Commit aee7f913 authored by Ingo Molnar's avatar Ingo Molnar

x86/mm/pat: Update the comments in pat.c and pat_interval.c and refresh the code a bit

Tidy up the code:

 - add comments explaining the PAT code, the role of the functions and the logic

 - fix various typos and grammar while at it

 - simplify the file-scope memtype_interval_*() namespace to interval_*()

 - simplify stylistic complications such as unnecessary linebreaks
   or convoluted control flow

 - use the simpler '#ifdef CONFIG_*' pattern instead of '#if defined(CONFIG_*)' pattern

 - remove the non-idiomatic newline between late_initcall() and its function definition
Signed-off-by: default avatarIngo Molnar <mingo@kernel.org>
parent 360db4ac
// SPDX-License-Identifier: GPL-2.0-only
/*
* Handle caching attributes in page tables (PAT)
* Page Attribute Table (PAT) support: handle memory caching attributes in page tables.
*
* Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
* Suresh B Siddha <suresh.b.siddha@intel.com>
*
* Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
*
* Basic principles:
*
* PAT is a CPU feature supported by all modern x86 CPUs, to allow the firmware and
* the kernel to set one of a handful of 'caching type' attributes for physical
* memory ranges: uncached, write-combining, write-through, write-protected,
* and the most commonly used and default attribute: write-back caching.
*
* PAT support supercedes and augments MTRR support in a compatible fashion: MTRR is
* a hardware interface to enumerate a limited number of physical memory ranges
* and set their caching attributes explicitly, programmed into the CPU via MSRs.
* Even modern CPUs have MTRRs enabled - but these are typically not touched
* by the kernel or by user-space (such as the X server), we rely on PAT for any
* additional cache attribute logic.
*
* PAT doesn't work via explicit memory ranges, but uses page table entries to add
* cache attribute information to the mapped memory range: there's 3 bits used,
* (_PAGE_PWT, _PAGE_PCD, _PAGE_PAT), with the 8 possible values mapped by the
* CPU to actual cache attributes via an MSR loaded into the CPU (MSR_IA32_CR_PAT).
*
* ( There's a metric ton of finer details, such as compatibility with CPU quirks
* that only support 4 types of PAT entries, and interaction with MTRRs, see
* below for details. )
*/
#include <linux/seq_file.h>
......@@ -839,7 +862,7 @@ int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
}
/*
* Change the memory type for the physial address range in kernel identity
* Change the memory type for the physical address range in kernel identity
* mapping space if that range is a part of identity map.
*/
int kernel_map_sync_memtype(u64 base, unsigned long size,
......@@ -851,15 +874,14 @@ int kernel_map_sync_memtype(u64 base, unsigned long size,
return 0;
/*
* some areas in the middle of the kernel identity range
* are not mapped, like the PCI space.
* Some areas in the middle of the kernel identity range
* are not mapped, for example the PCI space.
*/
if (!page_is_ram(base >> PAGE_SHIFT))
return 0;
id_sz = (__pa(high_memory-1) <= base + size) ?
__pa(high_memory) - base :
size;
__pa(high_memory) - base : size;
if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
......@@ -1099,6 +1121,10 @@ EXPORT_SYMBOL_GPL(pgprot_writethrough);
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
/*
* We are allocating a temporary printout-entry to be passed
* between seq_start()/next() and seq_show():
*/
static struct memtype *memtype_get_idx(loff_t pos)
{
struct memtype *print_entry;
......@@ -1112,12 +1138,13 @@ static struct memtype *memtype_get_idx(loff_t pos)
ret = memtype_copy_nth_element(print_entry, pos);
spin_unlock(&memtype_lock);
if (!ret) {
return print_entry;
} else {
/* Free it on error: */
if (ret) {
kfree(print_entry);
return NULL;
}
return print_entry;
}
static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
......@@ -1144,8 +1171,11 @@ static int memtype_seq_show(struct seq_file *seq, void *v)
{
struct memtype *print_entry = (struct memtype *)v;
seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
print_entry->start, print_entry->end);
seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n",
cattr_name(print_entry->type),
print_entry->start,
print_entry->end);
kfree(print_entry);
return 0;
......@@ -1178,7 +1208,6 @@ static int __init pat_memtype_list_init(void)
}
return 0;
}
late_initcall(pat_memtype_list_init);
#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */
......@@ -25,25 +25,27 @@
* physical memory areas. Without proper tracking, conflicting memory
* types in different mappings can cause CPU cache corruption.
*
* The tree is an interval tree (augmented rbtree) with tree ordered
* on starting address. Tree can contain multiple entries for
* The tree is an interval tree (augmented rbtree) which tree is ordered
* by the starting address. The tree can contain multiple entries for
* different regions which overlap. All the aliases have the same
* cache attributes of course.
* cache attributes of course, as enforced by the PAT logic.
*
* memtype_lock protects the rbtree.
*/
static inline u64 memtype_interval_start(struct memtype *memtype)
static inline u64 interval_start(struct memtype *memtype)
{
return memtype->start;
}
static inline u64 memtype_interval_end(struct memtype *memtype)
static inline u64 interval_end(struct memtype *memtype)
{
return memtype->end - 1;
}
INTERVAL_TREE_DEFINE(struct memtype, rb, u64, subtree_max_end,
memtype_interval_start, memtype_interval_end,
static, memtype_interval)
interval_start, interval_end,
static, interval)
static struct rb_root_cached memtype_rbroot = RB_ROOT_CACHED;
......@@ -56,7 +58,7 @@ static struct memtype *memtype_match(u64 start, u64 end, int match_type)
{
struct memtype *match;
match = memtype_interval_iter_first(&memtype_rbroot, start, end-1);
match = interval_iter_first(&memtype_rbroot, start, end-1);
while (match != NULL && match->start < end) {
if ((match_type == MEMTYPE_EXACT_MATCH) &&
(match->start == start) && (match->end == end))
......@@ -66,7 +68,7 @@ static struct memtype *memtype_match(u64 start, u64 end, int match_type)
(match->start < start) && (match->end == end))
return match;
match = memtype_interval_iter_next(match, start, end-1);
match = interval_iter_next(match, start, end-1);
}
return NULL; /* Returns NULL if there is no match */
......@@ -79,7 +81,7 @@ static int memtype_check_conflict(u64 start, u64 end,
struct memtype *match;
enum page_cache_mode found_type = reqtype;
match = memtype_interval_iter_first(&memtype_rbroot, start, end-1);
match = interval_iter_first(&memtype_rbroot, start, end-1);
if (match == NULL)
goto success;
......@@ -89,12 +91,12 @@ static int memtype_check_conflict(u64 start, u64 end,
dprintk("Overlap at 0x%Lx-0x%Lx\n", match->start, match->end);
found_type = match->type;
match = memtype_interval_iter_next(match, start, end-1);
match = interval_iter_next(match, start, end-1);
while (match) {
if (match->type != found_type)
goto failure;
match = memtype_interval_iter_next(match, start, end-1);
match = interval_iter_next(match, start, end-1);
}
success:
if (newtype)
......@@ -106,11 +108,11 @@ static int memtype_check_conflict(u64 start, u64 end,
pr_info("x86/PAT: %s:%d conflicting memory types %Lx-%Lx %s<->%s\n",
current->comm, current->pid, start, end,
cattr_name(found_type), cattr_name(match->type));
return -EBUSY;
}
int memtype_check_insert(struct memtype *new,
enum page_cache_mode *ret_type)
int memtype_check_insert(struct memtype *new, enum page_cache_mode *ret_type)
{
int err = 0;
......@@ -121,7 +123,7 @@ int memtype_check_insert(struct memtype *new,
if (ret_type)
new->type = *ret_type;
memtype_interval_insert(new, &memtype_rbroot);
interval_insert(new, &memtype_rbroot);
return 0;
}
......@@ -145,12 +147,13 @@ struct memtype *memtype_erase(u64 start, u64 end)
if (data->start == start) {
/* munmap: erase this node */
memtype_interval_remove(data, &memtype_rbroot);
interval_remove(data, &memtype_rbroot);
} else {
/* mremap: update the end value of this node */
memtype_interval_remove(data, &memtype_rbroot);
interval_remove(data, &memtype_rbroot);
data->end = start;
memtype_interval_insert(data, &memtype_rbroot);
interval_insert(data, &memtype_rbroot);
return NULL;
}
......@@ -159,19 +162,24 @@ struct memtype *memtype_erase(u64 start, u64 end)
struct memtype *memtype_lookup(u64 addr)
{
return memtype_interval_iter_first(&memtype_rbroot, addr,
addr + PAGE_SIZE-1);
return interval_iter_first(&memtype_rbroot, addr, addr + PAGE_SIZE-1);
}
#if defined(CONFIG_DEBUG_FS)
/*
* Debugging helper, copy the Nth entry of the tree into a
* a copy for printout. This allows us to print out the tree
* via debugfs, without holding the memtype_lock too long:
*/
#ifdef CONFIG_DEBUG_FS
int memtype_copy_nth_element(struct memtype *out, loff_t pos)
{
struct memtype *match;
int i = 1;
match = memtype_interval_iter_first(&memtype_rbroot, 0, ULONG_MAX);
match = interval_iter_first(&memtype_rbroot, 0, ULONG_MAX);
while (match && pos != i) {
match = memtype_interval_iter_next(match, 0, ULONG_MAX);
match = interval_iter_next(match, 0, ULONG_MAX);
i++;
}
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment