Commit 9158bf69 authored by farah kassabri's avatar farah kassabri Committed by Oded Gabbay

habanalabs: Timestamps buffers registration

Timestamp registration API allows the user to register
a timestamp record event which will make the driver set
timestamp when CQ counter reaches the target value
and write it to a specific location specified
by the user.
This is a non blocking API, unlike the wait_for_interrupt
which is a blocking one.
Signed-off-by: default avatarfarah kassabri <fkassabri@habana.ai>
Reviewed-by: default avatarOded Gabbay <ogabbay@kernel.org>
Signed-off-by: default avatarOded Gabbay <ogabbay@kernel.org>
parent b32cd104
...@@ -14,6 +14,8 @@ ...@@ -14,6 +14,8 @@
#define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \ #define HL_CS_FLAGS_TYPE_MASK (HL_CS_FLAGS_SIGNAL | HL_CS_FLAGS_WAIT | \
HL_CS_FLAGS_COLLECTIVE_WAIT) HL_CS_FLAGS_COLLECTIVE_WAIT)
#define MAX_TS_ITER_NUM 10
/** /**
* enum hl_cs_wait_status - cs wait status * enum hl_cs_wait_status - cs wait status
* @CS_WAIT_STATUS_BUSY: cs was not completed yet * @CS_WAIT_STATUS_BUSY: cs was not completed yet
...@@ -924,7 +926,7 @@ void hl_cs_rollback_all(struct hl_device *hdev) ...@@ -924,7 +926,7 @@ void hl_cs_rollback_all(struct hl_device *hdev)
int i; int i;
struct hl_cs *cs, *tmp; struct hl_cs *cs, *tmp;
flush_workqueue(hdev->sob_reset_wq); flush_workqueue(hdev->ts_free_obj_wq);
/* flush all completions before iterating over the CS mirror list in /* flush all completions before iterating over the CS mirror list in
* order to avoid a race with the release functions * order to avoid a race with the release functions
...@@ -948,13 +950,19 @@ void hl_cs_rollback_all(struct hl_device *hdev) ...@@ -948,13 +950,19 @@ void hl_cs_rollback_all(struct hl_device *hdev)
static void static void
wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt) wake_pending_user_interrupt_threads(struct hl_user_interrupt *interrupt)
{ {
struct hl_user_pending_interrupt *pend; struct hl_user_pending_interrupt *pend, *temp;
unsigned long flags; unsigned long flags;
spin_lock_irqsave(&interrupt->wait_list_lock, flags); spin_lock_irqsave(&interrupt->wait_list_lock, flags);
list_for_each_entry(pend, &interrupt->wait_list_head, wait_list_node) { list_for_each_entry_safe(pend, temp, &interrupt->wait_list_head, wait_list_node) {
pend->fence.error = -EIO; if (pend->ts_reg_info.ts_buff) {
complete_all(&pend->fence.completion); list_del(&pend->wait_list_node);
hl_ts_put(pend->ts_reg_info.ts_buff);
hl_cb_put(pend->ts_reg_info.cq_cb);
} else {
pend->fence.error = -EIO;
complete_all(&pend->fence.completion);
}
} }
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
} }
...@@ -2857,43 +2865,133 @@ static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data) ...@@ -2857,43 +2865,133 @@ static int hl_cs_wait_ioctl(struct hl_fpriv *hpriv, void *data)
return 0; return 0;
} }
static int ts_buff_get_kernel_ts_record(struct hl_ts_buff *ts_buff,
struct hl_cb *cq_cb,
u64 ts_offset, u64 cq_offset, u64 target_value,
spinlock_t *wait_list_lock,
struct hl_user_pending_interrupt **pend)
{
struct hl_user_pending_interrupt *requested_offset_record =
(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
ts_offset;
struct hl_user_pending_interrupt *cb_last =
(struct hl_user_pending_interrupt *)ts_buff->kernel_buff_address +
(ts_buff->kernel_buff_size / sizeof(struct hl_user_pending_interrupt));
unsigned long flags, iter_counter = 0;
u64 current_cq_counter;
/* Validate ts_offset not exceeding last max */
if (requested_offset_record > cb_last) {
dev_err(ts_buff->hdev->dev, "Ts offset exceeds max CB offset(0x%llx)\n",
(u64)(uintptr_t)cb_last);
return -EINVAL;
}
start_over:
spin_lock_irqsave(wait_list_lock, flags);
/* Unregister only if we didn't reach the target value
* since in this case there will be no handling in irq context
* and then it's safe to delete the node out of the interrupt list
* then re-use it on other interrupt
*/
if (requested_offset_record->ts_reg_info.in_use) {
current_cq_counter = *requested_offset_record->cq_kernel_addr;
if (current_cq_counter < requested_offset_record->cq_target_value) {
list_del(&requested_offset_record->wait_list_node);
spin_unlock_irqrestore(wait_list_lock, flags);
hl_ts_put(requested_offset_record->ts_reg_info.ts_buff);
hl_cb_put(requested_offset_record->ts_reg_info.cq_cb);
dev_dbg(ts_buff->hdev->dev, "ts node removed from interrupt list now can re-use\n");
} else {
dev_dbg(ts_buff->hdev->dev, "ts node in middle of irq handling\n");
/* irq handling in the middle give it time to finish */
spin_unlock_irqrestore(wait_list_lock, flags);
usleep_range(1, 10);
if (++iter_counter == MAX_TS_ITER_NUM) {
dev_err(ts_buff->hdev->dev, "handling registration interrupt took too long!!\n");
return -EINVAL;
}
goto start_over;
}
} else {
spin_unlock_irqrestore(wait_list_lock, flags);
}
/* Fill up the new registration node info */
requested_offset_record->ts_reg_info.in_use = 1;
requested_offset_record->ts_reg_info.ts_buff = ts_buff;
requested_offset_record->ts_reg_info.cq_cb = cq_cb;
requested_offset_record->ts_reg_info.timestamp_kernel_addr =
(u64 *) ts_buff->user_buff_address + ts_offset;
requested_offset_record->cq_kernel_addr =
(u64 *) cq_cb->kernel_address + cq_offset;
requested_offset_record->cq_target_value = target_value;
*pend = requested_offset_record;
dev_dbg(ts_buff->hdev->dev, "Found available node in TS kernel CB(0x%llx)\n",
(u64)(uintptr_t)requested_offset_record);
return 0;
}
static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
struct hl_cb_mgr *cb_mgr, u64 timeout_us, struct hl_cb_mgr *cb_mgr, struct hl_ts_mgr *ts_mgr,
u64 cq_counters_handle, u64 cq_counters_offset, u64 timeout_us, u64 cq_counters_handle, u64 cq_counters_offset,
u64 target_value, struct hl_user_interrupt *interrupt, u64 target_value, struct hl_user_interrupt *interrupt,
bool register_ts_record, u64 ts_handle, u64 ts_offset,
u32 *status, u64 *timestamp) u32 *status, u64 *timestamp)
{ {
u32 cq_patched_handle, ts_patched_handle;
struct hl_user_pending_interrupt *pend; struct hl_user_pending_interrupt *pend;
struct hl_ts_buff *ts_buff;
struct hl_cb *cq_cb;
unsigned long timeout, flags; unsigned long timeout, flags;
long completion_rc; long completion_rc;
struct hl_cb *cb;
int rc = 0; int rc = 0;
u32 handle;
timeout = hl_usecs64_to_jiffies(timeout_us); timeout = hl_usecs64_to_jiffies(timeout_us);
hl_ctx_get(hdev, ctx); hl_ctx_get(hdev, ctx);
cq_counters_handle >>= PAGE_SHIFT; cq_patched_handle = lower_32_bits(cq_counters_handle >> PAGE_SHIFT);
handle = (u32) cq_counters_handle; cq_cb = hl_cb_get(hdev, cb_mgr, cq_patched_handle);
if (!cq_cb) {
cb = hl_cb_get(hdev, cb_mgr, handle); rc = -EINVAL;
if (!cb) { goto put_ctx;
hl_ctx_put(ctx);
return -EINVAL;
} }
pend = kzalloc(sizeof(*pend), GFP_KERNEL); if (register_ts_record) {
if (!pend) { dev_dbg(hdev->dev, "Timestamp registration: interrupt id: %u, ts offset: %llu, cq_offset: %llu\n",
hl_cb_put(cb); interrupt->interrupt_id, ts_offset, cq_counters_offset);
hl_ctx_put(ctx);
return -ENOMEM;
}
hl_fence_init(&pend->fence, ULONG_MAX); ts_patched_handle = lower_32_bits(ts_handle >> PAGE_SHIFT);
ts_buff = hl_ts_get(hdev, ts_mgr, ts_patched_handle);
if (!ts_buff) {
rc = -EINVAL;
goto put_cq_cb;
}
pend->cq_kernel_addr = (u64 *) cb->kernel_address + cq_counters_offset; /* Find first available record */
pend->cq_target_value = target_value; rc = ts_buff_get_kernel_ts_record(ts_buff, cq_cb, ts_offset,
cq_counters_offset, target_value,
&interrupt->wait_list_lock, &pend);
if (rc)
goto put_ts_buff;
} else {
pend = kzalloc(sizeof(*pend), GFP_KERNEL);
if (!pend) {
rc = -ENOMEM;
goto put_cq_cb;
}
hl_fence_init(&pend->fence, ULONG_MAX);
pend->cq_kernel_addr = (u64 *) cq_cb->kernel_address + cq_counters_offset;
pend->cq_target_value = target_value;
}
spin_lock_irqsave(&interrupt->wait_list_lock, flags); spin_lock_irqsave(&interrupt->wait_list_lock, flags);
...@@ -2901,13 +2999,19 @@ static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, ...@@ -2901,13 +2999,19 @@ static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
* before we added the node to the wait list * before we added the node to the wait list
*/ */
if (*pend->cq_kernel_addr >= target_value) { if (*pend->cq_kernel_addr >= target_value) {
if (register_ts_record)
pend->ts_reg_info.in_use = 0;
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
*status = HL_WAIT_CS_STATUS_COMPLETED; *status = HL_WAIT_CS_STATUS_COMPLETED;
/* There was no interrupt, we assume the completion is now. */
pend->fence.timestamp = ktime_get();
goto set_timestamp;
if (register_ts_record) {
*pend->ts_reg_info.timestamp_kernel_addr = ktime_get_ns();
goto put_ts_buff;
} else {
pend->fence.timestamp = ktime_get();
goto set_timestamp;
}
} else if (!timeout_us) { } else if (!timeout_us) {
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
*status = HL_WAIT_CS_STATUS_BUSY; *status = HL_WAIT_CS_STATUS_BUSY;
...@@ -2916,11 +3020,19 @@ static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, ...@@ -2916,11 +3020,19 @@ static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
} }
/* Add pending user interrupt to relevant list for the interrupt /* Add pending user interrupt to relevant list for the interrupt
* handler to monitor * handler to monitor.
* Note that we cannot have sorted list by target value,
* in order to shorten the list pass loop, since
* same list could have nodes for different cq counter handle.
*/ */
list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head); list_add_tail(&pend->wait_list_node, &interrupt->wait_list_head);
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
if (register_ts_record) {
rc = *status = HL_WAIT_CS_STATUS_COMPLETED;
goto ts_registration_exit;
}
/* Wait for interrupt handler to signal completion */ /* Wait for interrupt handler to signal completion */
completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion, completion_rc = wait_for_completion_interruptible_timeout(&pend->fence.completion,
timeout); timeout);
...@@ -2952,15 +3064,30 @@ static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx, ...@@ -2952,15 +3064,30 @@ static int _hl_interrupt_wait_ioctl(struct hl_device *hdev, struct hl_ctx *ctx,
} }
} }
/*
* We keep removing the node from list here, and not at the irq handler
* for completion timeout case. and if it's a registration
* for ts record, the node will be deleted in the irq handler after
* we reach the target value.
*/
spin_lock_irqsave(&interrupt->wait_list_lock, flags); spin_lock_irqsave(&interrupt->wait_list_lock, flags);
list_del(&pend->wait_list_node); list_del(&pend->wait_list_node);
spin_unlock_irqrestore(&interrupt->wait_list_lock, flags); spin_unlock_irqrestore(&interrupt->wait_list_lock, flags);
set_timestamp: set_timestamp:
*timestamp = ktime_to_ns(pend->fence.timestamp); *timestamp = ktime_to_ns(pend->fence.timestamp);
kfree(pend); kfree(pend);
hl_cb_put(cb); hl_cb_put(cq_cb);
ts_registration_exit:
hl_ctx_put(ctx);
return rc;
put_ts_buff:
hl_ts_put(ts_buff);
put_cq_cb:
hl_cb_put(cq_cb);
put_ctx:
hl_ctx_put(ctx); hl_ctx_put(ctx);
return rc; return rc;
...@@ -3119,11 +3246,13 @@ static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data) ...@@ -3119,11 +3246,13 @@ static int hl_interrupt_wait_ioctl(struct hl_fpriv *hpriv, void *data)
interrupt = &hdev->user_interrupt[interrupt_id - first_interrupt]; interrupt = &hdev->user_interrupt[interrupt_id - first_interrupt];
if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ) if (args->in.flags & HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ)
rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->cb_mgr, rc = _hl_interrupt_wait_ioctl(hdev, hpriv->ctx, &hpriv->cb_mgr, &hpriv->ts_mem_mgr,
args->in.interrupt_timeout_us, args->in.cq_counters_handle, args->in.interrupt_timeout_us, args->in.cq_counters_handle,
args->in.cq_counters_offset, args->in.cq_counters_offset,
args->in.target, interrupt, &status, args->in.target, interrupt,
&timestamp); !!(args->in.flags & HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT),
args->in.timestamp_handle, args->in.timestamp_offset,
&status, &timestamp);
else else
rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx, rc = _hl_interrupt_wait_ioctl_user_addr(hdev, hpriv->ctx,
args->in.interrupt_timeout_us, args->in.addr, args->in.interrupt_timeout_us, args->in.addr,
......
...@@ -145,6 +145,7 @@ static int hl_device_release(struct inode *inode, struct file *filp) ...@@ -145,6 +145,7 @@ static int hl_device_release(struct inode *inode, struct file *filp)
hl_release_pending_user_interrupts(hpriv->hdev); hl_release_pending_user_interrupts(hpriv->hdev);
hl_cb_mgr_fini(hdev, &hpriv->cb_mgr); hl_cb_mgr_fini(hdev, &hpriv->cb_mgr);
hl_ts_mgr_fini(hpriv->hdev, &hpriv->ts_mem_mgr);
hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr); hl_ctx_mgr_fini(hdev, &hpriv->ctx_mgr);
if (!hl_hpriv_put(hpriv)) if (!hl_hpriv_put(hpriv))
...@@ -209,6 +210,9 @@ static int hl_mmap(struct file *filp, struct vm_area_struct *vma) ...@@ -209,6 +210,9 @@ static int hl_mmap(struct file *filp, struct vm_area_struct *vma)
case HL_MMAP_TYPE_BLOCK: case HL_MMAP_TYPE_BLOCK:
return hl_hw_block_mmap(hpriv, vma); return hl_hw_block_mmap(hpriv, vma);
case HL_MMAP_TYPE_TS_BUFF:
return hl_ts_mmap(hpriv, vma);
} }
return -EINVAL; return -EINVAL;
...@@ -410,10 +414,10 @@ static int device_early_init(struct hl_device *hdev) ...@@ -410,10 +414,10 @@ static int device_early_init(struct hl_device *hdev)
goto free_cq_wq; goto free_cq_wq;
} }
hdev->sob_reset_wq = alloc_workqueue("hl-sob-reset", WQ_UNBOUND, 0); hdev->ts_free_obj_wq = alloc_workqueue("hl-ts-free-obj", WQ_UNBOUND, 0);
if (!hdev->sob_reset_wq) { if (!hdev->ts_free_obj_wq) {
dev_err(hdev->dev, dev_err(hdev->dev,
"Failed to allocate SOB reset workqueue\n"); "Failed to allocate Timestamp registration free workqueue\n");
rc = -ENOMEM; rc = -ENOMEM;
goto free_eq_wq; goto free_eq_wq;
} }
...@@ -422,7 +426,7 @@ static int device_early_init(struct hl_device *hdev) ...@@ -422,7 +426,7 @@ static int device_early_init(struct hl_device *hdev)
GFP_KERNEL); GFP_KERNEL);
if (!hdev->hl_chip_info) { if (!hdev->hl_chip_info) {
rc = -ENOMEM; rc = -ENOMEM;
goto free_sob_reset_wq; goto free_ts_free_wq;
} }
rc = hl_mmu_if_set_funcs(hdev); rc = hl_mmu_if_set_funcs(hdev);
...@@ -461,8 +465,8 @@ static int device_early_init(struct hl_device *hdev) ...@@ -461,8 +465,8 @@ static int device_early_init(struct hl_device *hdev)
hl_cb_mgr_fini(hdev, &hdev->kernel_cb_mgr); hl_cb_mgr_fini(hdev, &hdev->kernel_cb_mgr);
free_chip_info: free_chip_info:
kfree(hdev->hl_chip_info); kfree(hdev->hl_chip_info);
free_sob_reset_wq: free_ts_free_wq:
destroy_workqueue(hdev->sob_reset_wq); destroy_workqueue(hdev->ts_free_obj_wq);
free_eq_wq: free_eq_wq:
destroy_workqueue(hdev->eq_wq); destroy_workqueue(hdev->eq_wq);
free_cq_wq: free_cq_wq:
...@@ -501,7 +505,7 @@ static void device_early_fini(struct hl_device *hdev) ...@@ -501,7 +505,7 @@ static void device_early_fini(struct hl_device *hdev)
kfree(hdev->hl_chip_info); kfree(hdev->hl_chip_info);
destroy_workqueue(hdev->sob_reset_wq); destroy_workqueue(hdev->ts_free_obj_wq);
destroy_workqueue(hdev->eq_wq); destroy_workqueue(hdev->eq_wq);
destroy_workqueue(hdev->device_reset_work.wq); destroy_workqueue(hdev->device_reset_work.wq);
......
...@@ -31,14 +31,15 @@ ...@@ -31,14 +31,15 @@
#define HL_NAME "habanalabs" #define HL_NAME "habanalabs"
/* Use upper bits of mmap offset to store habana driver specific information. /* Use upper bits of mmap offset to store habana driver specific information.
* bits[63:61] - Encode mmap type * bits[63:59] - Encode mmap type
* bits[45:0] - mmap offset value * bits[45:0] - mmap offset value
* *
* NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
* defines are w.r.t to PAGE_SIZE * defines are w.r.t to PAGE_SIZE
*/ */
#define HL_MMAP_TYPE_SHIFT (61 - PAGE_SHIFT) #define HL_MMAP_TYPE_SHIFT (59 - PAGE_SHIFT)
#define HL_MMAP_TYPE_MASK (0x7ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_MASK (0x1full << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_TS_BUFF (0x10ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_BLOCK (0x4ull << HL_MMAP_TYPE_SHIFT)
#define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT) #define HL_MMAP_TYPE_CB (0x2ull << HL_MMAP_TYPE_SHIFT)
...@@ -709,6 +710,40 @@ struct hl_cb_mgr { ...@@ -709,6 +710,40 @@ struct hl_cb_mgr {
struct idr cb_handles; /* protected by cb_lock */ struct idr cb_handles; /* protected by cb_lock */
}; };
/**
* struct hl_ts_mgr - describes the timestamp registration memory manager.
* @ts_lock: protects ts_handles.
* @ts_handles: an idr to hold all ts bufferes handles.
*/
struct hl_ts_mgr {
spinlock_t ts_lock;
struct idr ts_handles;
};
/**
* struct hl_ts_buff - describes a timestamp buffer.
* @refcount: reference counter for usage of the buffer.
* @hdev: pointer to device this buffer belongs to.
* @mmap: true if the buff is currently mapped to user.
* @kernel_buff_address: Holds the internal buffer's kernel virtual address.
* @user_buff_address: Holds the user buffer's kernel virtual address.
* @id: the buffer ID.
* @mmap_size: Holds the buffer size that was mmaped.
* @kernel_buff_size: Holds the internal kernel buffer size.
* @user_buff_size: Holds the user buffer size.
*/
struct hl_ts_buff {
struct kref refcount;
struct hl_device *hdev;
atomic_t mmap;
void *kernel_buff_address;
void *user_buff_address;
u32 id;
u32 mmap_size;
u32 kernel_buff_size;
u32 user_buff_size;
};
/** /**
* struct hl_cb - describes a Command Buffer. * struct hl_cb - describes a Command Buffer.
* @refcount: reference counter for usage of the CB. * @refcount: reference counter for usage of the CB.
...@@ -886,9 +921,54 @@ struct hl_user_interrupt { ...@@ -886,9 +921,54 @@ struct hl_user_interrupt {
u32 interrupt_id; u32 interrupt_id;
}; };
/**
* struct timestamp_reg_free_node - holds the timestamp registration free objects node
* @free_objects_node: node in the list free_obj_jobs
* @cq_cb: pointer to cq command buffer to be freed
* @ts_buff: pointer to timestamp buffer to be freed
*/
struct timestamp_reg_free_node {
struct list_head free_objects_node;
struct hl_cb *cq_cb;
struct hl_ts_buff *ts_buff;
};
/* struct timestamp_reg_work_obj - holds the timestamp registration free objects job
* the job will be to pass over the free_obj_jobs list and put refcount to objects
* in each node of the list
* @free_obj: workqueue object to free timestamp registration node objects
* @hdev: pointer to the device structure
* @free_obj_head: list of free jobs nodes (node type timestamp_reg_free_node)
*/
struct timestamp_reg_work_obj {
struct work_struct free_obj;
struct hl_device *hdev;
struct list_head *free_obj_head;
};
/* struct timestamp_reg_info - holds the timestamp registration related data.
* @ts_buff: pointer to the timestamp buffer which include both user/kernel buffers.
* relevant only when doing timestamps records registration.
* @cq_cb: pointer to CQ counter CB.
* @timestamp_kernel_addr: timestamp handle address, where to set timestamp
* relevant only when doing timestamps records
* registration.
* @in_use: indicates if the node already in use. relevant only when doing
* timestamps records registration, since in this case the driver
* will have it's own buffer which serve as a records pool instead of
* allocating records dynamically.
*/
struct timestamp_reg_info {
struct hl_ts_buff *ts_buff;
struct hl_cb *cq_cb;
u64 *timestamp_kernel_addr;
u8 in_use;
};
/** /**
* struct hl_user_pending_interrupt - holds a context to a user thread * struct hl_user_pending_interrupt - holds a context to a user thread
* pending on an interrupt * pending on an interrupt
* @ts_reg_info: holds the timestamps registration nodes info
* @wait_list_node: node in the list of user threads pending on an interrupt * @wait_list_node: node in the list of user threads pending on an interrupt
* @fence: hl fence object for interrupt completion * @fence: hl fence object for interrupt completion
* @cq_target_value: CQ target value * @cq_target_value: CQ target value
...@@ -896,10 +976,11 @@ struct hl_user_interrupt { ...@@ -896,10 +976,11 @@ struct hl_user_interrupt {
* handler for taget value comparison * handler for taget value comparison
*/ */
struct hl_user_pending_interrupt { struct hl_user_pending_interrupt {
struct list_head wait_list_node; struct timestamp_reg_info ts_reg_info;
struct hl_fence fence; struct list_head wait_list_node;
u64 cq_target_value; struct hl_fence fence;
u64 *cq_kernel_addr; u64 cq_target_value;
u64 *cq_kernel_addr;
}; };
/** /**
...@@ -1833,6 +1914,7 @@ struct hl_debug_params { ...@@ -1833,6 +1914,7 @@ struct hl_debug_params {
* @ctx: current executing context. TODO: remove for multiple ctx per process * @ctx: current executing context. TODO: remove for multiple ctx per process
* @ctx_mgr: context manager to handle multiple context for this FD. * @ctx_mgr: context manager to handle multiple context for this FD.
* @cb_mgr: command buffer manager to handle multiple buffers for this FD. * @cb_mgr: command buffer manager to handle multiple buffers for this FD.
* @ts_mem_mgr: timestamp registration manager for alloc/free/map timestamp buffers.
* @debugfs_list: list of relevant ASIC debugfs. * @debugfs_list: list of relevant ASIC debugfs.
* @dev_node: node in the device list of file private data * @dev_node: node in the device list of file private data
* @refcount: number of related contexts. * @refcount: number of related contexts.
...@@ -1845,6 +1927,7 @@ struct hl_fpriv { ...@@ -1845,6 +1927,7 @@ struct hl_fpriv {
struct hl_ctx *ctx; struct hl_ctx *ctx;
struct hl_ctx_mgr ctx_mgr; struct hl_ctx_mgr ctx_mgr;
struct hl_cb_mgr cb_mgr; struct hl_cb_mgr cb_mgr;
struct hl_ts_mgr ts_mem_mgr;
struct list_head debugfs_list; struct list_head debugfs_list;
struct list_head dev_node; struct list_head dev_node;
struct kref refcount; struct kref refcount;
...@@ -2517,7 +2600,7 @@ struct hl_reset_info { ...@@ -2517,7 +2600,7 @@ struct hl_reset_info {
* @cq_wq: work queues of completion queues for executing work in process * @cq_wq: work queues of completion queues for executing work in process
* context. * context.
* @eq_wq: work queue of event queue for executing work in process context. * @eq_wq: work queue of event queue for executing work in process context.
* @sob_reset_wq: work queue for sob reset executions. * @ts_free_obj_wq: work queue for timestamp registration objects release.
* @kernel_ctx: Kernel driver context structure. * @kernel_ctx: Kernel driver context structure.
* @kernel_queues: array of hl_hw_queue. * @kernel_queues: array of hl_hw_queue.
* @cs_mirror_list: CS mirror list for TDR. * @cs_mirror_list: CS mirror list for TDR.
...@@ -2645,7 +2728,7 @@ struct hl_device { ...@@ -2645,7 +2728,7 @@ struct hl_device {
struct hl_user_interrupt common_user_interrupt; struct hl_user_interrupt common_user_interrupt;
struct workqueue_struct **cq_wq; struct workqueue_struct **cq_wq;
struct workqueue_struct *eq_wq; struct workqueue_struct *eq_wq;
struct workqueue_struct *sob_reset_wq; struct workqueue_struct *ts_free_obj_wq;
struct hl_ctx *kernel_ctx; struct hl_ctx *kernel_ctx;
struct hl_hw_queue *kernel_queues; struct hl_hw_queue *kernel_queues;
struct list_head cs_mirror_list; struct list_head cs_mirror_list;
...@@ -3128,6 +3211,11 @@ __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset, ...@@ -3128,6 +3211,11 @@ __printf(4, 5) int hl_snprintf_resize(char **buf, size_t *size, size_t *offset,
const char *format, ...); const char *format, ...);
char *hl_format_as_binary(char *buf, size_t buf_len, u32 n); char *hl_format_as_binary(char *buf, size_t buf_len, u32 n);
const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type); const char *hl_sync_engine_to_string(enum hl_sync_engine_type engine_type);
void hl_ts_mgr_init(struct hl_ts_mgr *mgr);
void hl_ts_mgr_fini(struct hl_device *hdev, struct hl_ts_mgr *mgr);
int hl_ts_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma);
struct hl_ts_buff *hl_ts_get(struct hl_device *hdev, struct hl_ts_mgr *mgr, u32 handle);
void hl_ts_put(struct hl_ts_buff *buff);
#ifdef CONFIG_DEBUG_FS #ifdef CONFIG_DEBUG_FS
......
...@@ -140,6 +140,7 @@ int hl_device_open(struct inode *inode, struct file *filp) ...@@ -140,6 +140,7 @@ int hl_device_open(struct inode *inode, struct file *filp)
hl_cb_mgr_init(&hpriv->cb_mgr); hl_cb_mgr_init(&hpriv->cb_mgr);
hl_ctx_mgr_init(&hpriv->ctx_mgr); hl_ctx_mgr_init(&hpriv->ctx_mgr);
hl_ts_mgr_init(&hpriv->ts_mem_mgr);
hpriv->taskpid = get_task_pid(current, PIDTYPE_PID); hpriv->taskpid = get_task_pid(current, PIDTYPE_PID);
...@@ -184,6 +185,7 @@ int hl_device_open(struct inode *inode, struct file *filp) ...@@ -184,6 +185,7 @@ int hl_device_open(struct inode *inode, struct file *filp)
out_err: out_err:
mutex_unlock(&hdev->fpriv_list_lock); mutex_unlock(&hdev->fpriv_list_lock);
hl_cb_mgr_fini(hpriv->hdev, &hpriv->cb_mgr); hl_cb_mgr_fini(hpriv->hdev, &hpriv->cb_mgr);
hl_ts_mgr_fini(hpriv->hdev, &hpriv->ts_mem_mgr);
hl_ctx_mgr_fini(hpriv->hdev, &hpriv->ctx_mgr); hl_ctx_mgr_fini(hpriv->hdev, &hpriv->ctx_mgr);
filp->private_data = NULL; filp->private_data = NULL;
mutex_destroy(&hpriv->restore_phase_mutex); mutex_destroy(&hpriv->restore_phase_mutex);
......
...@@ -137,22 +137,137 @@ irqreturn_t hl_irq_handler_cq(int irq, void *arg) ...@@ -137,22 +137,137 @@ irqreturn_t hl_irq_handler_cq(int irq, void *arg)
return IRQ_HANDLED; return IRQ_HANDLED;
} }
/*
* hl_ts_free_objects - handler of the free objects workqueue.
* This function should put refcount to objects that the registration node
* took refcount to them.
* @work: workqueue object pointer
*/
static void hl_ts_free_objects(struct work_struct *work)
{
struct timestamp_reg_work_obj *job =
container_of(work, struct timestamp_reg_work_obj, free_obj);
struct timestamp_reg_free_node *free_obj, *temp_free_obj;
struct list_head *free_list_head = job->free_obj_head;
struct hl_device *hdev = job->hdev;
list_for_each_entry_safe(free_obj, temp_free_obj, free_list_head, free_objects_node) {
dev_dbg(hdev->dev, "About to put refcount to ts_buff (%p) cq_cb(%p)\n",
free_obj->ts_buff,
free_obj->cq_cb);
hl_ts_put(free_obj->ts_buff);
hl_cb_put(free_obj->cq_cb);
kfree(free_obj);
}
kfree(free_list_head);
kfree(job);
}
/*
* This function called with spin_lock of wait_list_lock taken
* This function will set timestamp and delete the registration node from the
* wait_list_lock.
* and since we're protected with spin_lock here, so we cannot just put the refcount
* for the objects here, since the release function may be called and it's also a long
* logic (which might sleep also) that cannot be handled in irq context.
* so here we'll be filling a list with nodes of "put" jobs and then will send this
* list to a dedicated workqueue to do the actual put.
*/
int handle_registration_node(struct hl_device *hdev, struct hl_user_pending_interrupt *pend,
struct list_head **free_list)
{
struct timestamp_reg_free_node *free_node;
u64 timestamp;
if (!(*free_list)) {
/* Alloc/Init the timestamp registration free objects list */
*free_list = kmalloc(sizeof(struct list_head), GFP_ATOMIC);
if (!(*free_list))
return -ENOMEM;
INIT_LIST_HEAD(*free_list);
}
free_node = kmalloc(sizeof(*free_node), GFP_ATOMIC);
if (!free_node)
return -ENOMEM;
timestamp = ktime_get_ns();
*pend->ts_reg_info.timestamp_kernel_addr = timestamp;
dev_dbg(hdev->dev, "Timestamp is set to ts cb address (%p), ts: 0x%llx\n",
pend->ts_reg_info.timestamp_kernel_addr,
*(u64 *)pend->ts_reg_info.timestamp_kernel_addr);
list_del(&pend->wait_list_node);
/* Mark kernel CB node as free */
pend->ts_reg_info.in_use = 0;
/* Putting the refcount for ts_buff and cq_cb objects will be handled
* in workqueue context, just add job to free_list.
*/
free_node->ts_buff = pend->ts_reg_info.ts_buff;
free_node->cq_cb = pend->ts_reg_info.cq_cb;
list_add(&free_node->free_objects_node, *free_list);
return 0;
}
static void handle_user_cq(struct hl_device *hdev, static void handle_user_cq(struct hl_device *hdev,
struct hl_user_interrupt *user_cq) struct hl_user_interrupt *user_cq)
{ {
struct hl_user_pending_interrupt *pend; struct hl_user_pending_interrupt *pend, *temp_pend;
struct list_head *ts_reg_free_list_head = NULL;
struct timestamp_reg_work_obj *job;
bool reg_node_handle_fail = false;
ktime_t now = ktime_get(); ktime_t now = ktime_get();
int rc;
/* For registration nodes:
* As part of handling the registration nodes, we should put refcount to
* some objects. the problem is that we cannot do that under spinlock
* or in irq handler context at all (since release functions are long and
* might sleep), so we will need to handle that part in workqueue context.
* To avoid handling kmalloc failure which compels us rolling back actions
* and move nodes hanged on the free list back to the interrupt wait list
* we always alloc the job of the WQ at the beginning.
*/
job = kmalloc(sizeof(*job), GFP_ATOMIC);
if (!job)
return;
spin_lock(&user_cq->wait_list_lock); spin_lock(&user_cq->wait_list_lock);
list_for_each_entry(pend, &user_cq->wait_list_head, wait_list_node) { list_for_each_entry_safe(pend, temp_pend, &user_cq->wait_list_head, wait_list_node) {
if ((pend->cq_kernel_addr && if ((pend->cq_kernel_addr && *(pend->cq_kernel_addr) >= pend->cq_target_value) ||
*(pend->cq_kernel_addr) >= pend->cq_target_value) ||
!pend->cq_kernel_addr) { !pend->cq_kernel_addr) {
pend->fence.timestamp = now; if (pend->ts_reg_info.ts_buff) {
complete_all(&pend->fence.completion); if (!reg_node_handle_fail) {
rc = handle_registration_node(hdev, pend,
&ts_reg_free_list_head);
if (rc)
reg_node_handle_fail = true;
}
} else {
/* Handle wait target value node */
pend->fence.timestamp = now;
complete_all(&pend->fence.completion);
}
} }
} }
spin_unlock(&user_cq->wait_list_lock); spin_unlock(&user_cq->wait_list_lock);
if (ts_reg_free_list_head) {
INIT_WORK(&job->free_obj, hl_ts_free_objects);
job->free_obj_head = ts_reg_free_list_head;
job->hdev = hdev;
queue_work(hdev->ts_free_obj_wq, &job->free_obj);
} else {
kfree(job);
}
} }
/** /**
......
...@@ -20,6 +20,9 @@ MODULE_IMPORT_NS(DMA_BUF); ...@@ -20,6 +20,9 @@ MODULE_IMPORT_NS(DMA_BUF);
/* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */ /* use small pages for supporting non-pow2 (32M/40M/48M) DRAM phys page sizes */
#define DRAM_POOL_PAGE_SIZE SZ_8M #define DRAM_POOL_PAGE_SIZE SZ_8M
static int allocate_timestamps_buffers(struct hl_fpriv *hpriv,
struct hl_mem_in *args, u64 *handle);
/* /*
* The va ranges in context object contain a list with the available chunks of * The va ranges in context object contain a list with the available chunks of
* device virtual memory. * device virtual memory.
...@@ -2021,6 +2024,9 @@ static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args) ...@@ -2021,6 +2024,9 @@ static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
rc = -EPERM; rc = -EPERM;
break; break;
case HL_MEM_OP_TS_ALLOC:
rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
break;
default: default:
dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
rc = -EINVAL; rc = -EINVAL;
...@@ -2031,6 +2037,258 @@ static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args) ...@@ -2031,6 +2037,258 @@ static int mem_ioctl_no_mmu(struct hl_fpriv *hpriv, union hl_mem_args *args)
return rc; return rc;
} }
static void ts_buff_release(struct kref *ref)
{
struct hl_ts_buff *buff;
buff = container_of(ref, struct hl_ts_buff, refcount);
vfree(buff->kernel_buff_address);
vfree(buff->user_buff_address);
kfree(buff);
}
struct hl_ts_buff *hl_ts_get(struct hl_device *hdev, struct hl_ts_mgr *mgr,
u32 handle)
{
struct hl_ts_buff *buff;
spin_lock(&mgr->ts_lock);
buff = idr_find(&mgr->ts_handles, handle);
if (!buff) {
spin_unlock(&mgr->ts_lock);
dev_warn(hdev->dev,
"TS buff get failed, no match to handle 0x%x\n", handle);
return NULL;
}
kref_get(&buff->refcount);
spin_unlock(&mgr->ts_lock);
return buff;
}
void hl_ts_put(struct hl_ts_buff *buff)
{
kref_put(&buff->refcount, ts_buff_release);
}
static void buff_vm_close(struct vm_area_struct *vma)
{
struct hl_ts_buff *buff = (struct hl_ts_buff *) vma->vm_private_data;
long new_mmap_size;
new_mmap_size = buff->mmap_size - (vma->vm_end - vma->vm_start);
if (new_mmap_size > 0) {
buff->mmap_size = new_mmap_size;
return;
}
atomic_set(&buff->mmap, 0);
hl_ts_put(buff);
vma->vm_private_data = NULL;
}
static const struct vm_operations_struct ts_buff_vm_ops = {
.close = buff_vm_close
};
int hl_ts_mmap(struct hl_fpriv *hpriv, struct vm_area_struct *vma)
{
struct hl_device *hdev = hpriv->hdev;
struct hl_ts_buff *buff;
u32 handle, user_buff_size;
int rc;
/* We use the page offset to hold the idr and thus we need to clear
* it before doing the mmap itself
*/
handle = vma->vm_pgoff;
vma->vm_pgoff = 0;
buff = hl_ts_get(hdev, &hpriv->ts_mem_mgr, handle);
if (!buff) {
dev_err(hdev->dev,
"TS buff mmap failed, no match to handle 0x%x\n", handle);
return -EINVAL;
}
/* Validation check */
user_buff_size = vma->vm_end - vma->vm_start;
if (user_buff_size != ALIGN(buff->user_buff_size, PAGE_SIZE)) {
dev_err(hdev->dev,
"TS buff mmap failed, mmap size 0x%x != 0x%x buff size\n",
user_buff_size, ALIGN(buff->user_buff_size, PAGE_SIZE));
rc = -EINVAL;
goto put_buff;
}
#ifdef _HAS_TYPE_ARG_IN_ACCESS_OK
if (!access_ok(VERIFY_WRITE,
(void __user *) (uintptr_t) vma->vm_start, user_buff_size)) {
#else
if (!access_ok((void __user *) (uintptr_t) vma->vm_start,
user_buff_size)) {
#endif
dev_err(hdev->dev,
"user pointer is invalid - 0x%lx\n",
vma->vm_start);
rc = -EINVAL;
goto put_buff;
}
if (atomic_cmpxchg(&buff->mmap, 0, 1)) {
dev_err(hdev->dev, "TS buff memory mmap failed, already mmaped to user\n");
rc = -EINVAL;
goto put_buff;
}
vma->vm_ops = &ts_buff_vm_ops;
vma->vm_private_data = buff;
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP | VM_DONTCOPY | VM_NORESERVE;
rc = remap_vmalloc_range(vma, buff->user_buff_address, 0);
if (rc) {
atomic_set(&buff->mmap, 0);
goto put_buff;
}
buff->mmap_size = buff->user_buff_size;
vma->vm_pgoff = handle;
return 0;
put_buff:
hl_ts_put(buff);
return rc;
}
void hl_ts_mgr_init(struct hl_ts_mgr *mgr)
{
spin_lock_init(&mgr->ts_lock);
idr_init(&mgr->ts_handles);
}
void hl_ts_mgr_fini(struct hl_device *hdev, struct hl_ts_mgr *mgr)
{
struct hl_ts_buff *buff;
struct idr *idp;
u32 id;
idp = &mgr->ts_handles;
idr_for_each_entry(idp, buff, id) {
if (kref_put(&buff->refcount, ts_buff_release) != 1)
dev_err(hdev->dev, "TS buff handle %d for CTX is still alive\n",
id);
}
idr_destroy(&mgr->ts_handles);
}
static struct hl_ts_buff *hl_ts_alloc_buff(struct hl_device *hdev, u32 num_elements)
{
struct hl_ts_buff *ts_buff = NULL;
u32 size;
void *p;
ts_buff = kzalloc(sizeof(*ts_buff), GFP_KERNEL);
if (!ts_buff)
return NULL;
/* Allocate the user buffer */
size = num_elements * sizeof(u64);
p = vmalloc_user(size);
if (!p)
goto free_mem;
ts_buff->user_buff_address = p;
ts_buff->user_buff_size = size;
/* Allocate the internal kernel buffer */
size = num_elements * sizeof(struct hl_user_pending_interrupt);
p = vmalloc(size);
if (!p)
goto free_user_buff;
ts_buff->kernel_buff_address = p;
ts_buff->kernel_buff_size = size;
return ts_buff;
free_user_buff:
vfree(ts_buff->user_buff_address);
free_mem:
kfree(ts_buff);
return NULL;
}
/**
* allocate_timestamps_buffers() - allocate timestamps buffers
* This function will allocate ts buffer that will later on be mapped to the user
* in order to be able to read the timestamp.
* in additon it'll allocate an extra buffer for registration management.
* since we cannot fail during registration for out-of-memory situation, so
* we'll prepare a pool which will be used as user interrupt nodes and instead
* of dynamically allocating nodes while registration we'll pick the node from
* this pool. in addtion it'll add node to the mapping hash which will be used
* to map user ts buffer to the internal kernel ts buffer.
* @hpriv: pointer to the private data of the fd
* @args: ioctl input
* @handle: user timestamp buffer handle as an output
*/
static int allocate_timestamps_buffers(struct hl_fpriv *hpriv, struct hl_mem_in *args, u64 *handle)
{
struct hl_ts_mgr *ts_mgr = &hpriv->ts_mem_mgr;
struct hl_device *hdev = hpriv->hdev;
struct hl_ts_buff *ts_buff;
int rc = 0;
if (args->num_of_elements > TS_MAX_ELEMENTS_NUM) {
dev_err(hdev->dev, "Num of elements exceeds Max allowed number (0x%x > 0x%x)\n",
args->num_of_elements, TS_MAX_ELEMENTS_NUM);
return -EINVAL;
}
/* Allocate ts buffer object
* This object will contain two buffers one that will be mapped to the user
* and another internal buffer for the driver use only, which won't be mapped
* to the user.
*/
ts_buff = hl_ts_alloc_buff(hdev, args->num_of_elements);
if (!ts_buff) {
rc = -ENOMEM;
goto out_err;
}
spin_lock(&ts_mgr->ts_lock);
rc = idr_alloc(&ts_mgr->ts_handles, ts_buff, 1, 0, GFP_ATOMIC);
spin_unlock(&ts_mgr->ts_lock);
if (rc < 0) {
dev_err(hdev->dev, "Failed to allocate IDR for a new ts buffer\n");
goto release_ts_buff;
}
ts_buff->id = rc;
ts_buff->hdev = hdev;
kref_init(&ts_buff->refcount);
/* idr is 32-bit so we can safely OR it with a mask that is above 32 bit */
*handle = (u64) ts_buff->id | HL_MMAP_TYPE_TS_BUFF;
*handle <<= PAGE_SHIFT;
dev_dbg(hdev->dev, "Created ts buff object handle(%u)\n", ts_buff->id);
return 0;
release_ts_buff:
kref_put(&ts_buff->refcount, ts_buff_release);
out_err:
*handle = 0;
return rc;
}
int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
{ {
enum hl_device_status status; enum hl_device_status status;
...@@ -2146,6 +2404,9 @@ int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data) ...@@ -2146,6 +2404,9 @@ int hl_mem_ioctl(struct hl_fpriv *hpriv, void *data)
args->out.fd = dmabuf_fd; args->out.fd = dmabuf_fd;
break; break;
case HL_MEM_OP_TS_ALLOC:
rc = allocate_timestamps_buffers(hpriv, &args->in, &args->out.handle);
break;
default: default:
dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n"); dev_err(hdev->dev, "Unknown opcode for memory IOCTL\n");
rc = -EINVAL; rc = -EINVAL;
......
/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note /* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
* *
* Copyright 2016-2020 HabanaLabs, Ltd. * Copyright 2016-2021 HabanaLabs, Ltd.
* All Rights Reserved. * All Rights Reserved.
* *
*/ */
...@@ -30,6 +30,9 @@ ...@@ -30,6 +30,9 @@
*/ */
#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 72 #define GAUDI_FIRST_AVAILABLE_W_S_MONITOR 72
/* Max number of elements in timestamps registration buffers */
#define TS_MAX_ELEMENTS_NUM (1 << 20) /* 1MB */
/* /*
* Goya queue Numbering * Goya queue Numbering
* *
...@@ -695,10 +698,12 @@ struct hl_cb_in { ...@@ -695,10 +698,12 @@ struct hl_cb_in {
__u64 cb_handle; __u64 cb_handle;
/* HL_CB_OP_* */ /* HL_CB_OP_* */
__u32 op; __u32 op;
/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that /* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
* will be allocated, regardless of this parameter's value, is PAGE_SIZE * will be allocated, regardless of this parameter's value, is PAGE_SIZE
*/ */
__u32 cb_size; __u32 cb_size;
/* Context ID - Currently not in use */ /* Context ID - Currently not in use */
__u32 ctx_id; __u32 ctx_id;
/* HL_CB_FLAGS_* */ /* HL_CB_FLAGS_* */
...@@ -964,6 +969,7 @@ union hl_cs_args { ...@@ -964,6 +969,7 @@ union hl_cs_args {
#define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000 #define HL_WAIT_CS_FLAGS_INTERRUPT_MASK 0xFFF00000
#define HL_WAIT_CS_FLAGS_MULTI_CS 0x4 #define HL_WAIT_CS_FLAGS_MULTI_CS 0x4
#define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ 0x10 #define HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ 0x10
#define HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT 0x20
#define HL_WAIT_MULTI_CS_LIST_MAX_LEN 32 #define HL_WAIT_MULTI_CS_LIST_MAX_LEN 32
...@@ -1036,6 +1042,20 @@ struct hl_wait_cs_in { ...@@ -1036,6 +1042,20 @@ struct hl_wait_cs_in {
* relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set * relevant only when HL_WAIT_CS_FLAGS_INTERRUPT_KERNEL_CQ is set
*/ */
__u64 cq_counters_offset; __u64 cq_counters_offset;
/*
* Timestamp_handle timestamps buffer handle.
* relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
*/
__u64 timestamp_handle;
/*
* Timestamp_offset is offset inside the timestamp buffer pointed by timestamp_handle above.
* upon interrupt, if the cq reached the target value then driver will write
* timestamp to this offset.
* relevant only when HL_WAIT_CS_FLAGS_REGISTER_INTERRUPT is set
*/
__u64 timestamp_offset;
}; };
#define HL_WAIT_CS_STATUS_COMPLETED 0 #define HL_WAIT_CS_STATUS_COMPLETED 0
...@@ -1082,6 +1102,14 @@ union hl_wait_cs_args { ...@@ -1082,6 +1102,14 @@ union hl_wait_cs_args {
*/ */
#define HL_MEM_OP_EXPORT_DMABUF_FD 5 #define HL_MEM_OP_EXPORT_DMABUF_FD 5
/* Opcode to create timestamps pool for user interrupts registration support
* The memory will be allocated by the kernel driver, A timestamp buffer which the user
* will get handle to it for mmap, and another internal buffer used by the
* driver for registration management
* The memory will be freed when the user closes the file descriptor(ctx close)
*/
#define HL_MEM_OP_TS_ALLOC 6
/* Memory flags */ /* Memory flags */
#define HL_MEM_CONTIGUOUS 0x1 #define HL_MEM_CONTIGUOUS 0x1
#define HL_MEM_SHARED 0x2 #define HL_MEM_SHARED 0x2
...@@ -1173,9 +1201,14 @@ struct hl_mem_in { ...@@ -1173,9 +1201,14 @@ struct hl_mem_in {
* DMA-BUF file/FD flags. * DMA-BUF file/FD flags.
*/ */
__u32 flags; __u32 flags;
/* Context ID - Currently not in use */ /* Context ID - Currently not in use */
__u32 ctx_id; __u32 ctx_id;
__u32 pad;
/* number of timestamp elements
* used only when HL_MEM_OP_TS_ALLOC opcode
*/
__u32 num_of_elements;
}; };
struct hl_mem_out { struct hl_mem_out {
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment