Commit 6e506079 authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.infradead.org/mtd-2.6

* git://git.infradead.org/mtd-2.6:
  [MTD] [NOR] Fix deadlock in Intel chip driver caused by get_chip recursion
  [JFFS2] Fix return value from jffs2_write_end()
  [MTD] [OneNAND] Fix wrong free the static address in onenand_sim
  [MTD] [NAND] Replace -1 with -EBADMSG in nand error correction code
  [RSLIB] BUG() when passing illegal parameters to decode_rs8() or decode_rs16()
  [MTD] [NAND] treat any negative return value from correct() as an error
  [MTD] [NAND] nandsim: bugfix in initialization
  [MTD] Fix typo in Alauda config option help text.
  [MTD] [NAND] add s3c2440-specific read_buf/write_buf
  [MTD] [OneNAND] onenand-sim: fix kernel-doc and typos
  [JFFS2] Tidy up fix for ACL/permissions problem.
parents f3344c54 5a37cf19
......@@ -85,6 +85,7 @@ static int cfi_intelext_point (struct mtd_info *mtd, loff_t from, size_t len,
static void cfi_intelext_unpoint (struct mtd_info *mtd, u_char *addr, loff_t from,
size_t len);
static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
#include "fwh_lock.h"
......@@ -641,73 +642,13 @@ static int cfi_intelext_partition_fixup(struct mtd_info *mtd,
/*
* *********** CHIP ACCESS FUNCTIONS ***********
*/
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
static int chip_ready (struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
DECLARE_WAITQUEUE(wait, current);
struct cfi_private *cfi = map->fldrv_priv;
map_word status, status_OK = CMD(0x80), status_PWS = CMD(0x01);
unsigned long timeo;
struct cfi_pri_intelext *cfip = cfi->cmdset_priv;
resettime:
timeo = jiffies + HZ;
retry:
if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING || mode == FL_OTP_WRITE || mode == FL_SHUTDOWN)) {
/*
* OK. We have possibility for contension on the write/erase
* operations which are global to the real chip and not per
* partition. So let's fight it over in the partition which
* currently has authority on the operation.
*
* The rules are as follows:
*
* - any write operation must own shared->writing.
*
* - any erase operation must own _both_ shared->writing and
* shared->erasing.
*
* - contension arbitration is handled in the owner's context.
*
* The 'shared' struct can be read and/or written only when
* its lock is taken.
*/
struct flchip_shared *shared = chip->priv;
struct flchip *contender;
spin_lock(&shared->lock);
contender = shared->writing;
if (contender && contender != chip) {
/*
* The engine to perform desired operation on this
* partition is already in use by someone else.
* Let's fight over it in the context of the chip
* currently using it. If it is possible to suspend,
* that other partition will do just that, otherwise
* it'll happily send us to sleep. In any case, when
* get_chip returns success we're clear to go ahead.
*/
int ret = spin_trylock(contender->mutex);
spin_unlock(&shared->lock);
if (!ret)
goto retry;
spin_unlock(chip->mutex);
ret = get_chip(map, contender, contender->start, mode);
spin_lock(chip->mutex);
if (ret) {
spin_unlock(contender->mutex);
return ret;
}
timeo = jiffies + HZ;
spin_lock(&shared->lock);
spin_unlock(contender->mutex);
}
/* We now own it */
shared->writing = chip;
if (mode == FL_ERASING)
shared->erasing = chip;
spin_unlock(&shared->lock);
}
unsigned long timeo = jiffies + HZ;
switch (chip->state) {
......@@ -722,16 +663,11 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
if (chip->priv && map_word_andequal(map, status, status_PWS, status_PWS))
break;
if (time_after(jiffies, timeo)) {
printk(KERN_ERR "%s: Waiting for chip to be ready timed out. Status %lx\n",
map->name, status.x[0]);
return -EIO;
}
spin_unlock(chip->mutex);
cfi_udelay(1);
spin_lock(chip->mutex);
/* Someone else might have been playing with it. */
goto retry;
return -EAGAIN;
}
case FL_READY:
......@@ -809,10 +745,82 @@ static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr
schedule();
remove_wait_queue(&chip->wq, &wait);
spin_lock(chip->mutex);
goto resettime;
return -EAGAIN;
}
}
static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
{
int ret;
retry:
if (chip->priv && (mode == FL_WRITING || mode == FL_ERASING
|| mode == FL_OTP_WRITE || mode == FL_SHUTDOWN)) {
/*
* OK. We have possibility for contention on the write/erase
* operations which are global to the real chip and not per
* partition. So let's fight it over in the partition which
* currently has authority on the operation.
*
* The rules are as follows:
*
* - any write operation must own shared->writing.
*
* - any erase operation must own _both_ shared->writing and
* shared->erasing.
*
* - contention arbitration is handled in the owner's context.
*
* The 'shared' struct can be read and/or written only when
* its lock is taken.
*/
struct flchip_shared *shared = chip->priv;
struct flchip *contender;
spin_lock(&shared->lock);
contender = shared->writing;
if (contender && contender != chip) {
/*
* The engine to perform desired operation on this
* partition is already in use by someone else.
* Let's fight over it in the context of the chip
* currently using it. If it is possible to suspend,
* that other partition will do just that, otherwise
* it'll happily send us to sleep. In any case, when
* get_chip returns success we're clear to go ahead.
*/
ret = spin_trylock(contender->mutex);
spin_unlock(&shared->lock);
if (!ret)
goto retry;
spin_unlock(chip->mutex);
ret = chip_ready(map, contender, contender->start, mode);
spin_lock(chip->mutex);
if (ret == -EAGAIN) {
spin_unlock(contender->mutex);
goto retry;
}
if (ret) {
spin_unlock(contender->mutex);
return ret;
}
spin_lock(&shared->lock);
spin_unlock(contender->mutex);
}
/* We now own it */
shared->writing = chip;
if (mode == FL_ERASING)
shared->erasing = chip;
spin_unlock(&shared->lock);
}
ret = chip_ready(map, chip, adr, mode);
if (ret == -EAGAIN)
goto retry;
return ret;
}
static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
{
struct cfi_private *cfi = map->fldrv_priv;
......
......@@ -300,7 +300,7 @@ config MTD_NAND_PLATFORM
via platform_data.
config MTD_ALAUDA
tristate "MTD driver for Olympus MAUSB-10 and Fijufilm DPC-R1"
tristate "MTD driver for Olympus MAUSB-10 and Fujifilm DPC-R1"
depends on MTD_NAND && USB
help
These two (and possibly other) Alauda-based cardreaders for
......
......@@ -220,7 +220,7 @@ static int doc_ecc_decode(struct rs_control *rs, uint8_t *data, uint8_t *ecc)
}
}
/* If the parity is wrong, no rescue possible */
return parity ? -1 : nerr;
return parity ? -EBADMSG : nerr;
}
static void DoC_Delay(struct doc_priv *doc, unsigned short cycles)
......@@ -1034,7 +1034,7 @@ static int doc200x_correct_data(struct mtd_info *mtd, u_char *dat,
WriteDOC(DOC_ECC_DIS, docptr, Mplus_ECCConf);
else
WriteDOC(DOC_ECC_DIS, docptr, ECCConf);
if (no_ecc_failures && (ret == -1)) {
if (no_ecc_failures && (ret == -EBADMSG)) {
printk(KERN_ERR "suppressing ECC failure\n");
ret = 0;
}
......
......@@ -789,7 +789,7 @@ static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat == -1)
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
......@@ -833,7 +833,7 @@ static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
int stat;
stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
if (stat == -1)
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
......@@ -874,7 +874,7 @@ static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
chip->read_buf(mtd, oob, eccbytes);
stat = chip->ecc.correct(mtd, p, oob, NULL);
if (stat == -1)
if (stat < 0)
mtd->ecc_stats.failed++;
else
mtd->ecc_stats.corrected += stat;
......
......@@ -189,7 +189,7 @@ int nand_correct_data(struct mtd_info *mtd, u_char *dat,
if(countbits(s0 | ((uint32_t)s1 << 8) | ((uint32_t)s2 <<16)) == 1)
return 1;
return -1;
return -EBADMSG;
}
EXPORT_SYMBOL(nand_correct_data);
......
......@@ -511,7 +511,7 @@ static int init_nandsim(struct mtd_info *mtd)
}
if (ns->options & OPT_SMALLPAGE) {
if (ns->geom.totsz < (64 << 20)) {
if (ns->geom.totsz < (32 << 20)) {
ns->geom.pgaddrbytes = 3;
ns->geom.secaddrbytes = 2;
} else {
......
......@@ -488,12 +488,24 @@ static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
readsb(this->IO_ADDR_R, buf, len);
}
static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
readsl(info->regs + S3C2440_NFDATA, buf, len / 4);
}
static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct nand_chip *this = mtd->priv;
writesb(this->IO_ADDR_W, buf, len);
}
static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
{
struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
writesl(info->regs + S3C2440_NFDATA, buf, len / 4);
}
/* device management functions */
static int s3c2410_nand_remove(struct platform_device *pdev)
......@@ -604,6 +616,8 @@ static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
info->sel_bit = S3C2440_NFCONT_nFCE;
chip->cmd_ctrl = s3c2440_nand_hwcontrol;
chip->dev_ready = s3c2440_nand_devready;
chip->read_buf = s3c2440_nand_read_buf;
chip->write_buf = s3c2440_nand_write_buf;
break;
case TYPE_S3C2412:
......
......@@ -88,11 +88,11 @@ do { \
/**
* onenand_lock_handle - Handle Lock scheme
* @param this OneNAND device structure
* @param cmd The command to be sent
* @this: OneNAND device structure
* @cmd: The command to be sent
*
* Send lock command to OneNAND device.
* The lock scheme is depends on chip type.
* The lock scheme depends on chip type.
*/
static void onenand_lock_handle(struct onenand_chip *this, int cmd)
{
......@@ -131,8 +131,8 @@ static void onenand_lock_handle(struct onenand_chip *this, int cmd)
/**
* onenand_bootram_handle - Handle BootRAM area
* @param this OneNAND device structure
* @param cmd The command to be sent
* @this: OneNAND device structure
* @cmd: The command to be sent
*
* Emulate BootRAM area. It is possible to do basic operation using BootRAM.
*/
......@@ -153,10 +153,10 @@ static void onenand_bootram_handle(struct onenand_chip *this, int cmd)
/**
* onenand_update_interrupt - Set interrupt register
* @param this OneNAND device structure
* @param cmd The command to be sent
* @this: OneNAND device structure
* @cmd: The command to be sent
*
* Update interrupt register. The status is depends on command.
* Update interrupt register. The status depends on command.
*/
static void onenand_update_interrupt(struct onenand_chip *this, int cmd)
{
......@@ -189,11 +189,12 @@ static void onenand_update_interrupt(struct onenand_chip *this, int cmd)
}
/**
* onenand_check_overwrite - Check over-write if happend
* @param dest The destination pointer
* @param src The source pointer
* @param count The length to be check
* @return 0 on same, otherwise 1
* onenand_check_overwrite - Check if over-write happened
* @dest: The destination pointer
* @src: The source pointer
* @count: The length to be check
*
* Returns: 0 on same, otherwise 1
*
* Compare the source with destination
*/
......@@ -213,10 +214,10 @@ static int onenand_check_overwrite(void *dest, void *src, size_t count)
/**
* onenand_data_handle - Handle OneNAND Core and DataRAM
* @param this OneNAND device structure
* @param cmd The command to be sent
* @param dataram Which dataram used
* @param offset The offset to OneNAND Core
* @this: OneNAND device structure
* @cmd: The command to be sent
* @dataram: Which dataram used
* @offset: The offset to OneNAND Core
*
* Copy data from OneNAND Core to DataRAM (read)
* Copy data from DataRAM to OneNAND Core (write)
......@@ -295,8 +296,8 @@ static void onenand_data_handle(struct onenand_chip *this, int cmd,
/**
* onenand_command_handle - Handle command
* @param this OneNAND device structure
* @param cmd The command to be sent
* @this: OneNAND device structure
* @cmd: The command to be sent
*
* Emulate OneNAND command.
*/
......@@ -350,8 +351,8 @@ static void onenand_command_handle(struct onenand_chip *this, int cmd)
/**
* onenand_writew - [OneNAND Interface] Emulate write operation
* @param value value to write
* @param addr address to write
* @value: value to write
* @addr: address to write
*
* Write OneNAND register with value
*/
......@@ -373,7 +374,7 @@ static void onenand_writew(unsigned short value, void __iomem * addr)
/**
* flash_init - Initialize OneNAND simulator
* @param flash OneNAND simulaotr data strucutres
* @flash: OneNAND simulator data strucutres
*
* Initialize OneNAND simulator.
*/
......@@ -416,7 +417,7 @@ static int __init flash_init(struct onenand_flash *flash)
/**
* flash_exit - Clean up OneNAND simulator
* @param flash OneNAND simulaotr data strucutres
* @flash: OneNAND simulator data structures
*
* Clean up OneNAND simulator.
*/
......@@ -424,7 +425,6 @@ static void flash_exit(struct onenand_flash *flash)
{
vfree(ONENAND_CORE(flash));
kfree(flash->base);
kfree(flash);
}
static int __init onenand_sim_init(void)
......@@ -449,7 +449,7 @@ static int __init onenand_sim_init(void)
info->onenand.write_word = onenand_writew;
if (flash_init(&info->flash)) {
printk(KERN_ERR "Unable to allocat flash.\n");
printk(KERN_ERR "Unable to allocate flash.\n");
kfree(ffchars);
kfree(info);
return -ENOMEM;
......
......@@ -228,11 +228,28 @@ struct posix_acl *jffs2_get_acl(struct inode *inode, int type)
return acl;
}
static int __jffs2_set_acl(struct inode *inode, int xprefix, struct posix_acl *acl)
{
char *value = NULL;
size_t size = 0;
int rc;
if (acl) {
value = jffs2_acl_to_medium(acl, &size);
if (IS_ERR(value))
return PTR_ERR(value);
}
rc = do_jffs2_setxattr(inode, xprefix, "", value, size, 0);
if (!value && rc == -ENODATA)
rc = 0;
kfree(value);
return rc;
}
static int jffs2_set_acl(struct inode *inode, int type, struct posix_acl *acl)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
size_t size = 0;
char *value = NULL;
int rc, xprefix;
if (S_ISLNK(inode->i_mode))
......@@ -267,17 +284,7 @@ static int jffs2_set_acl(struct inode *inode, int type, struct posix_acl *acl)
default:
return -EINVAL;
}
if (acl) {
value = jffs2_acl_to_medium(acl, &size);
if (IS_ERR(value))
return PTR_ERR(value);
}
rc = do_jffs2_setxattr(inode, xprefix, "", value, size, 0);
if (!value && rc == -ENODATA)
rc = 0;
if (value)
kfree(value);
rc = __jffs2_set_acl(inode, xprefix, acl);
if (!rc) {
switch(type) {
case ACL_TYPE_ACCESS:
......@@ -312,37 +319,59 @@ int jffs2_permission(struct inode *inode, int mask, struct nameidata *nd)
return generic_permission(inode, mask, jffs2_check_acl);
}
int jffs2_init_acl(struct inode *inode, struct posix_acl *acl)
int jffs2_init_acl_pre(struct inode *dir_i, struct inode *inode, int *i_mode)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
struct posix_acl *clone;
mode_t mode;
int rc = 0;
struct posix_acl *acl, *clone;
int rc;
f->i_acl_access = JFFS2_ACL_NOT_CACHED;
f->i_acl_default = JFFS2_ACL_NOT_CACHED;
f->i_acl_default = NULL;
f->i_acl_access = NULL;
if (S_ISLNK(*i_mode))
return 0; /* Symlink always has no-ACL */
acl = jffs2_get_acl(dir_i, ACL_TYPE_DEFAULT);
if (IS_ERR(acl))
return PTR_ERR(acl);
if (!acl) {
*i_mode &= ~current->fs->umask;
} else {
if (S_ISDIR(*i_mode))
jffs2_iset_acl(inode, &f->i_acl_default, acl);
if (acl) {
if (S_ISDIR(inode->i_mode)) {
rc = jffs2_set_acl(inode, ACL_TYPE_DEFAULT, acl);
if (rc)
goto cleanup;
}
clone = posix_acl_clone(acl, GFP_KERNEL);
rc = -ENOMEM;
if (!clone)
goto cleanup;
mode = inode->i_mode;
rc = posix_acl_create_masq(clone, &mode);
if (rc >= 0) {
inode->i_mode = mode;
if (rc > 0)
rc = jffs2_set_acl(inode, ACL_TYPE_ACCESS, clone);
}
return -ENOMEM;
rc = posix_acl_create_masq(clone, (mode_t *)i_mode);
if (rc < 0)
return rc;
if (rc > 0)
jffs2_iset_acl(inode, &f->i_acl_access, clone);
posix_acl_release(clone);
}
cleanup:
posix_acl_release(acl);
return 0;
}
int jffs2_init_acl_post(struct inode *inode)
{
struct jffs2_inode_info *f = JFFS2_INODE_INFO(inode);
int rc;
if (f->i_acl_default) {
rc = __jffs2_set_acl(inode, JFFS2_XPREFIX_ACL_DEFAULT, f->i_acl_default);
if (rc)
return rc;
}
if (f->i_acl_access) {
rc = __jffs2_set_acl(inode, JFFS2_XPREFIX_ACL_ACCESS, f->i_acl_access);
if (rc)
return rc;
}
return rc;
}
......
......@@ -31,7 +31,8 @@ struct jffs2_acl_header {
extern struct posix_acl *jffs2_get_acl(struct inode *inode, int type);
extern int jffs2_permission(struct inode *, int, struct nameidata *);
extern int jffs2_acl_chmod(struct inode *);
extern int jffs2_init_acl(struct inode *, struct posix_acl *);
extern int jffs2_init_acl_pre(struct inode *, struct inode *, int *);
extern int jffs2_init_acl_post(struct inode *);
extern void jffs2_clear_acl(struct jffs2_inode_info *);
extern struct xattr_handler jffs2_acl_access_xattr_handler;
......@@ -39,10 +40,11 @@ extern struct xattr_handler jffs2_acl_default_xattr_handler;
#else
#define jffs2_get_acl(inode, type) (NULL)
#define jffs2_permission NULL
#define jffs2_acl_chmod(inode) (0)
#define jffs2_init_acl(inode,dir) (0)
#define jffs2_get_acl(inode, type) (NULL)
#define jffs2_permission (NULL)
#define jffs2_acl_chmod(inode) (0)
#define jffs2_init_acl_pre(dir_i,inode,mode) (0)
#define jffs2_init_acl_post(inode) (0)
#define jffs2_clear_acl(f)
#endif /* CONFIG_JFFS2_FS_POSIX_ACL */
......@@ -182,7 +182,6 @@ static int jffs2_create(struct inode *dir_i, struct dentry *dentry, int mode,
struct jffs2_inode_info *f, *dir_f;
struct jffs2_sb_info *c;
struct inode *inode;
struct posix_acl *acl;
int ret;
ri = jffs2_alloc_raw_inode();
......@@ -193,7 +192,7 @@ static int jffs2_create(struct inode *dir_i, struct dentry *dentry, int mode,
D1(printk(KERN_DEBUG "jffs2_create()\n"));
inode = jffs2_new_inode(dir_i, mode, ri, &acl);
inode = jffs2_new_inode(dir_i, mode, ri);
if (IS_ERR(inode)) {
D1(printk(KERN_DEBUG "jffs2_new_inode() failed\n"));
......@@ -211,14 +210,6 @@ static int jffs2_create(struct inode *dir_i, struct dentry *dentry, int mode,
ret = jffs2_do_create(c, dir_f, f, ri,
dentry->d_name.name, dentry->d_name.len);
if (ret)
goto fail_acl;
ret = jffs2_init_security(inode, dir_i);
if (ret)
goto fail_acl;
ret = jffs2_init_acl(inode, acl);
if (ret)
goto fail;
......@@ -231,8 +222,6 @@ static int jffs2_create(struct inode *dir_i, struct dentry *dentry, int mode,
inode->i_ino, inode->i_mode, inode->i_nlink, f->inocache->nlink, inode->i_mapping->nrpages));
return 0;
fail_acl:
posix_acl_release(acl);
fail:
make_bad_inode(inode);
iput(inode);
......@@ -309,7 +298,6 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
struct jffs2_full_dirent *fd;
int namelen;
uint32_t alloclen;
struct posix_acl *acl;
int ret, targetlen = strlen(target);
/* FIXME: If you care. We'd need to use frags for the target
......@@ -336,7 +324,7 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
return ret;
}
inode = jffs2_new_inode(dir_i, S_IFLNK | S_IRWXUGO, ri, &acl);
inode = jffs2_new_inode(dir_i, S_IFLNK | S_IRWXUGO, ri);
if (IS_ERR(inode)) {
jffs2_free_raw_inode(ri);
......@@ -366,7 +354,6 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
up(&f->sem);
jffs2_complete_reservation(c);
jffs2_clear_inode(inode);
posix_acl_release(acl);
return PTR_ERR(fn);
}
......@@ -377,7 +364,6 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
up(&f->sem);
jffs2_complete_reservation(c);
jffs2_clear_inode(inode);
posix_acl_release(acl);
return -ENOMEM;
}
......@@ -395,10 +381,9 @@ static int jffs2_symlink (struct inode *dir_i, struct dentry *dentry, const char
ret = jffs2_init_security(inode, dir_i);
if (ret) {
jffs2_clear_inode(inode);
posix_acl_release(acl);
return ret;
}
ret = jffs2_init_acl(inode, acl);
ret = jffs2_init_acl_post(inode);
if (ret) {
jffs2_clear_inode(inode);
return ret;
......@@ -476,7 +461,6 @@ static int jffs2_mkdir (struct inode *dir_i, struct dentry *dentry, int mode)
struct jffs2_full_dirent *fd;
int namelen;
uint32_t alloclen;
struct posix_acl *acl;
int ret;
mode |= S_IFDIR;
......@@ -499,7 +483,7 @@ static int jffs2_mkdir (struct inode *dir_i, struct dentry *dentry, int mode)
return ret;
}
inode = jffs2_new_inode(dir_i, mode, ri, &acl);
inode = jffs2_new_inode(dir_i, mode, ri);
if (IS_ERR(inode)) {
jffs2_free_raw_inode(ri);
......@@ -526,7 +510,6 @@ static int jffs2_mkdir (struct inode *dir_i, struct dentry *dentry, int mode)
up(&f->sem);
jffs2_complete_reservation(c);
jffs2_clear_inode(inode);
posix_acl_release(acl);
return PTR_ERR(fn);
}
/* No data here. Only a metadata node, which will be
......@@ -540,10 +523,9 @@ static int jffs2_mkdir (struct inode *dir_i, struct dentry *dentry, int mode)
ret = jffs2_init_security(inode, dir_i);
if (ret) {
jffs2_clear_inode(inode);
posix_acl_release(acl);
return ret;
}
ret = jffs2_init_acl(inode, acl);
ret = jffs2_init_acl_post(inode);
if (ret) {
jffs2_clear_inode(inode);
return ret;
......@@ -639,7 +621,6 @@ static int jffs2_mknod (struct inode *dir_i, struct dentry *dentry, int mode, de
union jffs2_device_node dev;
int devlen = 0;
uint32_t alloclen;
struct posix_acl *acl;
int ret;
if (!new_valid_dev(rdev))
......@@ -666,7 +647,7 @@ static int jffs2_mknod (struct inode *dir_i, struct dentry *dentry, int mode, de
return ret;
}
inode = jffs2_new_inode(dir_i, mode, ri, &acl);
inode = jffs2_new_inode(dir_i, mode, ri);
if (IS_ERR(inode)) {
jffs2_free_raw_inode(ri);
......@@ -695,7 +676,6 @@ static int jffs2_mknod (struct inode *dir_i, struct dentry *dentry, int mode, de
up(&f->sem);
jffs2_complete_reservation(c);
jffs2_clear_inode(inode);
posix_acl_release(acl);
return PTR_ERR(fn);
}
/* No data here. Only a metadata node, which will be
......@@ -709,10 +689,9 @@ static int jffs2_mknod (struct inode *dir_i, struct dentry *dentry, int mode, de
ret = jffs2_init_security(inode, dir_i);
if (ret) {
jffs2_clear_inode(inode);
posix_acl_release(acl);
return ret;
}
ret = jffs2_init_acl(inode, acl);
ret = jffs2_init_acl_post(inode);
if (ret) {
jffs2_clear_inode(inode);
return ret;
......
......@@ -255,7 +255,7 @@ static int jffs2_write_end(struct file *filp, struct address_space *mapping,
_whole_ page. This helps to reduce the number of
nodes in files which have many short writes, like
syslog files. */
start = aligned_start = 0;
aligned_start = 0;
}
ri = jffs2_alloc_raw_inode();
......@@ -291,14 +291,11 @@ static int jffs2_write_end(struct file *filp, struct address_space *mapping,
}
/* Adjust writtenlen for the padding we did, so we don't confuse our caller */
if (writtenlen < (start&3))
writtenlen = 0;
else
writtenlen -= (start&3);
writtenlen -= min(writtenlen, (start - aligned_start));
if (writtenlen) {
if (inode->i_size < (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen) {
inode->i_size = (pg->index << PAGE_CACHE_SHIFT) + start + writtenlen;
if (inode->i_size < pos + writtenlen) {
inode->i_size = pos + writtenlen;
inode->i_blocks = (inode->i_size + 511) >> 9;
inode->i_ctime = inode->i_mtime = ITIME(je32_to_cpu(ri->ctime));
......
......@@ -402,8 +402,7 @@ void jffs2_write_super (struct super_block *sb)
/* jffs2_new_inode: allocate a new inode and inocache, add it to the hash,
fill in the raw_inode while you're at it. */
struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri,
struct posix_acl **acl)
struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_inode *ri)
{
struct inode *inode;
struct super_block *sb = dir_i->i_sb;
......@@ -438,19 +437,11 @@ struct inode *jffs2_new_inode (struct inode *dir_i, int mode, struct jffs2_raw_i
/* POSIX ACLs have to be processed now, at least partly.
The umask is only applied if there's no default ACL */
if (!S_ISLNK(mode)) {
*acl = jffs2_get_acl(dir_i, ACL_TYPE_DEFAULT);
if (IS_ERR(*acl)) {
make_bad_inode(inode);
iput(inode);
inode = (void *)*acl;
*acl = NULL;
return inode;
}
if (!(*acl))
mode &= ~current->fs->umask;
} else {
*acl = NULL;
ret = jffs2_init_acl_pre(dir_i, inode, &mode);
if (ret) {
make_bad_inode(inode);
iput(inode);
return ERR_PTR(ret);
}
ret = jffs2_do_new_inode (c, f, mode, ri);
if (ret) {
......
......@@ -173,15 +173,13 @@ int jffs2_ioctl(struct inode *, struct file *, unsigned int, unsigned long);
extern const struct inode_operations jffs2_symlink_inode_operations;
/* fs.c */
struct posix_acl;
int jffs2_setattr (struct dentry *, struct iattr *);
int jffs2_do_setattr (struct inode *, struct iattr *);
void jffs2_read_inode (struct inode *);
void jffs2_clear_inode (struct inode *);
void jffs2_dirty_inode(struct inode *inode);
struct inode *jffs2_new_inode (struct inode *dir_i, int mode,
struct jffs2_raw_inode *ri, struct posix_acl **acl);
struct jffs2_raw_inode *ri);
int jffs2_statfs (struct dentry *, struct kstatfs *);
void jffs2_write_super (struct super_block *);
int jffs2_remount_fs (struct super_block *, int *, char *);
......
......@@ -465,6 +465,14 @@ int jffs2_do_create(struct jffs2_sb_info *c, struct jffs2_inode_info *dir_f, str
up(&f->sem);
jffs2_complete_reservation(c);
ret = jffs2_init_security(&f->vfs_inode, &dir_f->vfs_inode);
if (ret)
return ret;
ret = jffs2_init_acl_post(&f->vfs_inode);
if (ret)
return ret;
ret = jffs2_reserve_space(c, sizeof(*rd)+namelen, &alloclen,
ALLOC_NORMAL, JFFS2_SUMMARY_DIRENT_SIZE(namelen));
......
......@@ -39,8 +39,7 @@
/* Check length parameter for validity */
pad = nn - nroots - len;
if (pad < 0 || pad >= nn)
return -ERANGE;
BUG_ON(pad < 0 || pad >= nn);
/* Does the caller provide the syndrome ? */
if (s != NULL)
......@@ -203,7 +202,7 @@
* deg(lambda) unequal to number of roots => uncorrectable
* error detected
*/
count = -1;
count = -EBADMSG;
goto finish;
}
/*
......
......@@ -320,6 +320,7 @@ EXPORT_SYMBOL_GPL(encode_rs8);
* The syndrome and parity uses a uint16_t data type to enable
* symbol size > 8. The calling code must take care of decoding of the
* syndrome result and the received parity before calling this code.
* Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
*/
int decode_rs8(struct rs_control *rs, uint8_t *data, uint16_t *par, int len,
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
......@@ -363,6 +364,7 @@ EXPORT_SYMBOL_GPL(encode_rs16);
* @corr: buffer to store correction bitmask on eras_pos
*
* Each field in the data array contains up to symbol size bits of valid data.
* Returns the number of corrected bits or -EBADMSG for uncorrectable errors.
*/
int decode_rs16(struct rs_control *rs, uint16_t *data, uint16_t *par, int len,
uint16_t *s, int no_eras, int *eras_pos, uint16_t invmsk,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment