/* Control MDS CPU buffer clear before idling (halt, mwait) */ /* Control MDS CPU buffer clear before idling (halt, mwait) */
DEFINE_STATIC_KEY_FALSE(mds_idle_clear); DEFINE_STATIC_KEY_FALSE(mds_idle_clear);
EXPORT_SYMBOL_GPL(mds_idle_clear); EXPORT_SYMBOL_GPL(mds_idle_clear);
...@@ -252,7 +249,7 @@ static void __init mds_select_mitigation(void) ...@@ -252,7 +249,7 @@ static void __init mds_select_mitigation(void)
if (!boot_cpu_has(X86_FEATURE_MD_CLEAR)) if (!boot_cpu_has(X86_FEATURE_MD_CLEAR))
mds_mitigation = MDS_MITIGATION_VMWERV; mds_mitigation = MDS_MITIGATION_VMWERV;
static_branch_enable(&mds_user_clear); setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) && if (!boot_cpu_has(X86_BUG_MSBDS_ONLY) &&
(mds_nosmt || cpu_mitigations_auto_nosmt())) (mds_nosmt || cpu_mitigations_auto_nosmt()))
...@@ -356,7 +353,7 @@ static void __init taa_select_mitigation(void) ...@@ -356,7 +353,7 @@ static void __init taa_select_mitigation(void)
* For guests that can't determine whether the correct microcode is * For guests that can't determine whether the correct microcode is
* present on host, enable the mitigation for UCODE_NEEDED as well. * present on host, enable the mitigation for UCODE_NEEDED as well.
*/ */
static_branch_enable(&mds_user_clear); setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
if (taa_nosmt || cpu_mitigations_auto_nosmt()) if (taa_nosmt || cpu_mitigations_auto_nosmt())
cpu_smt_disable(false); cpu_smt_disable(false);
...@@ -424,7 +421,7 @@ static void __init mmio_select_mitigation(void) ...@@ -424,7 +421,7 @@ static void __init mmio_select_mitigation(void)
*/ */
if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) && if (boot_cpu_has_bug(X86_BUG_MDS) || (boot_cpu_has_bug(X86_BUG_TAA) &&
boot_cpu_has(X86_FEATURE_RTM))) boot_cpu_has(X86_FEATURE_RTM)))
static_branch_enable(&mds_user_clear); setup_force_cpu_cap(X86_FEATURE_CLEAR_CPU_BUF);
else else
static_branch_enable(&mmio_stale_data_clear); static_branch_enable(&mmio_stale_data_clear);
...@@ -484,12 +481,12 @@ static void __init md_clear_update_mitigation(void) ...@@ -484,12 +481,12 @@ static void __init md_clear_update_mitigation(void)
if (cpu_mitigations_off()) if (cpu_mitigations_off())
return; return;
if (!static_key_enabled(&mds_user_clear)) if (!boot_cpu_has(X86_FEATURE_CLEAR_CPU_BUF))
goto out; goto out;
/* /*
* mds_user_clear is now enabled. Update MDS, TAA and MMIO Stale Data * X86_FEATURE_CLEAR_CPU_BUF is now enabled. Update MDS, TAA and MMIO
* mitigation, if necessary. * Stale Data mitigation, if necessary.
*/ */
if (mds_mitigation == MDS_MITIGATION_OFF && if (mds_mitigation == MDS_MITIGATION_OFF &&
boot_cpu_has_bug(X86_BUG_MDS)) { boot_cpu_has_bug(X86_BUG_MDS)) {
......
...@@ -563,9 +563,6 @@ DEFINE_IDTENTRY_RAW(exc_nmi) ...@@ -563,9 +563,6 @@ DEFINE_IDTENTRY_RAW(exc_nmi)
} }
if (this_cpu_dec_return(nmi_state)) if (this_cpu_dec_return(nmi_state))
goto nmi_restart; goto nmi_restart;
if (user_mode(regs))
mds_user_clear_cpu_buffers();
} }
#if IS_ENABLED(CONFIG_KVM_INTEL) #if IS_ENABLED(CONFIG_KVM_INTEL)
......
...@@ -7227,7 +7227,7 @@ static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu, ...@@ -7227,7 +7227,7 @@ static noinstr void vmx_vcpu_enter_exit(struct kvm_vcpu *vcpu,
/* L1D Flush includes CPU buffer clear to mitigate MDS */ /* L1D Flush includes CPU buffer clear to mitigate MDS */
if (static_branch_unlikely(&vmx_l1d_should_flush)) if (static_branch_unlikely(&vmx_l1d_should_flush))
vmx_l1d_flush(vcpu); vmx_l1d_flush(vcpu);
else if (static_branch_unlikely(&mds_user_clear)) else if (cpu_feature_enabled(X86_FEATURE_CLEAR_CPU_BUF))
mds_clear_cpu_buffers(); mds_clear_cpu_buffers();
else if (static_branch_unlikely(&mmio_stale_data_clear) && else if (static_branch_unlikely(&mmio_stale_data_clear) &&
kvm_arch_has_assigned_device(vcpu->kvm)) kvm_arch_has_assigned_device(vcpu->kvm))
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment