Commit a2db23c1 authored by Chia-Wei Wang's avatar Chia-Wei Wang Committed by Rob Herring

dt-bindings: mfd: aspeed-lpc: Convert to YAML schema

Convert the bindings of Aspeed LPC from text file into YAML schema.
Signed-off-by: default avatarChia-Wei Wang <chiawei_wang@aspeedtech.com>
Link: https://lore.kernel.org/r/20210927023053.6728-3-chiawei_wang@aspeedtech.com
[robh: Add 'additionalProperties: false' in child nodes and #reset-cells]
Signed-off-by: default avatarRob Herring <robh@kernel.org>
parent 9ae9c51b
======================================================================
Device tree bindings for the Aspeed Low Pin Count (LPC) Bus Controller
======================================================================
The LPC bus is a means to bridge a host CPU to a number of low-bandwidth
peripheral devices, replacing the use of the ISA bus in the age of PCI[0]. The
primary use case of the Aspeed LPC controller is as a slave on the bus
(typically in a Baseboard Management Controller SoC), but under certain
conditions it can also take the role of bus master.
The LPC controller is represented as a multi-function device to account for the
mix of functionality, which includes, but is not limited to:
* An IPMI Block Transfer[2] Controller
* An LPC Host Controller: Manages LPC functions such as host vs slave mode, the
physical properties of some LPC pins, configuration of serial IRQs, and
APB-to-LPC bridging amonst other functions.
* An LPC Host Interface Controller: Manages functions exposed to the host such
as LPC firmware hub cycles, configuration of the LPC-to-AHB mapping, UART
management and bus snoop configuration.
* A set of SuperIO[3] scratch registers: Enables implementation of e.g. custom
hardware management protocols for handover between the host and baseboard
management controller.
Additionally the state of the LPC controller influences the pinmux
configuration, therefore the host portion of the controller is exposed as a
syscon as a means to arbitrate access.
[0] http://www.intel.com/design/chipsets/industry/25128901.pdf
[1] https://www.renesas.com/en-sg/doc/products/mpumcu/001/rej09b0078_h8s2168.pdf?key=7c88837454702128622bee53acbda8f4
[2] https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ipmi-second-gen-interface-spec-v2-rev1-1.pdf
[3] https://en.wikipedia.org/wiki/Super_I/O
Required properties
===================
- compatible: One of:
"aspeed,ast2400-lpc-v2", "simple-mfd", "syscon"
"aspeed,ast2500-lpc-v2", "simple-mfd", "syscon"
"aspeed,ast2600-lpc-v2", "simple-mfd", "syscon"
- reg: contains the physical address and length values of the Aspeed
LPC memory region.
- #address-cells: <1>
- #size-cells: <1>
- ranges: Maps 0 to the physical address and length of the LPC memory
region
Example:
lpc: lpc@1e789000 {
compatible = "aspeed,ast2500-lpc-v2", "simple-mfd", "syscon";
reg = <0x1e789000 0x1000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0x0 0x1e789000 0x1000>;
lpc_snoop: lpc-snoop@0 {
compatible = "aspeed,ast2600-lpc-snoop";
reg = <0x0 0x80>;
interrupts = <GIC_SPI 144 IRQ_TYPE_LEVEL_HIGH>;
snoop-ports = <0x80>;
};
};
LPC Host Interface Controller
-------------------
The LPC Host Interface Controller manages functions exposed to the host such as
LPC firmware hub cycles, configuration of the LPC-to-AHB mapping, UART
management and bus snoop configuration.
Required properties:
- compatible: One of:
"aspeed,ast2400-lpc-ctrl";
"aspeed,ast2500-lpc-ctrl";
"aspeed,ast2600-lpc-ctrl";
- reg: contains offset/length values of the host interface controller
memory regions
- clocks: contains a phandle to the syscon node describing the clocks.
There should then be one cell representing the clock to use
Optional properties:
- memory-region: A phandle to a reserved_memory region to be used for the LPC
to AHB mapping
- flash: A phandle to the SPI flash controller containing the flash to
be exposed over the LPC to AHB mapping
Example:
lpc_ctrl: lpc-ctrl@80 {
compatible = "aspeed,ast2500-lpc-ctrl";
reg = <0x80 0x80>;
clocks = <&syscon ASPEED_CLK_GATE_LCLK>;
memory-region = <&flash_memory>;
flash = <&spi>;
};
LPC Host Controller
-------------------
The Aspeed LPC Host Controller configures the Low Pin Count (LPC) bus behaviour
between the host and the baseboard management controller. The registers exist
in the "host" portion of the Aspeed LPC controller, which must be the parent of
the LPC host controller node.
Required properties:
- compatible: One of:
"aspeed,ast2400-lhc";
"aspeed,ast2500-lhc";
"aspeed,ast2600-lhc";
- reg: contains offset/length values of the LHC memory regions. In the
AST2400 and AST2500 there are two regions.
Example:
lhc: lhc@a0 {
compatible = "aspeed,ast2500-lhc";
reg = <0xa0 0x24 0xc8 0x8>;
};
LPC reset control
-----------------
The UARTs present in the ASPEED SoC can have their resets tied to the reset
state of the LPC bus. Some systems may chose to modify this configuration.
Required properties:
- compatible: One of:
"aspeed,ast2600-lpc-reset";
"aspeed,ast2500-lpc-reset";
"aspeed,ast2400-lpc-reset";
- reg: offset and length of the IP in the LHC memory region
- #reset-controller indicates the number of reset cells expected
Example:
lpc_reset: reset-controller@98 {
compatible = "aspeed,ast2500-lpc-reset";
reg = <0x98 0x4>;
#reset-cells = <1>;
};
# SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
# # Copyright (c) 2021 Aspeed Tehchnology Inc.
%YAML 1.2
---
$id: http://devicetree.org/schemas/mfd/aspeed-lpc.yaml#
$schema: http://devicetree.org/meta-schemas/core.yaml#
title: Aspeed Low Pin Count (LPC) Bus Controller
maintainers:
- Andrew Jeffery <andrew@aj.id.au>
- Chia-Wei Wang <chiawei_wang@aspeedtech.com>
description:
The LPC bus is a means to bridge a host CPU to a number of low-bandwidth
peripheral devices, replacing the use of the ISA bus in the age of PCI[0]. The
primary use case of the Aspeed LPC controller is as a slave on the bus
(typically in a Baseboard Management Controller SoC), but under certain
conditions it can also take the role of bus master.
The LPC controller is represented as a multi-function device to account for the
mix of functionality, which includes, but is not limited to
* An IPMI Block Transfer[2] Controller
* An LPC Host Interface Controller manages functions exposed to the host such
as LPC firmware hub cycles, configuration of the LPC-to-AHB mapping, UART
management and bus snoop configuration.
* A set of SuperIO[3] scratch registers enableing implementation of e.g. custom
hardware management protocols for handover between the host and baseboard
management controller.
Additionally the state of the LPC controller influences the pinmux
configuration, therefore the host portion of the controller is exposed as a
syscon as a means to arbitrate access.
properties:
compatible:
items:
- enum:
- aspeed,ast2400-lpc-v2
- aspeed,ast2500-lpc-v2
- aspeed,ast2600-lpc-v2
- const: simple-mfd
- const: syscon
reg:
maxItems: 1
"#address-cells":
const: 1
"#size-cells":
const: 1
ranges: true
patternProperties:
"^lpc-ctrl@[0-9a-f]+$":
type: object
additionalProperties: false
description: |
The LPC Host Interface Controller manages functions exposed to the host such as
LPC firmware hub cycles, configuration of the LPC-to-AHB mapping, UART management
and bus snoop configuration.
properties:
compatible:
items:
- enum:
- aspeed,ast2400-lpc-ctrl
- aspeed,ast2500-lpc-ctrl
- aspeed,ast2600-lpc-ctrl
reg:
maxItems: 1
clocks:
maxItems: 1
memory-region:
maxItems: 1
description: handle to memory reservation for the LPC to AHB mapping region
flash:
$ref: /schemas/types.yaml#/definitions/phandle
description: The SPI flash controller containing the flash to be exposed over the LPC to AHB mapping
required:
- compatible
- clocks
"^reset-controller@[0-9a-f]+$":
type: object
additionalProperties: false
description:
The UARTs present in the ASPEED SoC can have their resets tied to the reset
state of the LPC bus. Some systems may chose to modify this configuration
properties:
compatible:
items:
- enum:
- aspeed,ast2400-lpc-reset
- aspeed,ast2500-lpc-reset
- aspeed,ast2600-lpc-reset
reg:
maxItems: 1
'#reset-cells':
const: 1
required:
- compatible
- '#reset-cells'
"^lpc-snoop@[0-9a-f]+$":
type: object
additionalProperties: false
description:
The LPC snoop interface allows the BMC to listen on and record the data
bytes written by the Host to the targeted LPC I/O pots.
properties:
compatible:
items:
- enum:
- aspeed,ast2400-lpc-snoop
- aspeed,ast2500-lpc-snoop
- aspeed,ast2600-lpc-snoop
reg:
maxItems: 1
interrupts:
maxItems: 1
snoop-ports:
$ref: /schemas/types.yaml#/definitions/uint32-array
description: The LPC I/O ports to snoop
required:
- compatible
- interrupts
- snoop-ports
required:
- compatible
- reg
- "#address-cells"
- "#size-cells"
- ranges
additionalProperties:
type: object
examples:
- |
#include <dt-bindings/interrupt-controller/arm-gic.h>
#include <dt-bindings/clock/ast2600-clock.h>
lpc: lpc@1e789000 {
compatible = "aspeed,ast2600-lpc-v2", "simple-mfd", "syscon";
reg = <0x1e789000 0x1000>;
#address-cells = <1>;
#size-cells = <1>;
ranges = <0x0 0x1e789000 0x1000>;
lpc_ctrl: lpc-ctrl@80 {
compatible = "aspeed,ast2600-lpc-ctrl";
reg = <0x80 0x80>;
clocks = <&syscon ASPEED_CLK_GATE_LCLK>;
memory-region = <&flash_memory>;
flash = <&spi>;
};
lpc_reset: reset-controller@98 {
compatible = "aspeed,ast2600-lpc-reset";
reg = <0x98 0x4>;
#reset-cells = <1>;
};
lpc_snoop: lpc-snoop@90 {
compatible = "aspeed,ast2600-lpc-snoop";
reg = <0x90 0x8>;
interrupts = <GIC_SPI 144 IRQ_TYPE_LEVEL_HIGH>;
snoop-ports = <0x80>;
};
};
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment