Commit 9ca5a183 authored by Cristian Marussi's avatar Cristian Marussi Committed by Sudeep Holla

firmware: arm_scmi: Introduce monotonically increasing tokens

Tokens are sequence numbers embedded in the each SCMI message header: they
are used to correlate commands with responses (and delayed responses), but
their usage and policy of selection is entirely up to the caller (usually
the OSPM agent), while they are completely opaque to the callee (i.e. SCMI
platform) which merely copies them back from the command into the response
message header.
This also means that the platform does not, can not and should not enforce
any kind of policy on received messages depending on the contained sequence
number: platform can perfectly handle concurrent requests carrying the same
identifiying token if that should happen.

Moreover the platform is not required to produce in-order responses to
agent requests, the only constraint in these regards is that in case of
an asynchronous message the delayed response must be sent after the
immediate response for the synchronous part of the command transaction.

Currenly the SCMI stack of the OSPM agent selects a token for the egressing
commands picking the lowest possible number which is not already in use by
an existing in-flight transaction, which means, in other words, that we
immediately reuse any token after its transaction has completed or it has
timed out: this policy indeed does simplify management and lookup of tokens
and associated xfers.

Under the above assumptions and constraints, since there is really no state
shared between the agent and the platform to let the platform know when a
token and its associated message has timed out, the current policy of early
reuse of tokens can easily lead to the situation in which a spurious or
late received response (or delayed_response), related to an old stale and
timed out transaction, can be wrongly associated to a newer valid in-flight
xfer that just happens to have reused the same token.

This misbehaviour on such late/spurious responses is more easily exposed on
those transports that naturally have an higher level of parallelism in
processing multiple concurrent in-flight messages.

This commit introduces a new policy of selection of tokens for the OSPM
agent: each new command transfer now gets the next available, monotonically
increasing token, until tokens are exhausted and the counter rolls over.

Such new policy mitigates the above issues with late/spurious responses
since the tokens are now reused as late as possible (when they roll back
ideally) and so it is much easier to identify such late/spurious responses
to stale timed out transactions: this also helps in simplifying the
specific transports implementation since stale transport messages can be
easily identified and discarded early on in the rx path without the need
to cross check their actual state with the core transport layer.
This mitigation is even more effective when, as is usually the case, the
maximum number of pending messages is capped by the platform to a much
lower number than the whole possible range of tokens values (2^10).

This internal policy change in the core SCMI transport layer is fully
transparent to the specific transports so it has not and should not have
any impact on the transports implementation.

Link: https://lore.kernel.org/r/20210803131024.40280-5-cristian.marussi@arm.comSigned-off-by: default avatarCristian Marussi <cristian.marussi@arm.com>
Signed-off-by: default avatarSudeep Holla <sudeep.holla@arm.com>
parent ceac257d
......@@ -14,6 +14,8 @@
#include <linux/device.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/hashtable.h>
#include <linux/list.h>
#include <linux/module.h>
#include <linux/scmi_protocol.h>
#include <linux/types.h>
......@@ -65,6 +67,16 @@ struct scmi_msg_resp_prot_version {
#define MSG_XTRACT_TOKEN(hdr) FIELD_GET(MSG_TOKEN_ID_MASK, (hdr))
#define MSG_TOKEN_MAX (MSG_XTRACT_TOKEN(MSG_TOKEN_ID_MASK) + 1)
/*
* Size of @pending_xfers hashtable included in @scmi_xfers_info; ideally, in
* order to minimize space and collisions, this should equal max_msg, i.e. the
* maximum number of in-flight messages on a specific platform, but such value
* is only available at runtime while kernel hashtables are statically sized:
* pick instead as a fixed static size the maximum number of entries that can
* fit the whole table into one 4k page.
*/
#define SCMI_PENDING_XFERS_HT_ORDER_SZ 9
/**
* struct scmi_msg_hdr - Message(Tx/Rx) header
*
......@@ -138,6 +150,9 @@ struct scmi_msg {
* buffer for the rx path as we use for the tx path.
* @done: command message transmit completion event
* @async_done: pointer to delayed response message received event completion
* @pending: True for xfers added to @pending_xfers hashtable
* @node: An hlist_node reference used to store this xfer, alternatively, on
* the free list @free_xfers or in the @pending_xfers hashtable
*/
struct scmi_xfer {
int transfer_id;
......@@ -146,8 +161,25 @@ struct scmi_xfer {
struct scmi_msg rx;
struct completion done;
struct completion *async_done;
bool pending;
struct hlist_node node;
};
/*
* An helper macro to lookup an xfer from the @pending_xfers hashtable
* using the message sequence number token as a key.
*/
#define XFER_FIND(__ht, __k) \
({ \
typeof(__k) k_ = __k; \
struct scmi_xfer *xfer_ = NULL; \
\
hash_for_each_possible((__ht), xfer_, node, k_) \
if (xfer_->hdr.seq == k_) \
break; \
xfer_; \
})
struct scmi_xfer_ops;
/**
......
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment