Commit bb48675e authored by Andrey Konovalov's avatar Andrey Konovalov Committed by Linus Torvalds

kasan: docs: update HW_TAGS implementation details section

Update the "Implementation details" section for HW_TAGS KASAN:

 - Punctuation, readability, and other minor clean-ups.

Link: https://lkml.kernel.org/r/ee2caf4c138cc1fd239822c2abefd5af6c057744.1615559068.git.andreyknvl@google.comSigned-off-by: default avatarAndrey Konovalov <andreyknvl@google.com>
Reviewed-by: default avatarMarco Elver <elver@google.com>
Cc: Alexander Potapenko <glider@google.com>
Cc: Andrey Ryabinin <aryabinin@virtuozzo.com>
Cc: Dmitry Vyukov <dvyukov@google.com>
Signed-off-by: default avatarAndrew Morton <akpm@linux-foundation.org>
Signed-off-by: default avatarLinus Torvalds <torvalds@linux-foundation.org>
parent a6c18d4e
......@@ -279,35 +279,35 @@ memory.
Hardware tag-based KASAN
~~~~~~~~~~~~~~~~~~~~~~~~
Hardware tag-based KASAN is similar to the software mode in concept, but uses
Hardware tag-based KASAN is similar to the software mode in concept but uses
hardware memory tagging support instead of compiler instrumentation and
shadow memory.
Hardware tag-based KASAN is currently only implemented for arm64 architecture
and based on both arm64 Memory Tagging Extension (MTE) introduced in ARMv8.5
Instruction Set Architecture, and Top Byte Ignore (TBI).
Instruction Set Architecture and Top Byte Ignore (TBI).
Special arm64 instructions are used to assign memory tags for each allocation.
Same tags are assigned to pointers to those allocations. On every memory
access, hardware makes sure that tag of the memory that is being accessed is
equal to tag of the pointer that is used to access this memory. In case of a
tag mismatch a fault is generated and a report is printed.
access, hardware makes sure that the tag of the memory that is being accessed is
equal to the tag of the pointer that is used to access this memory. In case of a
tag mismatch, a fault is generated, and a report is printed.
Hardware tag-based KASAN uses 0xFF as a match-all pointer tag (accesses through
pointers with 0xFF pointer tag aren't checked). The value 0xFE is currently
pointers with the 0xFF pointer tag are not checked). The value 0xFE is currently
reserved to tag freed memory regions.
Hardware tag-based KASAN currently only supports tagging of
kmem_cache_alloc/kmalloc and page_alloc memory.
Hardware tag-based KASAN currently only supports tagging of slab and page_alloc
memory.
If the hardware doesn't support MTE (pre ARMv8.5), hardware tag-based KASAN
won't be enabled. In this case all boot parameters are ignored.
If the hardware does not support MTE (pre ARMv8.5), hardware tag-based KASAN
will not be enabled. In this case, all KASAN boot parameters are ignored.
Note, that enabling CONFIG_KASAN_HW_TAGS always results in in-kernel TBI being
enabled. Even when kasan.mode=off is provided, or when the hardware doesn't
Note that enabling CONFIG_KASAN_HW_TAGS always results in in-kernel TBI being
enabled. Even when ``kasan.mode=off`` is provided or when the hardware does not
support MTE (but supports TBI).
Hardware tag-based KASAN only reports the first found bug. After that MTE tag
Hardware tag-based KASAN only reports the first found bug. After that, MTE tag
checking gets disabled.
Shadow memory
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment