Commit a00b8f1a authored by Matthew Auld's avatar Matthew Auld Committed by Rodrigo Vivi

drm/xe: fix xe_device_mem_access_get() races

It looks like there is at least one race here, given that the
pm_runtime_suspended() check looks to return false if we are in the
process of suspending the device (RPM_SUSPENDING vs RPM_SUSPENDED).  We
later also do xe_pm_runtime_get_if_active(), but since the device is
suspending or has now suspended, this doesn't do anything either.
Following from this we can potentially return from
xe_device_mem_access_get() with the device suspended or about to be,
leading to broken behaviour.

Attempt to fix this by always grabbing the runtime ref when our internal
ref transitions from 0 -> 1. The hard part is then dealing with the
runtime_pm callbacks also calling xe_device_mem_access_get() and
deadlocking, which the pm_runtime_suspended() check prevented.

v2:
 - ct->lock looks to be primed with fs_reclaim, so holding that and then
   allocating memory will cause lockdep to complain. Now that we
   unconditionally grab the mem_access.lock around mem_access_{get,put}, we
   need to change the ordering wrt to grabbing the ct->lock, since some of
   the runtime_pm routines can allocate memory (or at least that's what
   lockdep seems to suggest). Hopefully not a big deal.  It might be that
   there were already issues with this, just that the atomics where
   "hiding" the potential issues.
v3:
 - Use Thomas Hellström' idea with tracking the active task that is
   executing in the resume or suspend callback, in order to avoid
   recursive resume/suspend calls deadlocking on itself.
 - Split the ct->lock change.
v4:
 - Add smb_mb() around accessing the pm_callback_task for extra safety.
   (Thomas Hellström)
v5:
 - Clarify the kernel-doc for the mem_access.lock, given that it is quite
   strange in what it protects (data vs code). The real motivation is to
   aid lockdep. (Rodrigo Vivi)
v6:
 - Split out the lock change. We still want this as a lockdep aid but
   only for the xe_device_mem_access_get() path. Sticking a lock on the
   put() looks be a no-go, also the runtime_put() there is always async.
 - Now that the lock is gone move to atomics and rely on the pm code
   serialising multiple callers on the 0 -> 1 transition.
 - g2h_worker_func() looks to be the next issue, given that
   suspend-resume callbacks are using CT, so try to handle that.
v7:
 - Add xe_device_mem_access_get_if_ongoing(), and use it in
   g2h_worker_func().
v8 (Anshuman):
 - Just always grab the rpm, instead of just on the 0 -> 1 transition,
   which is a lot clearer and simplifies the code quite a bit.
v9:
 - Make sure we also adjust the CT fast-path with if-active.

Closes: https://gitlab.freedesktop.org/drm/xe/kernel/-/issues/258Signed-off-by: default avatarMatthew Auld <matthew.auld@intel.com>
Cc: Rodrigo Vivi <rodrigo.vivi@intel.com>
Cc: Thomas Hellström <thomas.hellstrom@linux.intel.com>
Cc: Matthew Brost <matthew.brost@intel.com>
Cc: Anshuman Gupta <anshuman.gupta@intel.com>
Acked-by: default avatarAnshuman Gupta <anshuman.gupta@intel.com>
Reviewed-by: default avatarRodrigo Vivi <rodrigo.vivi@intel.com>
Signed-off-by: default avatarRodrigo Vivi <rodrigo.vivi@intel.com>
parent 09d88e3b
...@@ -364,32 +364,66 @@ u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size) ...@@ -364,32 +364,66 @@ u32 xe_device_ccs_bytes(struct xe_device *xe, u64 size)
DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0; DIV_ROUND_UP(size, NUM_BYTES_PER_CCS_BYTE) : 0;
} }
bool xe_device_mem_access_get_if_ongoing(struct xe_device *xe) bool xe_device_mem_access_ongoing(struct xe_device *xe)
{ {
return atomic_inc_not_zero(&xe->mem_access.ref); if (xe_pm_read_callback_task(xe) != NULL)
return true;
return atomic_read(&xe->mem_access.ref);
} }
void xe_device_mem_access_get(struct xe_device *xe) void xe_device_assert_mem_access(struct xe_device *xe)
{
XE_WARN_ON(!xe_device_mem_access_ongoing(xe));
}
bool xe_device_mem_access_get_if_ongoing(struct xe_device *xe)
{ {
bool resumed = xe_pm_runtime_resume_if_suspended(xe); bool active;
if (xe_pm_read_callback_task(xe) == current)
return true;
active = xe_pm_runtime_get_if_active(xe);
if (active) {
int ref = atomic_inc_return(&xe->mem_access.ref); int ref = atomic_inc_return(&xe->mem_access.ref);
if (ref == 1) XE_WARN_ON(ref == S32_MAX);
xe->mem_access.hold_rpm = xe_pm_runtime_get_if_active(xe); }
/* The usage counter increased if device was immediately resumed */ return active;
if (resumed) }
xe_pm_runtime_put(xe);
void xe_device_mem_access_get(struct xe_device *xe)
{
int ref;
/*
* This looks racy, but should be fine since the pm_callback_task only
* transitions from NULL -> current (and back to NULL again), during the
* runtime_resume() or runtime_suspend() callbacks, for which there can
* only be a single one running for our device. We only need to prevent
* recursively calling the runtime_get or runtime_put from those
* callbacks, as well as preventing triggering any access_ongoing
* asserts.
*/
if (xe_pm_read_callback_task(xe) == current)
return;
xe_pm_runtime_get(xe);
ref = atomic_inc_return(&xe->mem_access.ref);
XE_WARN_ON(ref == S32_MAX); XE_WARN_ON(ref == S32_MAX);
} }
void xe_device_mem_access_put(struct xe_device *xe) void xe_device_mem_access_put(struct xe_device *xe)
{ {
bool hold = xe->mem_access.hold_rpm; int ref;
int ref = atomic_dec_return(&xe->mem_access.ref);
if (xe_pm_read_callback_task(xe) == current)
return;
if (!ref && hold) ref = atomic_dec_return(&xe->mem_access.ref);
xe_pm_runtime_put(xe); xe_pm_runtime_put(xe);
XE_WARN_ON(ref < 0); XE_WARN_ON(ref < 0);
......
...@@ -141,15 +141,8 @@ void xe_device_mem_access_get(struct xe_device *xe); ...@@ -141,15 +141,8 @@ void xe_device_mem_access_get(struct xe_device *xe);
bool xe_device_mem_access_get_if_ongoing(struct xe_device *xe); bool xe_device_mem_access_get_if_ongoing(struct xe_device *xe);
void xe_device_mem_access_put(struct xe_device *xe); void xe_device_mem_access_put(struct xe_device *xe);
static inline bool xe_device_mem_access_ongoing(struct xe_device *xe) void xe_device_assert_mem_access(struct xe_device *xe);
{ bool xe_device_mem_access_ongoing(struct xe_device *xe);
return atomic_read(&xe->mem_access.ref);
}
static inline void xe_device_assert_mem_access(struct xe_device *xe)
{
XE_WARN_ON(!xe_device_mem_access_ongoing(xe));
}
static inline bool xe_device_in_fault_mode(struct xe_device *xe) static inline bool xe_device_in_fault_mode(struct xe_device *xe)
{ {
......
...@@ -323,8 +323,6 @@ struct xe_device { ...@@ -323,8 +323,6 @@ struct xe_device {
struct { struct {
/** @ref: ref count of memory accesses */ /** @ref: ref count of memory accesses */
atomic_t ref; atomic_t ref;
/** @hold_rpm: need to put rpm ref back at the end */
bool hold_rpm;
} mem_access; } mem_access;
/** @d3cold: Encapsulate d3cold related stuff */ /** @d3cold: Encapsulate d3cold related stuff */
...@@ -352,6 +350,12 @@ struct xe_device { ...@@ -352,6 +350,12 @@ struct xe_device {
struct mutex lock; struct mutex lock;
} d3cold; } d3cold;
/**
* @pm_callback_task: Track the active task that is running in either
* the runtime_suspend or runtime_resume callbacks.
*/
struct task_struct *pm_callback_task;
/* For pcode */ /* For pcode */
struct mutex sb_lock; struct mutex sb_lock;
......
...@@ -19,6 +19,7 @@ ...@@ -19,6 +19,7 @@
#include "xe_guc.h" #include "xe_guc.h"
#include "xe_guc_submit.h" #include "xe_guc_submit.h"
#include "xe_map.h" #include "xe_map.h"
#include "xe_pm.h"
#include "xe_trace.h" #include "xe_trace.h"
/* Used when a CT send wants to block and / or receive data */ /* Used when a CT send wants to block and / or receive data */
...@@ -1046,9 +1047,11 @@ static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len) ...@@ -1046,9 +1047,11 @@ static void g2h_fast_path(struct xe_guc_ct *ct, u32 *msg, u32 len)
void xe_guc_ct_fast_path(struct xe_guc_ct *ct) void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
{ {
struct xe_device *xe = ct_to_xe(ct); struct xe_device *xe = ct_to_xe(ct);
bool ongoing;
int len; int len;
if (!xe_device_mem_access_get_if_ongoing(xe)) ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
return; return;
spin_lock(&ct->fast_lock); spin_lock(&ct->fast_lock);
...@@ -1059,6 +1062,7 @@ void xe_guc_ct_fast_path(struct xe_guc_ct *ct) ...@@ -1059,6 +1062,7 @@ void xe_guc_ct_fast_path(struct xe_guc_ct *ct)
} while (len > 0); } while (len > 0);
spin_unlock(&ct->fast_lock); spin_unlock(&ct->fast_lock);
if (ongoing)
xe_device_mem_access_put(xe); xe_device_mem_access_put(xe);
} }
...@@ -1090,9 +1094,36 @@ static int dequeue_one_g2h(struct xe_guc_ct *ct) ...@@ -1090,9 +1094,36 @@ static int dequeue_one_g2h(struct xe_guc_ct *ct)
static void g2h_worker_func(struct work_struct *w) static void g2h_worker_func(struct work_struct *w)
{ {
struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker); struct xe_guc_ct *ct = container_of(w, struct xe_guc_ct, g2h_worker);
bool ongoing;
int ret; int ret;
xe_device_mem_access_get(ct_to_xe(ct)); /*
* Normal users must always hold mem_access.ref around CT calls. However
* during the runtime pm callbacks we rely on CT to talk to the GuC, but
* at this stage we can't rely on mem_access.ref and even the
* callback_task will be different than current. For such cases we just
* need to ensure we always process the responses from any blocking
* ct_send requests or where we otherwise expect some response when
* initiated from those callbacks (which will need to wait for the below
* dequeue_one_g2h()). The dequeue_one_g2h() will gracefully fail if
* the device has suspended to the point that the CT communication has
* been disabled.
*
* If we are inside the runtime pm callback, we can be the only task
* still issuing CT requests (since that requires having the
* mem_access.ref). It seems like it might in theory be possible to
* receive unsolicited events from the GuC just as we are
* suspending-resuming, but those will currently anyway be lost when
* eventually exiting from suspend, hence no need to wake up the device
* here. If we ever need something stronger than get_if_ongoing() then
* we need to be careful with blocking the pm callbacks from getting CT
* responses, if the worker here is blocked on those callbacks
* completing, creating a deadlock.
*/
ongoing = xe_device_mem_access_get_if_ongoing(ct_to_xe(ct));
if (!ongoing && xe_pm_read_callback_task(ct_to_xe(ct)) == NULL)
return;
do { do {
mutex_lock(&ct->lock); mutex_lock(&ct->lock);
ret = dequeue_one_g2h(ct); ret = dequeue_one_g2h(ct);
...@@ -1106,6 +1137,8 @@ static void g2h_worker_func(struct work_struct *w) ...@@ -1106,6 +1137,8 @@ static void g2h_worker_func(struct work_struct *w)
kick_reset(ct); kick_reset(ct);
} }
} while (ret == 1); } while (ret == 1);
if (ongoing)
xe_device_mem_access_put(ct_to_xe(ct)); xe_device_mem_access_put(ct_to_xe(ct));
} }
......
...@@ -155,37 +155,65 @@ void xe_pm_runtime_fini(struct xe_device *xe) ...@@ -155,37 +155,65 @@ void xe_pm_runtime_fini(struct xe_device *xe)
pm_runtime_forbid(dev); pm_runtime_forbid(dev);
} }
static void xe_pm_write_callback_task(struct xe_device *xe,
struct task_struct *task)
{
WRITE_ONCE(xe->pm_callback_task, task);
/*
* Just in case it's somehow possible for our writes to be reordered to
* the extent that something else re-uses the task written in
* pm_callback_task. For example after returning from the callback, but
* before the reordered write that resets pm_callback_task back to NULL.
*/
smp_mb(); /* pairs with xe_pm_read_callback_task */
}
struct task_struct *xe_pm_read_callback_task(struct xe_device *xe)
{
smp_mb(); /* pairs with xe_pm_write_callback_task */
return READ_ONCE(xe->pm_callback_task);
}
int xe_pm_runtime_suspend(struct xe_device *xe) int xe_pm_runtime_suspend(struct xe_device *xe)
{ {
struct xe_gt *gt; struct xe_gt *gt;
u8 id; u8 id;
int err; int err = 0;
if (xe->d3cold.allowed) { if (xe->d3cold.allowed && xe_device_mem_access_ongoing(xe))
if (xe_device_mem_access_ongoing(xe))
return -EBUSY; return -EBUSY;
/* Disable access_ongoing asserts and prevent recursive pm calls */
xe_pm_write_callback_task(xe, current);
if (xe->d3cold.allowed) {
err = xe_bo_evict_all(xe); err = xe_bo_evict_all(xe);
if (err) if (err)
return err; goto out;
} }
for_each_gt(gt, xe, id) { for_each_gt(gt, xe, id) {
err = xe_gt_suspend(gt); err = xe_gt_suspend(gt);
if (err) if (err)
return err; goto out;
} }
xe_irq_suspend(xe); xe_irq_suspend(xe);
out:
return 0; xe_pm_write_callback_task(xe, NULL);
return err;
} }
int xe_pm_runtime_resume(struct xe_device *xe) int xe_pm_runtime_resume(struct xe_device *xe)
{ {
struct xe_gt *gt; struct xe_gt *gt;
u8 id; u8 id;
int err; int err = 0;
/* Disable access_ongoing asserts and prevent recursive pm calls */
xe_pm_write_callback_task(xe, current);
/* /*
* It can be possible that xe has allowed d3cold but other pcie devices * It can be possible that xe has allowed d3cold but other pcie devices
...@@ -199,7 +227,7 @@ int xe_pm_runtime_resume(struct xe_device *xe) ...@@ -199,7 +227,7 @@ int xe_pm_runtime_resume(struct xe_device *xe)
for_each_gt(gt, xe, id) { for_each_gt(gt, xe, id) {
err = xe_pcode_init(gt); err = xe_pcode_init(gt);
if (err) if (err)
return err; goto out;
} }
/* /*
...@@ -208,7 +236,7 @@ int xe_pm_runtime_resume(struct xe_device *xe) ...@@ -208,7 +236,7 @@ int xe_pm_runtime_resume(struct xe_device *xe)
*/ */
err = xe_bo_restore_kernel(xe); err = xe_bo_restore_kernel(xe);
if (err) if (err)
return err; goto out;
} }
xe_irq_resume(xe); xe_irq_resume(xe);
...@@ -219,10 +247,11 @@ int xe_pm_runtime_resume(struct xe_device *xe) ...@@ -219,10 +247,11 @@ int xe_pm_runtime_resume(struct xe_device *xe)
if (xe->d3cold.allowed && xe->d3cold.power_lost) { if (xe->d3cold.allowed && xe->d3cold.power_lost) {
err = xe_bo_restore_user(xe); err = xe_bo_restore_user(xe);
if (err) if (err)
return err; goto out;
} }
out:
return 0; xe_pm_write_callback_task(xe, NULL);
return err;
} }
int xe_pm_runtime_get(struct xe_device *xe) int xe_pm_runtime_get(struct xe_device *xe)
...@@ -236,19 +265,8 @@ int xe_pm_runtime_put(struct xe_device *xe) ...@@ -236,19 +265,8 @@ int xe_pm_runtime_put(struct xe_device *xe)
return pm_runtime_put_autosuspend(xe->drm.dev); return pm_runtime_put_autosuspend(xe->drm.dev);
} }
/* Return true if resume operation happened and usage count was increased */
bool xe_pm_runtime_resume_if_suspended(struct xe_device *xe)
{
/* In case we are suspended we need to immediately wake up */
if (pm_runtime_suspended(xe->drm.dev))
return !pm_runtime_resume_and_get(xe->drm.dev);
return false;
}
int xe_pm_runtime_get_if_active(struct xe_device *xe) int xe_pm_runtime_get_if_active(struct xe_device *xe)
{ {
WARN_ON(pm_runtime_suspended(xe->drm.dev));
return pm_runtime_get_if_active(xe->drm.dev, true); return pm_runtime_get_if_active(xe->drm.dev, true);
} }
......
...@@ -21,10 +21,10 @@ int xe_pm_runtime_suspend(struct xe_device *xe); ...@@ -21,10 +21,10 @@ int xe_pm_runtime_suspend(struct xe_device *xe);
int xe_pm_runtime_resume(struct xe_device *xe); int xe_pm_runtime_resume(struct xe_device *xe);
int xe_pm_runtime_get(struct xe_device *xe); int xe_pm_runtime_get(struct xe_device *xe);
int xe_pm_runtime_put(struct xe_device *xe); int xe_pm_runtime_put(struct xe_device *xe);
bool xe_pm_runtime_resume_if_suspended(struct xe_device *xe);
int xe_pm_runtime_get_if_active(struct xe_device *xe); int xe_pm_runtime_get_if_active(struct xe_device *xe);
void xe_pm_assert_unbounded_bridge(struct xe_device *xe); void xe_pm_assert_unbounded_bridge(struct xe_device *xe);
int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold); int xe_pm_set_vram_threshold(struct xe_device *xe, u32 threshold);
void xe_pm_d3cold_allowed_toggle(struct xe_device *xe); void xe_pm_d3cold_allowed_toggle(struct xe_device *xe);
struct task_struct *xe_pm_read_callback_task(struct xe_device *xe);
#endif #endif
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment