Commit a54bfa40 authored by David S. Miller's avatar David S. Miller

Merge branch 'master' of master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6

parents fe957c40 134ffb4c
......@@ -31,7 +31,7 @@ PS_METHOD = $(prefer-db2x)
###
# The targets that may be used.
PHONY += xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs
PHONY += xmldocs sgmldocs psdocs pdfdocs htmldocs mandocs installmandocs cleandocs
BOOKS := $(addprefix $(obj)/,$(DOCBOOKS))
xmldocs: $(BOOKS)
......@@ -213,11 +213,12 @@ silent_gen_xml = :
dochelp:
@echo ' Linux kernel internal documentation in different formats:'
@echo ' htmldocs - HTML'
@echo ' installmandocs - install man pages generated by mandocs'
@echo ' mandocs - man pages'
@echo ' pdfdocs - PDF'
@echo ' psdocs - Postscript'
@echo ' xmldocs - XML DocBook'
@echo ' mandocs - man pages'
@echo ' installmandocs - install man pages generated by mandocs'
@echo ' cleandocs - clean all generated DocBook files'
###
# Temporary files left by various tools
......@@ -235,6 +236,10 @@ clean-files := $(DOCBOOKS) \
clean-dirs := $(patsubst %.xml,%,$(DOCBOOKS)) man
cleandocs:
$(Q)rm -f $(call objectify, $(clean-files))
$(Q)rm -rf $(call objectify, $(clean-dirs))
# Declare the contents of the .PHONY variable as phony. We keep that
# information in a variable se we can use it in if_changed and friends.
......
......@@ -30,3 +30,21 @@ The above steps create a new group g1 and move the current shell
process (bash) into it. CPU time consumed by this bash and its children
can be obtained from g1/cpuacct.usage and the same is accumulated in
/cgroups/cpuacct.usage also.
cpuacct.stat file lists a few statistics which further divide the
CPU time obtained by the cgroup into user and system times. Currently
the following statistics are supported:
user: Time spent by tasks of the cgroup in user mode.
system: Time spent by tasks of the cgroup in kernel mode.
user and system are in USER_HZ unit.
cpuacct controller uses percpu_counter interface to collect user and
system times. This has two side effects:
- It is theoretically possible to see wrong values for user and system times.
This is because percpu_counter_read() on 32bit systems isn't safe
against concurrent writes.
- It is possible to see slightly outdated values for user and system times
due to the batch processing nature of percpu_counter.
......@@ -428,3 +428,12 @@ Why: In 2.6.27, the semantics of /sys/bus/pci/slots was redefined to
After a reasonable transition period, we will remove the legacy
fakephp interface.
Who: Alex Chiang <achiang@hp.com>
---------------------------
What: i2c-voodoo3 driver
When: October 2009
Why: Superseded by tdfxfb. I2C/DDC support used to live in a separate
driver but this caused driver conflicts.
Who: Jean Delvare <khali@linux-fr.org>
Krzysztof Helt <krzysztof.h1@wp.pl>
......@@ -24,6 +24,49 @@ Partitions and P_Keys
The P_Key for any interface is given by the "pkey" file, and the
main interface for a subinterface is in "parent."
Datagram vs Connected modes
The IPoIB driver supports two modes of operation: datagram and
connected. The mode is set and read through an interface's
/sys/class/net/<intf name>/mode file.
In datagram mode, the IB UD (Unreliable Datagram) transport is used
and so the interface MTU has is equal to the IB L2 MTU minus the
IPoIB encapsulation header (4 bytes). For example, in a typical IB
fabric with a 2K MTU, the IPoIB MTU will be 2048 - 4 = 2044 bytes.
In connected mode, the IB RC (Reliable Connected) transport is used.
Connected mode is to takes advantage of the connected nature of the
IB transport and allows an MTU up to the maximal IP packet size of
64K, which reduces the number of IP packets needed for handling
large UDP datagrams, TCP segments, etc and increases the performance
for large messages.
In connected mode, the interface's UD QP is still used for multicast
and communication with peers that don't support connected mode. In
this case, RX emulation of ICMP PMTU packets is used to cause the
networking stack to use the smaller UD MTU for these neighbours.
Stateless offloads
If the IB HW supports IPoIB stateless offloads, IPoIB advertises
TCP/IP checksum and/or Large Send (LSO) offloading capability to the
network stack.
Large Receive (LRO) offloading is also implemented and may be turned
on/off using ethtool calls. Currently LRO is supported only for
checksum offload capable devices.
Stateless offloads are supported only in datagram mode.
Interrupt moderation
If the underlying IB device supports CQ event moderation, one can
use ethtool to set interrupt mitigation parameters and thus reduce
the overhead incurred by handling interrupts. The main code path of
IPoIB doesn't use events for TX completion signaling so only RX
moderation is supported.
Debugging Information
By compiling the IPoIB driver with CONFIG_INFINIBAND_IPOIB_DEBUG set
......@@ -55,3 +98,5 @@ References
http://ietf.org/rfc/rfc4391.txt
IP over InfiniBand (IPoIB) Architecture (RFC 4392)
http://ietf.org/rfc/rfc4392.txt
IP over InfiniBand: Connected Mode (RFC 4755)
http://ietf.org/rfc/rfc4755.txt
rotary-encoder - a generic driver for GPIO connected devices
Daniel Mack <daniel@caiaq.de>, Feb 2009
0. Function
-----------
Rotary encoders are devices which are connected to the CPU or other
peripherals with two wires. The outputs are phase-shifted by 90 degrees
and by triggering on falling and rising edges, the turn direction can
be determined.
The phase diagram of these two outputs look like this:
_____ _____ _____
| | | | | |
Channel A ____| |_____| |_____| |____
: : : : : : : : : : : :
__ _____ _____ _____
| | | | | | |
Channel B |_____| |_____| |_____| |__
: : : : : : : : : : : :
Event a b c d a b c d a b c d
|<-------->|
one step
For more information, please see
http://en.wikipedia.org/wiki/Rotary_encoder
1. Events / state machine
-------------------------
a) Rising edge on channel A, channel B in low state
This state is used to recognize a clockwise turn
b) Rising edge on channel B, channel A in high state
When entering this state, the encoder is put into 'armed' state,
meaning that there it has seen half the way of a one-step transition.
c) Falling edge on channel A, channel B in high state
This state is used to recognize a counter-clockwise turn
d) Falling edge on channel B, channel A in low state
Parking position. If the encoder enters this state, a full transition
should have happend, unless it flipped back on half the way. The
'armed' state tells us about that.
2. Platform requirements
------------------------
As there is no hardware dependent call in this driver, the platform it is
used with must support gpiolib. Another requirement is that IRQs must be
able to fire on both edges.
3. Board integration
--------------------
To use this driver in your system, register a platform_device with the
name 'rotary-encoder' and associate the IRQs and some specific platform
data with it.
struct rotary_encoder_platform_data is declared in
include/linux/rotary-encoder.h and needs to be filled with the number of
steps the encoder has and can carry information about externally inverted
signals (because of used invertig buffer or other reasons).
Because GPIO to IRQ mapping is platform specific, this information must
be given in seperately to the driver. See the example below.
---------<snip>---------
/* board support file example */
#include <linux/input.h>
#include <linux/rotary_encoder.h>
#define GPIO_ROTARY_A 1
#define GPIO_ROTARY_B 2
static struct rotary_encoder_platform_data my_rotary_encoder_info = {
.steps = 24,
.axis = ABS_X,
.gpio_a = GPIO_ROTARY_A,
.gpio_b = GPIO_ROTARY_B,
.inverted_a = 0,
.inverted_b = 0,
};
static struct platform_device rotary_encoder_device = {
.name = "rotary-encoder",
.id = 0,
.dev = {
.platform_data = &my_rotary_encoder_info,
}
};
......@@ -40,10 +40,16 @@ This document describes the Linux kernel Makefiles.
--- 6.7 Custom kbuild commands
--- 6.8 Preprocessing linker scripts
=== 7 Kbuild Variables
=== 8 Makefile language
=== 9 Credits
=== 10 TODO
=== 7 Kbuild syntax for exported headers
--- 7.1 header-y
--- 7.2 objhdr-y
--- 7.3 destination-y
--- 7.4 unifdef-y (deprecated)
=== 8 Kbuild Variables
=== 9 Makefile language
=== 10 Credits
=== 11 TODO
=== 1 Overview
......@@ -1143,8 +1149,69 @@ When kbuild executes, the following steps are followed (roughly):
The kbuild infrastructure for *lds file are used in several
architecture-specific files.
=== 7 Kbuild syntax for exported headers
The kernel include a set of headers that is exported to userspace.
Many headers can be exported as-is but other headers requires a
minimal pre-processing before they are ready for user-space.
The pre-processing does:
- drop kernel specific annotations
- drop include of compiler.h
- drop all sections that is kernel internat (guarded by ifdef __KERNEL__)
Each relevant directory contain a file name "Kbuild" which specify the
headers to be exported.
See subsequent chapter for the syntax of the Kbuild file.
--- 7.1 header-y
header-y specify header files to be exported.
Example:
#include/linux/Kbuild
header-y += usb/
header-y += aio_abi.h
The convention is to list one file per line and
preferably in alphabetic order.
header-y also specify which subdirectories to visit.
A subdirectory is identified by a trailing '/' which
can be seen in the example above for the usb subdirectory.
Subdirectories are visited before their parent directories.
--- 7.2 objhdr-y
objhdr-y specifies generated files to be exported.
Generated files are special as they need to be looked
up in another directory when doing 'make O=...' builds.
Example:
#include/linux/Kbuild
objhdr-y += version.h
--- 7.3 destination-y
When an architecture have a set of exported headers that needs to be
exported to a different directory destination-y is used.
destination-y specify the destination directory for all exported
headers in the file where it is present.
Example:
#arch/xtensa/platforms/s6105/include/platform/Kbuild
destination-y := include/linux
In the example above all exported headers in the Kbuild file
will be located in the directory "include/linux" when exported.
--- 7.4 unifdef-y (deprecated)
unifdef-y is deprecated. A direct replacement is header-y.
=== 7 Kbuild Variables
=== 8 Kbuild Variables
The top Makefile exports the following variables:
......@@ -1206,7 +1273,7 @@ The top Makefile exports the following variables:
INSTALL_MOD_STRIP will used as the option(s) to the strip command.
=== 8 Makefile language
=== 9 Makefile language
The kernel Makefiles are designed to be run with GNU Make. The Makefiles
use only the documented features of GNU Make, but they do use many
......@@ -1225,14 +1292,14 @@ time the left-hand side is used.
There are some cases where "=" is appropriate. Usually, though, ":="
is the right choice.
=== 9 Credits
=== 10 Credits
Original version made by Michael Elizabeth Chastain, <mailto:mec@shout.net>
Updates by Kai Germaschewski <kai@tp1.ruhr-uni-bochum.de>
Updates by Sam Ravnborg <sam@ravnborg.org>
Language QA by Jan Engelhardt <jengelh@gmx.de>
=== 10 TODO
=== 11 TODO
- Describe how kbuild supports shipped files with _shipped.
- Generating offset header files.
......
......@@ -1242,7 +1242,7 @@ monitoring is enabled, and vice-versa.
To add ARP targets:
# echo +192.168.0.100 > /sys/class/net/bond0/bonding/arp_ip_target
# echo +192.168.0.101 > /sys/class/net/bond0/bonding/arp_ip_target
NOTE: up to 10 target addresses may be specified.
NOTE: up to 16 target addresses may be specified.
To remove an ARP target:
# echo -192.168.0.100 > /sys/class/net/bond0/bonding/arp_ip_target
......
......@@ -42,6 +42,14 @@ sure that bitwise types don't get mixed up (little-endian vs big-endian
vs cpu-endian vs whatever), and there the constant "0" really _is_
special.
__bitwise__ - to be used for relatively compact stuff (gfp_t, etc.) that
is mostly warning-free and is supposed to stay that way. Warnings will
be generated without __CHECK_ENDIAN__.
__bitwise - noisy stuff; in particular, __le*/__be* are that. We really
don't want to drown in noise unless we'd explicitly asked for it.
Getting sparse
~~~~~~~~~~~~~~
......
This diff is collapsed.
......@@ -567,7 +567,7 @@ KBUILD_CFLAGS += $(call cc-option,-Wdeclaration-after-statement,)
# disable pointer signed / unsigned warnings in gcc 4.0
KBUILD_CFLAGS += $(call cc-option,-Wno-pointer-sign,)
# disable invalid "can't wrap" optimzations for signed / pointers
# disable invalid "can't wrap" optimizations for signed / pointers
KBUILD_CFLAGS += $(call cc-option,-fwrapv)
# revert to pre-gcc-4.4 behaviour of .eh_frame
......@@ -597,6 +597,10 @@ LDFLAGS_BUILD_ID = $(patsubst -Wl$(comma)%,%,\
LDFLAGS_MODULE += $(LDFLAGS_BUILD_ID)
LDFLAGS_vmlinux += $(LDFLAGS_BUILD_ID)
ifeq ($(CONFIG_STRIP_ASM_SYMS),y)
LDFLAGS_vmlinux += -X
endif
# Default kernel image to build when no specific target is given.
# KBUILD_IMAGE may be overruled on the command line or
# set in the environment
......@@ -1587,5 +1591,5 @@ PHONY += FORCE
FORCE:
# Declare the contents of the .PHONY variable as phony. We keep that
# information in a variable se we can use it in if_changed and friends.
# information in a variable so we can use it in if_changed and friends.
.PHONY: $(PHONY)
......@@ -109,3 +109,6 @@ config HAVE_CLK
config HAVE_DMA_API_DEBUG
bool
config HAVE_DEFAULT_NO_SPIN_MUTEXES
bool
......@@ -1183,7 +1183,11 @@ CONFIG_RTC_INTF_DEV=y
CONFIG_RTC_DRV_SA1100=y
# CONFIG_RTC_DRV_PXA is not set
# CONFIG_DMADEVICES is not set
# CONFIG_REGULATOR is not set
CONFIG_REGULATOR=y
# CONFIG_REGULATOR_DEBUG is not set
# CONFIG_REGULATOR_FIXED_VOLTAGE is not set
# CONFIG_REGULATOR_VIRTUAL_CONSUMER is not set
CONFIG_REGULATOR_BQ24022=y
# CONFIG_UIO is not set
# CONFIG_STAGING is not set
......
......@@ -32,6 +32,7 @@
#define SZ_4K 0x00001000
#define SZ_8K 0x00002000
#define SZ_16K 0x00004000
#define SZ_32K 0x00008000
#define SZ_64K 0x00010000
#define SZ_128K 0x00020000
#define SZ_256K 0x00040000
......
......@@ -87,7 +87,7 @@ extern void __init at91_add_device_eth(struct at91_eth_data *data);
/* USB Host */
struct at91_usbh_data {
u8 ports; /* number of ports on root hub */
u8 vbus_pin[]; /* port power-control pin */
u8 vbus_pin[2]; /* port power-control pin */
};
extern void __init at91_add_device_usbh(struct at91_usbh_data *data);
......
......@@ -590,27 +590,28 @@ static void omap1_init_ext_clk(struct clk * clk)
static int omap1_clk_enable(struct clk *clk)
{
int ret = 0;
if (clk->usecount++ == 0) {
if (likely(clk->parent)) {
if (clk->parent) {
ret = omap1_clk_enable(clk->parent);
if (unlikely(ret != 0)) {
clk->usecount--;
return ret;
}
if (ret)
goto err;
if (clk->flags & CLOCK_NO_IDLE_PARENT)
omap1_clk_deny_idle(clk->parent);
}
ret = clk->ops->enable(clk);
if (unlikely(ret != 0) && clk->parent) {
omap1_clk_disable(clk->parent);
clk->usecount--;
if (ret) {
if (clk->parent)
omap1_clk_disable(clk->parent);
goto err;
}
}
return ret;
err:
clk->usecount--;
return ret;
}
......
......@@ -343,6 +343,15 @@ config ARCH_PXA_PALM
bool "PXA based Palm PDAs"
select HAVE_PWM
config MACH_PALMTE2
bool "Palm Tungsten|E2"
default y
depends on ARCH_PXA_PALM
select PXA25x
help
Say Y here if you intend to run this kernel on a Palm Tungsten|E2
handheld computer.
config MACH_PALMT5
bool "Palm Tungsten|T5"
default y
......
......@@ -57,6 +57,7 @@ obj-$(CONFIG_MACH_E740) += e740.o
obj-$(CONFIG_MACH_E750) += e750.o
obj-$(CONFIG_MACH_E400) += e400.o
obj-$(CONFIG_MACH_E800) += e800.o
obj-$(CONFIG_MACH_PALMTE2) += palmte2.o
obj-$(CONFIG_MACH_PALMT5) += palmt5.o
obj-$(CONFIG_MACH_PALMTX) += palmtx.o
obj-$(CONFIG_MACH_PALMLD) += palmld.o
......
......@@ -121,7 +121,7 @@ static inline void cmx2xx_init_dm9000(void) {}
/* UCB1400 touchscreen controller */
#if defined(CONFIG_TOUCHSCREEN_UCB1400) || defined(CONFIG_TOUCHSCREEN_UCB1400_MODULE)
static struct platform_device cmx2xx_ts_device = {
.name = "ucb1400_ts",
.name = "ucb1400_core",
.id = -1,
};
......
......@@ -15,7 +15,7 @@
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <net/ax88796.h>
#include <linux/interrupt.h>
#include <asm/mach-types.h>
#include <asm/sizes.h>
......@@ -32,12 +32,13 @@
#if defined(CONFIG_AX88796)
#define COLIBRI_ETH_IRQ_GPIO mfp_to_gpio(GPIO26_GPIO)
/*
* Asix AX88796 Ethernet
*/
static struct ax_plat_data colibri_asix_platdata = {
.flags = AXFLG_MAC_FROMDEV,
.wordlength = 2
.flags = 0, /* defined later */
.wordlength = 2,
};
static struct resource colibri_asix_resource[] = {
......@@ -49,7 +50,7 @@ static struct resource colibri_asix_resource[] = {
[1] = {
.start = gpio_to_irq(COLIBRI_ETH_IRQ_GPIO),
.end = gpio_to_irq(COLIBRI_ETH_IRQ_GPIO),
.flags = IORESOURCE_IRQ
.flags = IORESOURCE_IRQ | IRQF_TRIGGER_FALLING,
}
};
......@@ -70,8 +71,8 @@ static mfp_cfg_t colibri_pxa300_eth_pin_config[] __initdata = {
static void __init colibri_pxa300_init_eth(void)
{
colibri_pxa3xx_init_eth(&colibri_asix_platdata);
pxa3xx_mfp_config(ARRAY_AND_SIZE(colibri_pxa300_eth_pin_config));
set_irq_type(gpio_to_irq(COLIBRI_ETH_IRQ_GPIO), IRQ_TYPE_EDGE_FALLING);
platform_device_register(&asix_device);
}
#else
......
......@@ -15,7 +15,7 @@
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <net/ax88796.h>
#include <linux/interrupt.h>
#include <asm/mach-types.h>
#include <asm/sizes.h>
......@@ -38,8 +38,8 @@
* Asix AX88796 Ethernet
*/
static struct ax_plat_data colibri_asix_platdata = {
.flags = AXFLG_MAC_FROMDEV,
.wordlength = 2
.flags = 0, /* defined later */
.wordlength = 2,
};
static struct resource colibri_asix_resource[] = {
......@@ -51,7 +51,7 @@ static struct resource colibri_asix_resource[] = {
[1] = {
.start = gpio_to_irq(COLIBRI_ETH_IRQ_GPIO),
.end = gpio_to_irq(COLIBRI_ETH_IRQ_GPIO),
.flags = IORESOURCE_IRQ
.flags = IORESOURCE_IRQ | IRQF_TRIGGER_FALLING,
}
};
......@@ -72,8 +72,8 @@ static mfp_cfg_t colibri_pxa320_eth_pin_config[] __initdata = {
static void __init colibri_pxa320_init_eth(void)
{
colibri_pxa3xx_init_eth(&colibri_asix_platdata);
pxa3xx_mfp_config(ARRAY_AND_SIZE(colibri_pxa320_eth_pin_config));
set_irq_type(gpio_to_irq(COLIBRI_ETH_IRQ_GPIO), IRQ_TYPE_EDGE_FALLING);
platform_device_register(&asix_device);
}
#else
......
......@@ -14,6 +14,7 @@
#include <linux/kernel.h>
#include <linux/platform_device.h>
#include <linux/gpio.h>
#include <linux/etherdevice.h>
#include <asm/mach-types.h>
#include <mach/hardware.h>
#include <asm/sizes.h>
......@@ -28,6 +29,40 @@
#include "generic.h"
#include "devices.h"
#if defined(CONFIG_AX88796)
#define ETHER_ADDR_LEN 6
static u8 ether_mac_addr[ETHER_ADDR_LEN];
void __init colibri_pxa3xx_init_eth(struct ax_plat_data *plat_data)
{
int i;
u64 serial = ((u64) system_serial_high << 32) | system_serial_low;
/*
* If the bootloader passed in a serial boot tag, which contains a
* valid ethernet MAC, pass it to the interface. Toradex ships the
* modules with their own bootloader which provides a valid MAC
* this way.
*/
for (i = 0; i < ETHER_ADDR_LEN; i++) {
ether_mac_addr[i] = serial & 0xff;
serial >>= 8;
}
if (is_valid_ether_addr(ether_mac_addr)) {
plat_data->flags |= AXFLG_MAC_FROMPLATFORM;
plat_data->mac_addr = ether_mac_addr;
printk(KERN_INFO "%s(): taking MAC from serial boot tag\n",
__func__);
} else {
plat_data->flags |= AXFLG_MAC_FROMDEV;
printk(KERN_INFO "%s(): no valid serial boot tag found, "
"taking MAC from device\n", __func__);
}
}
#endif
#if defined(CONFIG_MMC_PXA) || defined(CONFIG_MMC_PXA_MODULE)
static int mmc_detect_pin;
......
......@@ -5,6 +5,8 @@
#include <linux/input.h>
#include <linux/leds.h>
#include <asm/mach-types.h>
static struct gpio_keys_button csb701_buttons[] = {
{
.code = 0x7,
......@@ -54,6 +56,9 @@ static struct platform_device *devices[] __initdata = {
static int __init csb701_init(void)
{
if (!machine_is_csb726())
return -ENODEV;
return platform_add_devices(devices, ARRAY_SIZE(devices));
}
......
......@@ -29,6 +29,7 @@
#include <mach/udc.h>
#include <mach/irda.h>
#include <mach/irqs.h>
#include <mach/audio.h>
#include "generic.h"
#include "eseries.h"
......@@ -197,6 +198,7 @@ static void __init e740_init(void)
eseries_get_tmio_gpios();
platform_add_devices(devices, ARRAY_SIZE(devices));
pxa_set_udc_info(&e7xx_udc_mach_info);
pxa_set_ac97_info(NULL);
e7xx_irda_init();
pxa_set_ficp_info(&e7xx_ficp_platform_data);
}
......
......@@ -28,6 +28,7 @@
#include <mach/udc.h>
#include <mach/irda.h>
#include <mach/irqs.h>
#include <mach/audio.h>
#include "generic.h"
#include "eseries.h"
......@@ -198,6 +199,7 @@ static void __init e750_init(void)
eseries_get_tmio_gpios();
platform_add_devices(devices, ARRAY_SIZE(devices));
pxa_set_udc_info(&e7xx_udc_mach_info);
pxa_set_ac97_info(NULL);
e7xx_irda_init();
pxa_set_ficp_info(&e7xx_ficp_platform_data);
}
......
......@@ -27,6 +27,7 @@
#include <mach/eseries-gpio.h>
#include <mach/udc.h>
#include <mach/irqs.h>
#include <mach/audio.h>
#include "generic.h"
#include "eseries.h"
......@@ -199,6 +200,7 @@ static void __init e800_init(void)
eseries_get_tmio_gpios();
platform_add_devices(devices, ARRAY_SIZE(devices));
pxa_set_udc_info(&e800_udc_mach_info);
pxa_set_ac97_info(NULL);
}
MACHINE_START(E800, "Toshiba e800")
......
......@@ -25,8 +25,10 @@
#include <linux/regulator/machine.h>
#include <linux/spi/spi.h>
#include <linux/spi/tdo24m.h>
#include <linux/spi/libertas_spi.h>
#include <linux/power_supply.h>
#include <linux/apm-emulation.h>
#include <linux/delay.h>
#include <media/soc_camera.h>
......@@ -62,6 +64,8 @@
#define GPIO93_CAM_RESET (93)
#define GPIO41_ETHIRQ (41)
#define EM_X270_ETHIRQ IRQ_GPIO(GPIO41_ETHIRQ)
#define GPIO115_WLAN_PWEN (115)
#define GPIO19_WLAN_STRAP (19)
static int mmc_cd;
static int nand_rb;
......@@ -159,8 +163,8 @@ static unsigned long common_pin_config[] = {
GPIO57_SSP1_TXD,
/* SSP2 */
GPIO19_SSP2_SCLK,
GPIO14_SSP2_SFRM,
GPIO19_GPIO, /* SSP2 clock is used as GPIO for Libertas pin-strap */
GPIO14_GPIO,
GPIO89_SSP2_TXD,
GPIO88_SSP2_RXD,
......@@ -648,20 +652,86 @@ static struct tdo24m_platform_data em_x270_tdo24m_pdata = {
.model = TDO35S,
};
static struct pxa2xx_spi_master em_x270_spi_2_info = {
.num_chipselect = 1,
.enable_dma = 1,
};
static struct pxa2xx_spi_chip em_x270_libertas_chip = {
.rx_threshold = 1,
.tx_threshold = 1,
.timeout = 1000,
};
static unsigned long em_x270_libertas_pin_config[] = {
/* SSP2 */
GPIO19_SSP2_SCLK,
GPIO14_GPIO,
GPIO89_SSP2_TXD,
GPIO88_SSP2_RXD,
};
static int em_x270_libertas_setup(struct spi_device *spi)
{
int err = gpio_request(GPIO115_WLAN_PWEN, "WLAN PWEN");
if (err)
return err;
gpio_direction_output(GPIO19_WLAN_STRAP, 1);
mdelay(100);
pxa2xx_mfp_config(ARRAY_AND_SIZE(em_x270_libertas_pin_config));
gpio_direction_output(GPIO115_WLAN_PWEN, 0);
mdelay(100);
gpio_set_value(GPIO115_WLAN_PWEN, 1);
mdelay(100);
spi->bits_per_word = 16;
spi_setup(spi);
return 0;
}
static int em_x270_libertas_teardown(struct spi_device *spi)
{
gpio_set_value(GPIO115_WLAN_PWEN, 0);
gpio_free(GPIO115_WLAN_PWEN);
return 0;
}
struct libertas_spi_platform_data em_x270_libertas_pdata = {
.use_dummy_writes = 1,
.gpio_cs = 14,
.setup = em_x270_libertas_setup,
.teardown = em_x270_libertas_teardown,
};
static struct spi_board_info em_x270_spi_devices[] __initdata = {
{
.modalias = "tdo24m",
.max_speed_hz = 1000000,
.bus_num = 1,
.chip_select = 0,
.controller_data = &em_x270_tdo24m_chip,
.platform_data = &em_x270_tdo24m_pdata,
.modalias = "tdo24m",
.max_speed_hz = 1000000,
.bus_num = 1,
.chip_select = 0,
.controller_data = &em_x270_tdo24m_chip,
.platform_data = &em_x270_tdo24m_pdata,
},
{
.modalias = "libertas_spi",
.max_speed_hz = 13000000,
.bus_num = 2,
.irq = IRQ_GPIO(116),
.chip_select = 0,
.controller_data = &em_x270_libertas_chip,
.platform_data = &em_x270_libertas_pdata,
},
};
static void __init em_x270_init_spi(void)
{
pxa2xx_set_spi_info(1, &em_x270_spi_info);
pxa2xx_set_spi_info(2, &em_x270_spi_2_info);
spi_register_board_info(ARRAY_AND_SIZE(em_x270_spi_devices));
}
#else
......
#ifndef _COLIBRI_H_
#define _COLIBRI_H_
#include <net/ax88796.h>
/*
* common settings for all modules
*/
......@@ -16,6 +19,10 @@ extern void colibri_pxa3xx_init_lcd(int bl_pin);
static inline void colibri_pxa3xx_init_lcd(int) {}
#endif
#if defined(CONFIG_AX88796)
extern void colibri_pxa3xx_init_eth(struct ax_plat_data *plat_data);
#endif
/* physical memory regions */
#define COLIBRI_SDRAM_BASE 0xa0000000 /* SDRAM region */
......
......@@ -27,7 +27,7 @@
#define GPIO22_MAGICIAN_VIBRA_EN 22
#define GPIO26_MAGICIAN_GSM_POWER 26
#define GPIO27_MAGICIAN_USBC_PUEN 27
#define GPIO30_MAGICIAN_nCHARGE_EN 30
#define GPIO30_MAGICIAN_BQ24022_nCHARGE_EN 30
#define GPIO37_MAGICIAN_KEY_HANGUP 37
#define GPIO38_MAGICIAN_KEY_CONTACTS 38
#define GPIO40_MAGICIAN_GSM_OUT2 40
......@@ -98,7 +98,7 @@
#define EGPIO_MAGICIAN_UNKNOWN_WAVEDEV_DLL MAGICIAN_EGPIO(2, 2)
#define EGPIO_MAGICIAN_FLASH_VPP MAGICIAN_EGPIO(2, 3)
#define EGPIO_MAGICIAN_BL_POWER2 MAGICIAN_EGPIO(2, 4)
#define EGPIO_MAGICIAN_CHARGE_EN MAGICIAN_EGPIO(2, 5)
#define EGPIO_MAGICIAN_BQ24022_ISET2 MAGICIAN_EGPIO(2, 5)
#define EGPIO_MAGICIAN_GSM_POWER MAGICIAN_EGPIO(2, 7)
/* input */
......
......@@ -87,6 +87,7 @@
#define PALMLD_IDE_SIZE 0x00100000
#define PALMLD_PHYS_IO_START 0x40000000
#define PALMLD_STR_BASE 0xa0200000
/* BATTERY */
#define PALMLD_BAT_MAX_VOLTAGE 4000 /* 4.00V maximum voltage */
......
......@@ -59,6 +59,7 @@
/* Various addresses */
#define PALMT5_PHYS_RAM_START 0xa0000000
#define PALMT5_PHYS_IO_START 0x40000000
#define PALMT5_STR_BASE 0xa0200000
/* TOUCHSCREEN */
#define AC97_LINK_FRAME 21
......
/*
* GPIOs and interrupts for Palm Tungsten|E2 Handheld Computer
*
* Author:
* Carlos Eduardo Medaglia Dyonisio <cadu@nerdfeliz.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#ifndef _INCLUDE_PALMTE2_H_
#define _INCLUDE_PALMTE2_H_
/** HERE ARE GPIOs **/
/* GPIOs */
#define GPIO_NR_PALMTE2_POWER_DETECT 9
#define GPIO_NR_PALMTE2_HOTSYNC_BUTTON_N 4
#define GPIO_NR_PALMTE2_EARPHONE_DETECT 15
/* SD/MMC */
#define GPIO_NR_PALMTE2_SD_DETECT_N 10
#define GPIO_NR_PALMTE2_SD_POWER 55
#define GPIO_NR_PALMTE2_SD_READONLY 51
/* IRDA - disable GPIO connected to SD pin of tranceiver (TFBS4710?) ? */
#define GPIO_NR_PALMTE2_IR_DISABLE 48
/* USB */
#define GPIO_NR_PALMTE2_USB_DETECT_N 35
#define GPIO_NR_PALMTE2_USB_PULLUP 53
/* LCD/BACKLIGHT */
#define GPIO_NR_PALMTE2_BL_POWER 56
#define GPIO_NR_PALMTE2_LCD_POWER 37
/* KEYS */
#define GPIO_NR_PALMTE2_KEY_NOTES 5
#define GPIO_NR_PALMTE2_KEY_TASKS 7
#define GPIO_NR_PALMTE2_KEY_CALENDAR 11
#define GPIO_NR_PALMTE2_KEY_CONTACTS 13
#define GPIO_NR_PALMTE2_KEY_CENTER 14
#define GPIO_NR_PALMTE2_KEY_LEFT 19
#define GPIO_NR_PALMTE2_KEY_RIGHT 20
#define GPIO_NR_PALMTE2_KEY_DOWN 21
#define GPIO_NR_PALMTE2_KEY_UP 22
/** HERE ARE INIT VALUES **/
/* BACKLIGHT */
#define PALMTE2_MAX_INTENSITY 0xFE
#define PALMTE2_DEFAULT_INTENSITY 0x7E
#define PALMTE2_LIMIT_MASK 0x7F
#define PALMTE2_PRESCALER 0x3F
#define PALMTE2_PERIOD_NS 3500
/* BATTERY */
#define PALMTE2_BAT_MAX_VOLTAGE 4000 /* 4.00v current voltage */
#define PALMTE2_BAT_MIN_VOLTAGE 3550 /* 3.55v critical voltage */
#define PALMTE2_BAT_MAX_CURRENT 0 /* unknokn */
#define PALMTE2_BAT_MIN_CURRENT 0 /* unknown */
#define PALMTE2_BAT_MAX_CHARGE 1 /* unknown */
#define PALMTE2_BAT_MIN_CHARGE 1 /* unknown */
#define PALMTE2_MAX_LIFE_MINS 360 /* on-life in minutes */
#endif
......@@ -78,6 +78,8 @@
#define PALMTX_PHYS_RAM_START 0xa0000000
#define PALMTX_PHYS_IO_START 0x40000000
#define PALMTX_STR_BASE 0xa0200000
#define PALMTX_PHYS_FLASH_START PXA_CS0_PHYS /* ChipSelect 0 */
#define PALMTX_PHYS_NAND_START PXA_CS1_PHYS /* ChipSelect 1 */
......
......@@ -25,6 +25,8 @@
#include <linux/mtd/physmap.h>
#include <linux/pda_power.h>
#include <linux/pwm_backlight.h>
#include <linux/regulator/bq24022.h>
#include <linux/regulator/machine.h>
#include <linux/usb/gpio_vbus.h>
#include <mach/hardware.h>
......@@ -552,33 +554,7 @@ static struct platform_device gpio_vbus = {
static int power_supply_init(struct device *dev)
{
int ret;
ret = gpio_request(EGPIO_MAGICIAN_CABLE_STATE_AC, "CABLE_STATE_AC");
if (ret)
goto err_cs_ac;
ret = gpio_request(EGPIO_MAGICIAN_CABLE_STATE_USB, "CABLE_STATE_USB");
if (ret)
goto err_cs_usb;
ret = gpio_request(EGPIO_MAGICIAN_CHARGE_EN, "CHARGE_EN");
if (ret)
goto err_chg_en;
ret = gpio_request(GPIO30_MAGICIAN_nCHARGE_EN, "nCHARGE_EN");
if (!ret)
ret = gpio_direction_output(GPIO30_MAGICIAN_nCHARGE_EN, 0);
if (ret)
goto err_nchg_en;
return 0;
err_nchg_en:
gpio_free(EGPIO_MAGICIAN_CHARGE_EN);
err_chg_en:
gpio_free(EGPIO_MAGICIAN_CABLE_STATE_USB);
err_cs_usb:
gpio_free(EGPIO_MAGICIAN_CABLE_STATE_AC);
err_cs_ac:
return ret;
return gpio_request(EGPIO_MAGICIAN_CABLE_STATE_AC, "CABLE_STATE_AC");
}
static int magician_is_ac_online(void)
......@@ -586,22 +562,8 @@ static int magician_is_ac_online(void)
return gpio_get_value(EGPIO_MAGICIAN_CABLE_STATE_AC);
}
static int magician_is_usb_online(void)
{
return gpio_get_value(EGPIO_MAGICIAN_CABLE_STATE_USB);
}
static void magician_set_charge(int flags)
{
gpio_set_value(GPIO30_MAGICIAN_nCHARGE_EN, !flags);
gpio_set_value(EGPIO_MAGICIAN_CHARGE_EN, flags);
}
static void power_supply_exit(struct device *dev)
{
gpio_free(GPIO30_MAGICIAN_nCHARGE_EN);
gpio_free(EGPIO_MAGICIAN_CHARGE_EN);
gpio_free(EGPIO_MAGICIAN_CABLE_STATE_USB);
gpio_free(EGPIO_MAGICIAN_CABLE_STATE_AC);
}
......@@ -612,8 +574,6 @@ static char *magician_supplicants[] = {
static struct pda_power_pdata power_supply_info = {
.init = power_supply_init,
.is_ac_online = magician_is_ac_online,
.is_usb_online = magician_is_usb_online,
.set_charge = magician_set_charge,
.exit = power_supply_exit,
.supplied_to = magician_supplicants,
.num_supplicants = ARRAY_SIZE(magician_supplicants),
......@@ -646,6 +606,43 @@ static struct platform_device power_supply = {
.num_resources = ARRAY_SIZE(power_supply_resources),
};
/*
* Battery charger
*/
static struct regulator_consumer_supply bq24022_consumers[] = {
{
.dev = &gpio_vbus.dev,
.supply = "vbus_draw",
},
{
.dev = &power_supply.dev,
.supply = "ac_draw",
},
};
static struct regulator_init_data bq24022_init_data = {
.constraints = {
.max_uA = 500000,
.valid_ops_mask = REGULATOR_CHANGE_CURRENT,
},
.num_consumer_supplies = ARRAY_SIZE(bq24022_consumers),
.consumer_supplies = bq24022_consumers,
};
static struct bq24022_mach_info bq24022_info = {
.gpio_nce = GPIO30_MAGICIAN_BQ24022_nCHARGE_EN,
.gpio_iset2 = EGPIO_MAGICIAN_BQ24022_ISET2,
.init_data = &bq24022_init_data,
};
static struct platform_device bq24022 = {
.name = "bq24022",
.id = -1,
.dev = {
.platform_data = &bq24022_info,
},
};
/*
* MMC/SD
......@@ -756,6 +753,7 @@ static struct platform_device *devices[] __initdata = {
&egpio,
&backlight,
&pasic3,
&bq24022,
&gpio_vbus,
&power_supply,
&strataflash,
......
......@@ -50,6 +50,7 @@
#include <mach/pxa27x-udc.h>
#include <mach/i2c.h>
#include <mach/camera.h>
#include <mach/audio.h>
#include <media/soc_camera.h>
#include <mach/mioa701.h>
......@@ -763,8 +764,6 @@ MIO_PARENT_DEV(mioa701_backlight, "pwm-backlight", &pxa27x_device_pwm0.dev,
&mioa701_backlight_data);
MIO_SIMPLE_DEV(mioa701_led, "leds-gpio", &gpio_led_info)
MIO_SIMPLE_DEV(pxa2xx_pcm, "pxa2xx-pcm", NULL)
MIO_SIMPLE_DEV(pxa2xx_ac97, "pxa2xx-ac97", NULL)
MIO_PARENT_DEV(mio_wm9713_codec, "wm9713-codec", &pxa2xx_ac97.dev, NULL)
MIO_SIMPLE_DEV(mioa701_sound, "mioa701-wm9713", NULL)
MIO_SIMPLE_DEV(mioa701_board, "mioa701-board", NULL)
MIO_SIMPLE_DEV(gpio_vbus, "gpio-vbus", &gpio_vbus_data);
......@@ -774,8 +773,6 @@ static struct platform_device *devices[] __initdata = {
&mioa701_backlight,
&mioa701_led,
&pxa2xx_pcm,
&pxa2xx_ac97,
&mio_wm9713_codec,
&mioa701_sound,
&power_dev,
&strataflash,
......@@ -818,6 +815,7 @@ static void __init mioa701_machine_init(void)
pxa_set_keypad_info(&mioa701_keypad_info);
wm97xx_bat_set_pdata(&mioa701_battery_data);
pxa_set_udc_info(&mioa701_udc_info);
pxa_set_ac97_info(NULL);
pm_power_off = mioa701_poweroff;
arm_pm_restart = mioa701_restart;
platform_add_devices(devices, ARRAY_SIZE(devices));
......
......@@ -24,6 +24,7 @@
#include <linux/gpio.h>
#include <linux/wm97xx_batt.h>
#include <linux/power_supply.h>
#include <linux/sysdev.h>
#include <asm/mach-types.h>
#include <asm/mach/arch.h>
......@@ -68,10 +69,10 @@ static unsigned long palmld_pin_config[] __initdata = {
GPIO47_FICP_TXD,
/* MATRIX KEYPAD */
GPIO100_KP_MKIN_0,
GPIO101_KP_MKIN_1,
GPIO102_KP_MKIN_2,
GPIO97_KP_MKIN_3,
GPIO100_KP_MKIN_0 | WAKEUP_ON_LEVEL_HIGH,
GPIO101_KP_MKIN_1 | WAKEUP_ON_LEVEL_HIGH,
GPIO102_KP_MKIN_2 | WAKEUP_ON_LEVEL_HIGH,
GPIO97_KP_MKIN_3 | WAKEUP_ON_LEVEL_HIGH,
GPIO103_KP_MKOUT_0,
GPIO104_KP_MKOUT_1,
GPIO105_KP_MKOUT_2,
......@@ -506,6 +507,33 @@ static struct pxafb_mach_info palmld_lcd_screen = {
.lcd_conn = LCD_COLOR_TFT_16BPP | LCD_PCLK_EDGE_FALL,
};
/******************************************************************************
* Power management - standby
******************************************************************************/
#ifdef CONFIG_PM
static u32 *addr __initdata;
static u32 resume[3] __initdata = {
0xe3a00101, /* mov r0, #0x40000000 */
0xe380060f, /* orr r0, r0, #0x00f00000 */
0xe590f008, /* ldr pc, [r0, #0x08] */
};
static int __init palmld_pm_init(void)
{
int i;
/* this is where the bootloader jumps */
addr = phys_to_virt(PALMLD_STR_BASE);
for (i = 0; i < 3; i++)
addr[i] = resume[i];
return 0;
}
device_initcall(palmld_pm_init);
#endif
/******************************************************************************
* Machine init
******************************************************************************/
......
......@@ -75,10 +75,10 @@ static unsigned long palmt5_pin_config[] __initdata = {
GPIO95_GPIO, /* usb power */
/* MATRIX KEYPAD */
GPIO100_KP_MKIN_0,
GPIO101_KP_MKIN_1,
GPIO102_KP_MKIN_2,
GPIO97_KP_MKIN_3,
GPIO100_KP_MKIN_0 | WAKEUP_ON_LEVEL_HIGH,
GPIO101_KP_MKIN_1 | WAKEUP_ON_LEVEL_HIGH,
GPIO102_KP_MKIN_2 | WAKEUP_ON_LEVEL_HIGH,
GPIO97_KP_MKIN_3 | WAKEUP_ON_LEVEL_HIGH,
GPIO103_KP_MKOUT_0,
GPIO104_KP_MKOUT_1,
GPIO105_KP_MKOUT_2,
......@@ -449,6 +449,33 @@ static struct pxafb_mach_info palmt5_lcd_screen = {
.lcd_conn = LCD_COLOR_TFT_16BPP | LCD_PCLK_EDGE_FALL,
};
/******************************************************************************
* Power management - standby
******************************************************************************/
#ifdef CONFIG_PM
static u32 *addr __initdata;
static u32 resume[3] __initdata = {
0xe3a00101, /* mov r0, #0x40000000 */
0xe380060f, /* orr r0, r0, #0x00f00000 */
0xe590f008, /* ldr pc, [r0, #0x08] */
};
static int __init palmt5_pm_init(void)
{
int i;
/* this is where the bootloader jumps */
addr = phys_to_virt(PALMT5_STR_BASE);
for (i = 0; i < 3; i++)
addr[i] = resume[i];
return 0;
}
device_initcall(palmt5_pm_init);
#endif
/******************************************************************************
* Machine init
******************************************************************************/
......
This diff is collapsed.
......@@ -93,10 +93,10 @@ static unsigned long palmtx_pin_config[] __initdata = {
GPIO116_GPIO, /* wifi ready */
/* MATRIX KEYPAD */
GPIO100_KP_MKIN_0,
GPIO101_KP_MKIN_1,
GPIO102_KP_MKIN_2,
GPIO97_KP_MKIN_3,
GPIO100_KP_MKIN_0 | WAKEUP_ON_LEVEL_HIGH,
GPIO101_KP_MKIN_1 | WAKEUP_ON_LEVEL_HIGH,
GPIO102_KP_MKIN_2 | WAKEUP_ON_LEVEL_HIGH,
GPIO97_KP_MKIN_3 | WAKEUP_ON_LEVEL_HIGH,
GPIO103_KP_MKOUT_0,
GPIO104_KP_MKOUT_1,
GPIO105_KP_MKOUT_2,
......@@ -458,6 +458,33 @@ static struct pxafb_mach_info palmtx_lcd_screen = {
.lcd_conn = LCD_COLOR_TFT_16BPP | LCD_PCLK_EDGE_FALL,
};
/******************************************************************************
* Power management - standby
******************************************************************************/
#ifdef CONFIG_PM
static u32 *addr __initdata;
static u32 resume[3] __initdata = {
0xe3a00101, /* mov r0, #0x40000000 */
0xe380060f, /* orr r0, r0, #0x00f00000 */
0xe590f008, /* ldr pc, [r0, #0x08] */
};
static int __init palmtx_pm_init(void)
{
int i;
/* this is where the bootloader jumps */
addr = phys_to_virt(PALMTX_STR_BASE);
for (i = 0; i < 3; i++)
addr[i] = resume[i];
return 0;
}
device_initcall(palmtx_pm_init);
#endif
/******************************************************************************
* Machine init
******************************************************************************/
......
......@@ -45,6 +45,7 @@
#include <mach/udc.h>
#include <mach/tosa_bt.h>
#include <mach/pxa2xx_spi.h>
#include <mach/audio.h>
#include <asm/mach/arch.h>
#include <mach/tosa.h>
......@@ -914,6 +915,7 @@ static void __init tosa_init(void)
pxa_set_udc_info(&udc_info);
pxa_set_ficp_info(&tosa_ficp_platform_data);
pxa_set_i2c_info(NULL);
pxa_set_ac97_info(NULL);
platform_scoop_config = &tosa_pcmcia_config;
pxa2xx_set_spi_info(2, &pxa_ssp_master_info);
......
......@@ -828,6 +828,17 @@ void __init reserve_node_zero(pg_data_t *pgdat)
BOOTMEM_DEFAULT);
}
if (machine_is_palmld() || machine_is_palmtx()) {
reserve_bootmem_node(pgdat, 0xa0000000, 0x1000,
BOOTMEM_EXCLUSIVE);
reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
BOOTMEM_EXCLUSIVE);
}
if (machine_is_palmt5())
reserve_bootmem_node(pgdat, 0xa0200000, 0x1000,
BOOTMEM_EXCLUSIVE);
#ifdef CONFIG_SA1111
/*
* Because of the SA1111 DMA bug, we want to preserve our
......
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
File mode changed from 100755 to 100644
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
File mode changed from 100755 to 100644
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
This diff is collapsed.
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment