Commit 9f763fd2 authored by Leilk Liu's avatar Leilk Liu Committed by Mark Brown

spi: mediatek: add spi memory support for ipm design

this patch add the support of spi-mem for ipm design.
Signed-off-by: default avatarLeilk Liu <leilk.liu@mediatek.com>
Reviewed-by: default avatarAngeloGioacchino Del Regno <angelogioacchino.delregno@collabora.com>
Link: https://lore.kernel.org/r/20220321013922.24067-2-leilk.liu@mediatek.comSigned-off-by: default avatarMark Brown <broonie@kernel.org>
parent 31231092
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include <linux/platform_data/spi-mt65xx.h> #include <linux/platform_data/spi-mt65xx.h>
#include <linux/pm_runtime.h> #include <linux/pm_runtime.h>
#include <linux/spi/spi.h> #include <linux/spi/spi.h>
#include <linux/spi/spi-mem.h>
#include <linux/dma-mapping.h> #include <linux/dma-mapping.h>
#define SPI_CFG0_REG 0x0000 #define SPI_CFG0_REG 0x0000
...@@ -78,8 +79,20 @@ ...@@ -78,8 +79,20 @@
#define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22 #define SPI_CMD_IPM_GET_TICKDLY_OFFSET 22
#define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22) #define SPI_CMD_IPM_GET_TICKDLY_MASK GENMASK(24, 22)
#define PIN_MODE_CFG(x) ((x) / 2)
#define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2) #define SPI_CFG3_IPM_HALF_DUPLEX_DIR BIT(2)
#define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3) #define SPI_CFG3_IPM_HALF_DUPLEX_EN BIT(3)
#define SPI_CFG3_IPM_XMODE_EN BIT(4)
#define SPI_CFG3_IPM_NODATA_FLAG BIT(5)
#define SPI_CFG3_IPM_CMD_BYTELEN_OFFSET 8
#define SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET 12
#define SPI_CFG3_IPM_CMD_PIN_MODE_MASK GENMASK(1, 0)
#define SPI_CFG3_IPM_CMD_BYTELEN_MASK GENMASK(11, 8)
#define SPI_CFG3_IPM_ADDR_BYTELEN_MASK GENMASK(15, 12)
#define MT8173_SPI_MAX_PAD_SEL 3 #define MT8173_SPI_MAX_PAD_SEL 3
#define MTK_SPI_PAUSE_INT_STATUS 0x2 #define MTK_SPI_PAUSE_INT_STATUS 0x2
...@@ -90,6 +103,8 @@ ...@@ -90,6 +103,8 @@
#define MTK_SPI_MAX_FIFO_SIZE 32U #define MTK_SPI_MAX_FIFO_SIZE 32U
#define MTK_SPI_PACKET_SIZE 1024 #define MTK_SPI_PACKET_SIZE 1024
#define MTK_SPI_IPM_PACKET_SIZE SZ_64K #define MTK_SPI_IPM_PACKET_SIZE SZ_64K
#define MTK_SPI_IPM_PACKET_LOOP SZ_256
#define MTK_SPI_32BITS_MASK (0xffffffff) #define MTK_SPI_32BITS_MASK (0xffffffff)
#define DMA_ADDR_EXT_BITS (36) #define DMA_ADDR_EXT_BITS (36)
...@@ -107,7 +122,6 @@ struct mtk_spi_compatible { ...@@ -107,7 +122,6 @@ struct mtk_spi_compatible {
bool no_need_unprepare; bool no_need_unprepare;
/* IPM design adjust and extend register to support more features */ /* IPM design adjust and extend register to support more features */
bool ipm_design; bool ipm_design;
}; };
struct mtk_spi { struct mtk_spi {
...@@ -123,6 +137,11 @@ struct mtk_spi { ...@@ -123,6 +137,11 @@ struct mtk_spi {
u32 tx_sgl_len, rx_sgl_len; u32 tx_sgl_len, rx_sgl_len;
const struct mtk_spi_compatible *dev_comp; const struct mtk_spi_compatible *dev_comp;
u32 spi_clk_hz; u32 spi_clk_hz;
struct completion spimem_done;
bool use_spimem;
struct device *dev;
dma_addr_t tx_dma;
dma_addr_t rx_dma;
}; };
static const struct mtk_spi_compatible mtk_common_compat; static const struct mtk_spi_compatible mtk_common_compat;
...@@ -704,6 +723,12 @@ static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id) ...@@ -704,6 +723,12 @@ static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
else else
mdata->state = MTK_SPI_IDLE; mdata->state = MTK_SPI_IDLE;
/* SPI-MEM ops */
if (mdata->use_spimem) {
complete(&mdata->spimem_done);
return IRQ_HANDLED;
}
if (!master->can_dma(master, NULL, trans)) { if (!master->can_dma(master, NULL, trans)) {
if (trans->rx_buf) { if (trans->rx_buf) {
cnt = mdata->xfer_len / 4; cnt = mdata->xfer_len / 4;
...@@ -787,6 +812,274 @@ static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id) ...@@ -787,6 +812,274 @@ static irqreturn_t mtk_spi_interrupt(int irq, void *dev_id)
return IRQ_HANDLED; return IRQ_HANDLED;
} }
static int mtk_spi_mem_adjust_op_size(struct spi_mem *mem,
struct spi_mem_op *op)
{
int opcode_len;
if (op->data.dir != SPI_MEM_NO_DATA) {
opcode_len = 1 + op->addr.nbytes + op->dummy.nbytes;
if (opcode_len + op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
op->data.nbytes = MTK_SPI_IPM_PACKET_SIZE - opcode_len;
/* force data buffer dma-aligned. */
op->data.nbytes -= op->data.nbytes % 4;
}
}
return 0;
}
static bool mtk_spi_mem_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (op->addr.nbytes && op->dummy.nbytes &&
op->addr.buswidth != op->dummy.buswidth)
return false;
if (op->addr.nbytes + op->dummy.nbytes > 16)
return false;
if (op->data.nbytes > MTK_SPI_IPM_PACKET_SIZE) {
if (op->data.nbytes / MTK_SPI_IPM_PACKET_SIZE >
MTK_SPI_IPM_PACKET_LOOP ||
op->data.nbytes % MTK_SPI_IPM_PACKET_SIZE != 0)
return false;
}
return true;
}
static void mtk_spi_mem_setup_dma_xfer(struct spi_master *master,
const struct spi_mem_op *op)
{
struct mtk_spi *mdata = spi_master_get_devdata(master);
writel((u32)(mdata->tx_dma & MTK_SPI_32BITS_MASK),
mdata->base + SPI_TX_SRC_REG);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (mdata->dev_comp->dma_ext)
writel((u32)(mdata->tx_dma >> 32),
mdata->base + SPI_TX_SRC_REG_64);
#endif
if (op->data.dir == SPI_MEM_DATA_IN) {
writel((u32)(mdata->rx_dma & MTK_SPI_32BITS_MASK),
mdata->base + SPI_RX_DST_REG);
#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
if (mdata->dev_comp->dma_ext)
writel((u32)(mdata->rx_dma >> 32),
mdata->base + SPI_RX_DST_REG_64);
#endif
}
}
static int mtk_spi_transfer_wait(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
/*
* For each byte we wait for 8 cycles of the SPI clock.
* Since speed is defined in Hz and we want milliseconds,
* so it should be 8 * 1000.
*/
u64 ms = 8000LL;
if (op->data.dir == SPI_MEM_NO_DATA)
ms *= 32; /* prevent we may get 0 for short transfers. */
else
ms *= op->data.nbytes;
ms = div_u64(ms, mem->spi->max_speed_hz);
ms += ms + 1000; /* 1s tolerance */
if (ms > UINT_MAX)
ms = UINT_MAX;
if (!wait_for_completion_timeout(&mdata->spimem_done,
msecs_to_jiffies(ms))) {
dev_err(mdata->dev, "spi-mem transfer timeout\n");
return -ETIMEDOUT;
}
return 0;
}
static int mtk_spi_mem_exec_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
struct mtk_spi *mdata = spi_master_get_devdata(mem->spi->master);
u32 reg_val, nio, tx_size;
char *tx_tmp_buf, *rx_tmp_buf;
int ret = 0;
mdata->use_spimem = true;
reinit_completion(&mdata->spimem_done);
mtk_spi_reset(mdata);
mtk_spi_hw_init(mem->spi->master, mem->spi);
mtk_spi_prepare_transfer(mem->spi->master, mem->spi->max_speed_hz);
reg_val = readl(mdata->base + SPI_CFG3_IPM_REG);
/* opcode byte len */
reg_val &= ~SPI_CFG3_IPM_CMD_BYTELEN_MASK;
reg_val |= 1 << SPI_CFG3_IPM_CMD_BYTELEN_OFFSET;
/* addr & dummy byte len */
reg_val &= ~SPI_CFG3_IPM_ADDR_BYTELEN_MASK;
if (op->addr.nbytes || op->dummy.nbytes)
reg_val |= (op->addr.nbytes + op->dummy.nbytes) <<
SPI_CFG3_IPM_ADDR_BYTELEN_OFFSET;
/* data byte len */
if (op->data.dir == SPI_MEM_NO_DATA) {
reg_val |= SPI_CFG3_IPM_NODATA_FLAG;
writel(0, mdata->base + SPI_CFG1_REG);
} else {
reg_val &= ~SPI_CFG3_IPM_NODATA_FLAG;
mdata->xfer_len = op->data.nbytes;
mtk_spi_setup_packet(mem->spi->master);
}
if (op->addr.nbytes || op->dummy.nbytes) {
if (op->addr.buswidth == 1 || op->dummy.buswidth == 1)
reg_val |= SPI_CFG3_IPM_XMODE_EN;
else
reg_val &= ~SPI_CFG3_IPM_XMODE_EN;
}
if (op->addr.buswidth == 2 ||
op->dummy.buswidth == 2 ||
op->data.buswidth == 2)
nio = 2;
else if (op->addr.buswidth == 4 ||
op->dummy.buswidth == 4 ||
op->data.buswidth == 4)
nio = 4;
else
nio = 1;
reg_val &= ~SPI_CFG3_IPM_CMD_PIN_MODE_MASK;
reg_val |= PIN_MODE_CFG(nio);
reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_EN;
if (op->data.dir == SPI_MEM_DATA_IN)
reg_val |= SPI_CFG3_IPM_HALF_DUPLEX_DIR;
else
reg_val &= ~SPI_CFG3_IPM_HALF_DUPLEX_DIR;
writel(reg_val, mdata->base + SPI_CFG3_IPM_REG);
tx_size = 1 + op->addr.nbytes + op->dummy.nbytes;
if (op->data.dir == SPI_MEM_DATA_OUT)
tx_size += op->data.nbytes;
tx_size = max_t(u32, tx_size, 32);
tx_tmp_buf = kzalloc(tx_size, GFP_KERNEL | GFP_DMA);
if (!tx_tmp_buf) {
mdata->use_spimem = false;
return -ENOMEM;
}
tx_tmp_buf[0] = op->cmd.opcode;
if (op->addr.nbytes) {
int i;
for (i = 0; i < op->addr.nbytes; i++)
tx_tmp_buf[i + 1] = op->addr.val >>
(8 * (op->addr.nbytes - i - 1));
}
if (op->dummy.nbytes)
memset(tx_tmp_buf + op->addr.nbytes + 1,
0xff,
op->dummy.nbytes);
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
memcpy(tx_tmp_buf + op->dummy.nbytes + op->addr.nbytes + 1,
op->data.buf.out,
op->data.nbytes);
mdata->tx_dma = dma_map_single(mdata->dev, tx_tmp_buf,
tx_size, DMA_TO_DEVICE);
if (dma_mapping_error(mdata->dev, mdata->tx_dma)) {
ret = -ENOMEM;
goto err_exit;
}
if (op->data.dir == SPI_MEM_DATA_IN) {
if (!IS_ALIGNED((size_t)op->data.buf.in, 4)) {
rx_tmp_buf = kzalloc(op->data.nbytes,
GFP_KERNEL | GFP_DMA);
if (!rx_tmp_buf) {
ret = -ENOMEM;
goto unmap_tx_dma;
}
} else {
rx_tmp_buf = op->data.buf.in;
}
mdata->rx_dma = dma_map_single(mdata->dev,
rx_tmp_buf,
op->data.nbytes,
DMA_FROM_DEVICE);
if (dma_mapping_error(mdata->dev, mdata->rx_dma)) {
ret = -ENOMEM;
goto kfree_rx_tmp_buf;
}
}
reg_val = readl(mdata->base + SPI_CMD_REG);
reg_val |= SPI_CMD_TX_DMA;
if (op->data.dir == SPI_MEM_DATA_IN)
reg_val |= SPI_CMD_RX_DMA;
writel(reg_val, mdata->base + SPI_CMD_REG);
mtk_spi_mem_setup_dma_xfer(mem->spi->master, op);
mtk_spi_enable_transfer(mem->spi->master);
/* Wait for the interrupt. */
ret = mtk_spi_transfer_wait(mem, op);
if (ret)
goto unmap_rx_dma;
/* spi disable dma */
reg_val = readl(mdata->base + SPI_CMD_REG);
reg_val &= ~SPI_CMD_TX_DMA;
if (op->data.dir == SPI_MEM_DATA_IN)
reg_val &= ~SPI_CMD_RX_DMA;
writel(reg_val, mdata->base + SPI_CMD_REG);
unmap_rx_dma:
if (op->data.dir == SPI_MEM_DATA_IN) {
dma_unmap_single(mdata->dev, mdata->rx_dma,
op->data.nbytes, DMA_FROM_DEVICE);
if (!IS_ALIGNED((size_t)op->data.buf.in, 4))
memcpy(op->data.buf.in, rx_tmp_buf, op->data.nbytes);
}
kfree_rx_tmp_buf:
if (op->data.dir == SPI_MEM_DATA_IN &&
!IS_ALIGNED((size_t)op->data.buf.in, 4))
kfree(rx_tmp_buf);
unmap_tx_dma:
dma_unmap_single(mdata->dev, mdata->tx_dma,
tx_size, DMA_TO_DEVICE);
err_exit:
kfree(tx_tmp_buf);
mdata->use_spimem = false;
return ret;
}
static const struct spi_controller_mem_ops mtk_spi_mem_ops = {
.adjust_op_size = mtk_spi_mem_adjust_op_size,
.supports_op = mtk_spi_mem_supports_op,
.exec_op = mtk_spi_mem_exec_op,
};
static int mtk_spi_probe(struct platform_device *pdev) static int mtk_spi_probe(struct platform_device *pdev)
{ {
struct spi_master *master; struct spi_master *master;
...@@ -830,6 +1123,12 @@ static int mtk_spi_probe(struct platform_device *pdev) ...@@ -830,6 +1123,12 @@ static int mtk_spi_probe(struct platform_device *pdev)
if (mdata->dev_comp->ipm_design) if (mdata->dev_comp->ipm_design)
master->mode_bits |= SPI_LOOP; master->mode_bits |= SPI_LOOP;
if (mdata->dev_comp->ipm_design) {
mdata->dev = &pdev->dev;
master->mem_ops = &mtk_spi_mem_ops;
init_completion(&mdata->spimem_done);
}
if (mdata->dev_comp->need_pad_sel) { if (mdata->dev_comp->need_pad_sel) {
mdata->pad_num = of_property_count_u32_elems( mdata->pad_num = of_property_count_u32_elems(
pdev->dev.of_node, pdev->dev.of_node,
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment