Commit 9617ba39 authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc

Pull sparc updates from David Miller:
 "Nothing super serious:

   - Convert sparc32 over to NO_BOOTMEM (Mike Rapoport)

   - Use dma_noncoherent_ops on sparc32 (Christoph Hellwig)

   - Fix kbuild defconfig handling on sparc32 (Masahiro Yamada)"

* git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc:
  sparc: fix KBUILD_DEFCONFIG for ARCH=sparc32
  sparc32: split ramdisk detection and reservation to a helper function
  sparc32: switch to NO_BOOTMEM
  sparc: mm/init_32: kill trailing whitespace
  sparc: use generic dma_noncoherent_ops
parents 20a9e57a c84ca616
...@@ -45,9 +45,13 @@ config SPARC ...@@ -45,9 +45,13 @@ config SPARC
select LOCKDEP_SMALL if LOCKDEP select LOCKDEP_SMALL if LOCKDEP
select NEED_DMA_MAP_STATE select NEED_DMA_MAP_STATE
select NEED_SG_DMA_LENGTH select NEED_SG_DMA_LENGTH
select HAVE_MEMBLOCK
select NO_BOOTMEM
config SPARC32 config SPARC32
def_bool !64BIT def_bool !64BIT
select ARCH_HAS_SYNC_DMA_FOR_CPU
select DMA_NONCOHERENT_OPS
select GENERIC_ATOMIC64 select GENERIC_ATOMIC64
select CLZ_TAB select CLZ_TAB
select HAVE_UID16 select HAVE_UID16
...@@ -60,7 +64,6 @@ config SPARC64 ...@@ -60,7 +64,6 @@ config SPARC64
select HAVE_KRETPROBES select HAVE_KRETPROBES
select HAVE_KPROBES select HAVE_KPROBES
select HAVE_RCU_TABLE_FREE if SMP select HAVE_RCU_TABLE_FREE if SMP
select HAVE_MEMBLOCK
select HAVE_MEMBLOCK_NODE_MAP select HAVE_MEMBLOCK_NODE_MAP
select HAVE_ARCH_TRANSPARENT_HUGEPAGE select HAVE_ARCH_TRANSPARENT_HUGEPAGE
select HAVE_DYNAMIC_FTRACE select HAVE_DYNAMIC_FTRACE
...@@ -79,7 +82,6 @@ config SPARC64 ...@@ -79,7 +82,6 @@ config SPARC64
select IRQ_PREFLOW_FASTEOI select IRQ_PREFLOW_FASTEOI
select ARCH_HAVE_NMI_SAFE_CMPXCHG select ARCH_HAVE_NMI_SAFE_CMPXCHG
select HAVE_C_RECORDMCOUNT select HAVE_C_RECORDMCOUNT
select NO_BOOTMEM
select HAVE_ARCH_AUDITSYSCALL select HAVE_ARCH_AUDITSYSCALL
select ARCH_SUPPORTS_ATOMIC_RMW select ARCH_SUPPORTS_ATOMIC_RMW
select HAVE_NMI select HAVE_NMI
......
...@@ -9,10 +9,10 @@ ...@@ -9,10 +9,10 @@
# Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz) # Copyright (C) 1998 Jakub Jelinek (jj@ultra.linux.cz)
# We are not yet configured - so test on arch # We are not yet configured - so test on arch
ifeq ($(ARCH),sparc) ifeq ($(ARCH),sparc64)
KBUILD_DEFCONFIG := sparc32_defconfig
else
KBUILD_DEFCONFIG := sparc64_defconfig KBUILD_DEFCONFIG := sparc64_defconfig
else
KBUILD_DEFCONFIG := sparc32_defconfig
endif endif
ifeq ($(CONFIG_SPARC32),y) ifeq ($(CONFIG_SPARC32),y)
......
...@@ -7,7 +7,6 @@ ...@@ -7,7 +7,6 @@
#include <linux/dma-debug.h> #include <linux/dma-debug.h>
extern const struct dma_map_ops *dma_ops; extern const struct dma_map_ops *dma_ops;
extern const struct dma_map_ops pci32_dma_ops;
extern struct bus_type pci_bus_type; extern struct bus_type pci_bus_type;
...@@ -15,11 +14,11 @@ static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus) ...@@ -15,11 +14,11 @@ static inline const struct dma_map_ops *get_arch_dma_ops(struct bus_type *bus)
{ {
#ifdef CONFIG_SPARC_LEON #ifdef CONFIG_SPARC_LEON
if (sparc_cpu_model == sparc_leon) if (sparc_cpu_model == sparc_leon)
return &pci32_dma_ops; return &dma_noncoherent_ops;
#endif #endif
#if defined(CONFIG_SPARC32) && defined(CONFIG_PCI) #if defined(CONFIG_SPARC32) && defined(CONFIG_PCI)
if (bus == &pci_bus_type) if (bus == &pci_bus_type)
return &pci32_dma_ops; return &dma_noncoherent_ops;
#endif #endif
return dma_ops; return dma_ops;
} }
......
...@@ -38,6 +38,7 @@ ...@@ -38,6 +38,7 @@
#include <linux/proc_fs.h> #include <linux/proc_fs.h>
#include <linux/seq_file.h> #include <linux/seq_file.h>
#include <linux/scatterlist.h> #include <linux/scatterlist.h>
#include <linux/dma-noncoherent.h>
#include <linux/of_device.h> #include <linux/of_device.h>
#include <asm/io.h> #include <asm/io.h>
...@@ -434,42 +435,41 @@ arch_initcall(sparc_register_ioport); ...@@ -434,42 +435,41 @@ arch_initcall(sparc_register_ioport);
/* Allocate and map kernel buffer using consistent mode DMA for a device. /* Allocate and map kernel buffer using consistent mode DMA for a device.
* hwdev should be valid struct pci_dev pointer for PCI devices. * hwdev should be valid struct pci_dev pointer for PCI devices.
*/ */
static void *pci32_alloc_coherent(struct device *dev, size_t len, void *arch_dma_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle,
dma_addr_t *pba, gfp_t gfp, gfp_t gfp, unsigned long attrs)
unsigned long attrs)
{ {
unsigned long len_total = PAGE_ALIGN(len); unsigned long len_total = PAGE_ALIGN(size);
void *va; void *va;
struct resource *res; struct resource *res;
int order; int order;
if (len == 0) { if (size == 0) {
return NULL; return NULL;
} }
if (len > 256*1024) { /* __get_free_pages() limit */ if (size > 256*1024) { /* __get_free_pages() limit */
return NULL; return NULL;
} }
order = get_order(len_total); order = get_order(len_total);
va = (void *) __get_free_pages(gfp, order); va = (void *) __get_free_pages(gfp, order);
if (va == NULL) { if (va == NULL) {
printk("pci_alloc_consistent: no %ld pages\n", len_total>>PAGE_SHIFT); printk("%s: no %ld pages\n", __func__, len_total>>PAGE_SHIFT);
goto err_nopages; goto err_nopages;
} }
if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) { if ((res = kzalloc(sizeof(struct resource), GFP_KERNEL)) == NULL) {
printk("pci_alloc_consistent: no core\n"); printk("%s: no core\n", __func__);
goto err_nomem; goto err_nomem;
} }
if (allocate_resource(&_sparc_dvma, res, len_total, if (allocate_resource(&_sparc_dvma, res, len_total,
_sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) { _sparc_dvma.start, _sparc_dvma.end, PAGE_SIZE, NULL, NULL) != 0) {
printk("pci_alloc_consistent: cannot occupy 0x%lx", len_total); printk("%s: cannot occupy 0x%lx", __func__, len_total);
goto err_nova; goto err_nova;
} }
srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total); srmmu_mapiorange(0, virt_to_phys(va), res->start, len_total);
*pba = virt_to_phys(va); /* equals virt_to_bus (R.I.P.) for us. */ *dma_handle = virt_to_phys(va);
return (void *) res->start; return (void *) res->start;
err_nova: err_nova:
...@@ -481,184 +481,53 @@ static void *pci32_alloc_coherent(struct device *dev, size_t len, ...@@ -481,184 +481,53 @@ static void *pci32_alloc_coherent(struct device *dev, size_t len,
} }
/* Free and unmap a consistent DMA buffer. /* Free and unmap a consistent DMA buffer.
* cpu_addr is what was returned from pci_alloc_consistent, * cpu_addr is what was returned arch_dma_alloc, size must be the same as what
* size must be the same as what as passed into pci_alloc_consistent, * was passed into arch_dma_alloc, and likewise dma_addr must be the same as
* and likewise dma_addr must be the same as what *dma_addrp was set to. * what *dma_ndler was set to.
* *
* References to the memory and mappings associated with cpu_addr/dma_addr * References to the memory and mappings associated with cpu_addr/dma_addr
* past this call are illegal. * past this call are illegal.
*/ */
static void pci32_free_coherent(struct device *dev, size_t n, void *p, void arch_dma_free(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t ba, unsigned long attrs) dma_addr_t dma_addr, unsigned long attrs)
{ {
struct resource *res; struct resource *res;
if ((res = lookup_resource(&_sparc_dvma, if ((res = lookup_resource(&_sparc_dvma,
(unsigned long)p)) == NULL) { (unsigned long)cpu_addr)) == NULL) {
printk("pci_free_consistent: cannot free %p\n", p); printk("%s: cannot free %p\n", __func__, cpu_addr);
return; return;
} }
if (((unsigned long)p & (PAGE_SIZE-1)) != 0) { if (((unsigned long)cpu_addr & (PAGE_SIZE-1)) != 0) {
printk("pci_free_consistent: unaligned va %p\n", p); printk("%s: unaligned va %p\n", __func__, cpu_addr);
return; return;
} }
n = PAGE_ALIGN(n); size = PAGE_ALIGN(size);
if (resource_size(res) != n) { if (resource_size(res) != size) {
printk("pci_free_consistent: region 0x%lx asked 0x%lx\n", printk("%s: region 0x%lx asked 0x%zx\n", __func__,
(long)resource_size(res), (long)n); (long)resource_size(res), size);
return; return;
} }
dma_make_coherent(ba, n); dma_make_coherent(dma_addr, size);
srmmu_unmapiorange((unsigned long)p, n); srmmu_unmapiorange((unsigned long)cpu_addr, size);
release_resource(res); release_resource(res);
kfree(res); kfree(res);
free_pages((unsigned long)phys_to_virt(ba), get_order(n)); free_pages((unsigned long)phys_to_virt(dma_addr), get_order(size));
}
/*
* Same as pci_map_single, but with pages.
*/
static dma_addr_t pci32_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction dir,
unsigned long attrs)
{
/* IIep is write-through, not flushing. */
return page_to_phys(page) + offset;
}
static void pci32_unmap_page(struct device *dev, dma_addr_t ba, size_t size,
enum dma_data_direction dir, unsigned long attrs)
{
if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC))
dma_make_coherent(ba, PAGE_ALIGN(size));
}
/* Map a set of buffers described by scatterlist in streaming
* mode for DMA. This is the scatter-gather version of the
* above pci_map_single interface. Here the scatter gather list
* elements are each tagged with the appropriate dma address
* and length. They are obtained via sg_dma_{address,length}(SG).
*
* NOTE: An implementation may be able to use a smaller number of
* DMA address/length pairs than there are SG table elements.
* (for example via virtual mapping capabilities)
* The routine returns the number of addr/length pairs actually
* used, at most nents.
*
* Device ownership issues as mentioned above for pci_map_single are
* the same here.
*/
static int pci32_map_sg(struct device *device, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int n;
/* IIep is write-through, not flushing. */
for_each_sg(sgl, sg, nents, n) {
sg->dma_address = sg_phys(sg);
sg->dma_length = sg->length;
}
return nents;
}
/* Unmap a set of streaming mode DMA translations.
* Again, cpu read rules concerning calls here are the same as for
* pci_unmap_single() above.
*/
static void pci32_unmap_sg(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir,
unsigned long attrs)
{
struct scatterlist *sg;
int n;
if (dir != PCI_DMA_TODEVICE && !(attrs & DMA_ATTR_SKIP_CPU_SYNC)) {
for_each_sg(sgl, sg, nents, n) {
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
}
}
}
/* Make physical memory consistent for a single
* streaming mode DMA translation before or after a transfer.
*
* If you perform a pci_map_single() but wish to interrogate the
* buffer using the cpu, yet do not wish to teardown the PCI dma
* mapping, you must call this function before doing so. At the
* next point you give the PCI dma address back to the card, you
* must first perform a pci_dma_sync_for_device, and then the
* device again owns the buffer.
*/
static void pci32_sync_single_for_cpu(struct device *dev, dma_addr_t ba,
size_t size, enum dma_data_direction dir)
{
if (dir != PCI_DMA_TODEVICE) {
dma_make_coherent(ba, PAGE_ALIGN(size));
}
}
static void pci32_sync_single_for_device(struct device *dev, dma_addr_t ba,
size_t size, enum dma_data_direction dir)
{
if (dir != PCI_DMA_TODEVICE) {
dma_make_coherent(ba, PAGE_ALIGN(size));
}
} }
/* Make physical memory consistent for a set of streaming /* IIep is write-through, not flushing on cpu to device transfer. */
* mode DMA translations after a transfer.
*
* The same as pci_dma_sync_single_* but for a scatter-gather list,
* same rules and usage.
*/
static void pci32_sync_sg_for_cpu(struct device *dev, struct scatterlist *sgl,
int nents, enum dma_data_direction dir)
{
struct scatterlist *sg;
int n;
if (dir != PCI_DMA_TODEVICE) {
for_each_sg(sgl, sg, nents, n) {
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
}
}
}
static void pci32_sync_sg_for_device(struct device *device, struct scatterlist *sgl, void arch_sync_dma_for_cpu(struct device *dev, phys_addr_t paddr,
int nents, enum dma_data_direction dir) size_t size, enum dma_data_direction dir)
{ {
struct scatterlist *sg; if (dir != PCI_DMA_TODEVICE)
int n; dma_make_coherent(paddr, PAGE_ALIGN(size));
if (dir != PCI_DMA_TODEVICE) {
for_each_sg(sgl, sg, nents, n) {
dma_make_coherent(sg_phys(sg), PAGE_ALIGN(sg->length));
}
}
} }
/* note: leon re-uses pci32_dma_ops */
const struct dma_map_ops pci32_dma_ops = {
.alloc = pci32_alloc_coherent,
.free = pci32_free_coherent,
.map_page = pci32_map_page,
.unmap_page = pci32_unmap_page,
.map_sg = pci32_map_sg,
.unmap_sg = pci32_unmap_sg,
.sync_single_for_cpu = pci32_sync_single_for_cpu,
.sync_single_for_device = pci32_sync_single_for_device,
.sync_sg_for_cpu = pci32_sync_sg_for_cpu,
.sync_sg_for_device = pci32_sync_sg_for_device,
};
EXPORT_SYMBOL(pci32_dma_ops);
const struct dma_map_ops *dma_ops = &sbus_dma_ops; const struct dma_map_ops *dma_ops = &sbus_dma_ops;
EXPORT_SYMBOL(dma_ops); EXPORT_SYMBOL(dma_ops);
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include <linux/init.h> #include <linux/init.h>
#include <linux/highmem.h> #include <linux/highmem.h>
#include <linux/bootmem.h> #include <linux/bootmem.h>
#include <linux/memblock.h>
#include <linux/pagemap.h> #include <linux/pagemap.h>
#include <linux/poison.h> #include <linux/poison.h>
#include <linux/gfp.h> #include <linux/gfp.h>
...@@ -101,13 +102,46 @@ static unsigned long calc_max_low_pfn(void) ...@@ -101,13 +102,46 @@ static unsigned long calc_max_low_pfn(void)
return tmp; return tmp;
} }
static void __init find_ramdisk(unsigned long end_of_phys_memory)
{
#ifdef CONFIG_BLK_DEV_INITRD
unsigned long size;
/* Now have to check initial ramdisk, so that it won't pass
* the end of memory
*/
if (sparc_ramdisk_image) {
if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE)
sparc_ramdisk_image -= KERNBASE;
initrd_start = sparc_ramdisk_image + phys_base;
initrd_end = initrd_start + sparc_ramdisk_size;
if (initrd_end > end_of_phys_memory) {
printk(KERN_CRIT "initrd extends beyond end of memory "
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
initrd_end, end_of_phys_memory);
initrd_start = 0;
} else {
/* Reserve the initrd image area. */
size = initrd_end - initrd_start;
memblock_reserve(initrd_start, size);
initrd_start = (initrd_start - phys_base) + PAGE_OFFSET;
initrd_end = (initrd_end - phys_base) + PAGE_OFFSET;
}
}
#endif
}
unsigned long __init bootmem_init(unsigned long *pages_avail) unsigned long __init bootmem_init(unsigned long *pages_avail)
{ {
unsigned long bootmap_size, start_pfn; unsigned long start_pfn, bytes_avail, size;
unsigned long end_of_phys_memory = 0UL; unsigned long end_of_phys_memory = 0;
unsigned long bootmap_pfn, bytes_avail, size; unsigned long high_pages = 0;
int i; int i;
memblock_set_bottom_up(true);
memblock_allow_resize();
bytes_avail = 0UL; bytes_avail = 0UL;
for (i = 0; sp_banks[i].num_bytes != 0; i++) { for (i = 0; sp_banks[i].num_bytes != 0; i++) {
end_of_phys_memory = sp_banks[i].base_addr + end_of_phys_memory = sp_banks[i].base_addr +
...@@ -124,24 +158,25 @@ unsigned long __init bootmem_init(unsigned long *pages_avail) ...@@ -124,24 +158,25 @@ unsigned long __init bootmem_init(unsigned long *pages_avail)
if (sp_banks[i].num_bytes == 0) { if (sp_banks[i].num_bytes == 0) {
sp_banks[i].base_addr = 0xdeadbeef; sp_banks[i].base_addr = 0xdeadbeef;
} else { } else {
memblock_add(sp_banks[i].base_addr,
sp_banks[i].num_bytes);
sp_banks[i+1].num_bytes = 0; sp_banks[i+1].num_bytes = 0;
sp_banks[i+1].base_addr = 0xdeadbeef; sp_banks[i+1].base_addr = 0xdeadbeef;
} }
break; break;
} }
} }
memblock_add(sp_banks[i].base_addr, sp_banks[i].num_bytes);
} }
/* Start with page aligned address of last symbol in kernel /* Start with page aligned address of last symbol in kernel
* image. * image.
*/ */
start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end)); start_pfn = (unsigned long)__pa(PAGE_ALIGN((unsigned long) &_end));
/* Now shift down to get the real physical page frame number. */ /* Now shift down to get the real physical page frame number. */
start_pfn >>= PAGE_SHIFT; start_pfn >>= PAGE_SHIFT;
bootmap_pfn = start_pfn;
max_pfn = end_of_phys_memory >> PAGE_SHIFT; max_pfn = end_of_phys_memory >> PAGE_SHIFT;
max_low_pfn = max_pfn; max_low_pfn = max_pfn;
...@@ -150,85 +185,19 @@ unsigned long __init bootmem_init(unsigned long *pages_avail) ...@@ -150,85 +185,19 @@ unsigned long __init bootmem_init(unsigned long *pages_avail)
if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) { if (max_low_pfn > pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT)) {
highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT); highstart_pfn = pfn_base + (SRMMU_MAXMEM >> PAGE_SHIFT);
max_low_pfn = calc_max_low_pfn(); max_low_pfn = calc_max_low_pfn();
high_pages = calc_highpages();
printk(KERN_NOTICE "%ldMB HIGHMEM available.\n", printk(KERN_NOTICE "%ldMB HIGHMEM available.\n",
calc_highpages() >> (20 - PAGE_SHIFT)); high_pages >> (20 - PAGE_SHIFT));
} }
#ifdef CONFIG_BLK_DEV_INITRD find_ramdisk(end_of_phys_memory);
/* Now have to check initial ramdisk, so that bootmap does not overwrite it */
if (sparc_ramdisk_image) {
if (sparc_ramdisk_image >= (unsigned long)&_end - 2 * PAGE_SIZE)
sparc_ramdisk_image -= KERNBASE;
initrd_start = sparc_ramdisk_image + phys_base;
initrd_end = initrd_start + sparc_ramdisk_size;
if (initrd_end > end_of_phys_memory) {
printk(KERN_CRIT "initrd extends beyond end of memory "
"(0x%016lx > 0x%016lx)\ndisabling initrd\n",
initrd_end, end_of_phys_memory);
initrd_start = 0;
}
if (initrd_start) {
if (initrd_start >= (start_pfn << PAGE_SHIFT) &&
initrd_start < (start_pfn << PAGE_SHIFT) + 2 * PAGE_SIZE)
bootmap_pfn = PAGE_ALIGN (initrd_end) >> PAGE_SHIFT;
}
}
#endif
/* Initialize the boot-time allocator. */
bootmap_size = init_bootmem_node(NODE_DATA(0), bootmap_pfn, pfn_base,
max_low_pfn);
/* Now register the available physical memory with the
* allocator.
*/
*pages_avail = 0;
for (i = 0; sp_banks[i].num_bytes != 0; i++) {
unsigned long curr_pfn, last_pfn;
curr_pfn = sp_banks[i].base_addr >> PAGE_SHIFT;
if (curr_pfn >= max_low_pfn)
break;
last_pfn = (sp_banks[i].base_addr + sp_banks[i].num_bytes) >> PAGE_SHIFT;
if (last_pfn > max_low_pfn)
last_pfn = max_low_pfn;
/*
* .. finally, did all the rounding and playing
* around just make the area go away?
*/
if (last_pfn <= curr_pfn)
continue;
size = (last_pfn - curr_pfn) << PAGE_SHIFT;
*pages_avail += last_pfn - curr_pfn;
free_bootmem(sp_banks[i].base_addr, size);
}
#ifdef CONFIG_BLK_DEV_INITRD
if (initrd_start) {
/* Reserve the initrd image area. */
size = initrd_end - initrd_start;
reserve_bootmem(initrd_start, size, BOOTMEM_DEFAULT);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
initrd_start = (initrd_start - phys_base) + PAGE_OFFSET;
initrd_end = (initrd_end - phys_base) + PAGE_OFFSET;
}
#endif
/* Reserve the kernel text/data/bss. */ /* Reserve the kernel text/data/bss. */
size = (start_pfn << PAGE_SHIFT) - phys_base; size = (start_pfn << PAGE_SHIFT) - phys_base;
reserve_bootmem(phys_base, size, BOOTMEM_DEFAULT); memblock_reserve(phys_base, size);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
/* Reserve the bootmem map. We do not account for it size = memblock_phys_mem_size() - memblock_reserved_size();
* in pages_avail because we will release that memory *pages_avail = (size >> PAGE_SHIFT) - high_pages;
* in free_all_bootmem.
*/
size = bootmap_size;
reserve_bootmem((bootmap_pfn << PAGE_SHIFT), size, BOOTMEM_DEFAULT);
*pages_avail -= PAGE_ALIGN(size) >> PAGE_SHIFT;
return max_pfn; return max_pfn;
} }
...@@ -322,7 +291,7 @@ void __init mem_init(void) ...@@ -322,7 +291,7 @@ void __init mem_init(void)
map_high_region(start_pfn, end_pfn); map_high_region(start_pfn, end_pfn);
} }
mem_init_print_info(NULL); mem_init_print_info(NULL);
} }
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment