Commit cdedef59 authored by Anirudh Venkataramanan's avatar Anirudh Venkataramanan Committed by Jeff Kirsher

ice: Configure VSIs for Tx/Rx

This patch configures the VSIs to be able to send and receive
packets by doing the following:

1) Initialize flexible parser to extract and include certain
   fields in the Rx descriptor.

2) Add Tx queues by programming the Tx queue context (implemented in
   ice_vsi_cfg_txqs). Note that adding the queues also enables (starts)
   the queues.

3) Add Rx queues by programming Rx queue context (implemented in
   ice_vsi_cfg_rxqs). Note that this only adds queues but doesn't start
   them. The rings will be started by calling ice_vsi_start_rx_rings on
   interface up.

4) Configure interrupts for VSI queues.

5) Implement ice_open and ice_stop.
Signed-off-by: default avatarAnirudh Venkataramanan <anirudh.venkataramanan@intel.com>
Tested-by: default avatarTony Brelinski <tonyx.brelinski@intel.com>
Signed-off-by: default avatarJeff Kirsher <jeffrey.t.kirsher@intel.com>
parent 9daf8208
......@@ -12,4 +12,5 @@ ice-y := ice_main.o \
ice_common.o \
ice_nvm.o \
ice_switch.o \
ice_sched.o
ice_sched.o \
ice_txrx.o
......@@ -11,8 +11,10 @@
#include <linux/netdevice.h>
#include <linux/compiler.h>
#include <linux/etherdevice.h>
#include <linux/skbuff.h>
#include <linux/cpumask.h>
#include <linux/if_vlan.h>
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/workqueue.h>
#include <linux/aer.h>
......@@ -43,6 +45,8 @@
#define ICE_VSI_MAP_SCATTER 1
#define ICE_MAX_SCATTER_TXQS 16
#define ICE_MAX_SCATTER_RXQS 16
#define ICE_Q_WAIT_RETRY_LIMIT 10
#define ICE_Q_WAIT_MAX_RETRY (5 * ICE_Q_WAIT_RETRY_LIMIT)
#define ICE_RES_VALID_BIT 0x8000
#define ICE_RES_MISC_VEC_ID (ICE_RES_VALID_BIT - 1)
#define ICE_INVAL_Q_INDEX 0xffff
......@@ -56,6 +60,14 @@
(((val) << ICE_AQ_VSI_UP_TABLE_UP##i##_S) & \
ICE_AQ_VSI_UP_TABLE_UP##i##_M)
#define ICE_RX_DESC(R, i) (&(((union ice_32b_rx_flex_desc *)((R)->desc))[i]))
#define ice_for_each_txq(vsi, i) \
for ((i) = 0; (i) < (vsi)->num_txq; (i)++)
#define ice_for_each_rxq(vsi, i) \
for ((i) = 0; (i) < (vsi)->num_rxq; (i)++)
struct ice_tc_info {
u16 qoffset;
u16 qcount;
......@@ -96,6 +108,9 @@ struct ice_vsi {
struct ice_ring **rx_rings; /* rx ring array */
struct ice_ring **tx_rings; /* tx ring array */
struct ice_q_vector **q_vectors; /* q_vector array */
irqreturn_t (*irq_handler)(int irq, void *data);
DECLARE_BITMAP(state, __ICE_STATE_NBITS);
int num_q_vectors;
int base_vector;
......@@ -106,8 +121,14 @@ struct ice_vsi {
/* Interrupt thresholds */
u16 work_lmt;
u16 max_frame;
u16 rx_buf_len;
struct ice_aqc_vsi_props info; /* VSI properties */
bool irqs_ready;
bool current_isup; /* Sync 'link up' logging */
/* queue information */
u8 tx_mapping_mode; /* ICE_MAP_MODE_[CONTIG|SCATTER] */
u8 rx_mapping_mode; /* ICE_MAP_MODE_[CONTIG|SCATTER] */
......@@ -128,9 +149,11 @@ struct ice_q_vector {
struct napi_struct napi;
struct ice_ring_container rx;
struct ice_ring_container tx;
struct irq_affinity_notify affinity_notify;
u16 v_idx; /* index in the vsi->q_vector array. */
u8 num_ring_tx; /* total number of tx rings in vector */
u8 num_ring_rx; /* total number of rx rings in vector */
char name[ICE_INT_NAME_STR_LEN];
} ____cacheline_internodealigned_in_smp;
enum ice_pf_flags {
......@@ -178,10 +201,14 @@ struct ice_netdev_priv {
/**
* ice_irq_dynamic_ena - Enable default interrupt generation settings
* @hw: pointer to hw struct
* @vsi: pointer to vsi struct, can be NULL
* @q_vector: pointer to q_vector, can be NULL
*/
static inline void ice_irq_dynamic_ena(struct ice_hw *hw)
static inline void ice_irq_dynamic_ena(struct ice_hw *hw, struct ice_vsi *vsi,
struct ice_q_vector *q_vector)
{
u32 vector = ((struct ice_pf *)hw->back)->oicr_idx;
u32 vector = (vsi && q_vector) ? vsi->base_vector + q_vector->v_idx :
((struct ice_pf *)hw->back)->oicr_idx;
int itr = ICE_ITR_NONE;
u32 val;
......@@ -190,7 +217,10 @@ static inline void ice_irq_dynamic_ena(struct ice_hw *hw)
*/
val = GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
(itr << GLINT_DYN_CTL_ITR_INDX_S);
if (vsi)
if (test_bit(__ICE_DOWN, vsi->state))
return;
wr32(hw, GLINT_DYN_CTL(vector), val);
}
#endif /* _ICE_H_ */
......@@ -968,6 +968,87 @@ struct ice_aqc_nvm {
__le32 addr_low;
};
/* Add TX LAN Queues (indirect 0x0C30) */
struct ice_aqc_add_txqs {
u8 num_qgrps;
u8 reserved[3];
__le32 reserved1;
__le32 addr_high;
__le32 addr_low;
};
/* This is the descriptor of each queue entry for the Add TX LAN Queues
* command (0x0C30). Only used within struct ice_aqc_add_tx_qgrp.
*/
struct ice_aqc_add_txqs_perq {
__le16 txq_id;
u8 rsvd[2];
__le32 q_teid;
u8 txq_ctx[22];
u8 rsvd2[2];
struct ice_aqc_txsched_elem info;
};
/* The format of the command buffer for Add TX LAN Queues (0x0C30)
* is an array of the following structs. Please note that the length of
* each struct ice_aqc_add_tx_qgrp is variable due
* to the variable number of queues in each group!
*/
struct ice_aqc_add_tx_qgrp {
__le32 parent_teid;
u8 num_txqs;
u8 rsvd[3];
struct ice_aqc_add_txqs_perq txqs[1];
};
/* Disable TX LAN Queues (indirect 0x0C31) */
struct ice_aqc_dis_txqs {
u8 cmd_type;
#define ICE_AQC_Q_DIS_CMD_S 0
#define ICE_AQC_Q_DIS_CMD_M (0x3 << ICE_AQC_Q_DIS_CMD_S)
#define ICE_AQC_Q_DIS_CMD_NO_FUNC_RESET (0 << ICE_AQC_Q_DIS_CMD_S)
#define ICE_AQC_Q_DIS_CMD_VM_RESET BIT(ICE_AQC_Q_DIS_CMD_S)
#define ICE_AQC_Q_DIS_CMD_VF_RESET (2 << ICE_AQC_Q_DIS_CMD_S)
#define ICE_AQC_Q_DIS_CMD_PF_RESET (3 << ICE_AQC_Q_DIS_CMD_S)
#define ICE_AQC_Q_DIS_CMD_SUBSEQ_CALL BIT(2)
#define ICE_AQC_Q_DIS_CMD_FLUSH_PIPE BIT(3)
u8 num_entries;
__le16 vmvf_and_timeout;
#define ICE_AQC_Q_DIS_VMVF_NUM_S 0
#define ICE_AQC_Q_DIS_VMVF_NUM_M (0x3FF << ICE_AQC_Q_DIS_VMVF_NUM_S)
#define ICE_AQC_Q_DIS_TIMEOUT_S 10
#define ICE_AQC_Q_DIS_TIMEOUT_M (0x3F << ICE_AQC_Q_DIS_TIMEOUT_S)
__le32 blocked_cgds;
__le32 addr_high;
__le32 addr_low;
};
/* The buffer for Disable TX LAN Queues (indirect 0x0C31)
* contains the following structures, arrayed one after the
* other.
* Note: Since the q_id is 16 bits wide, if the
* number of queues is even, then 2 bytes of alignment MUST be
* added before the start of the next group, to allow correct
* alignment of the parent_teid field.
*/
struct ice_aqc_dis_txq_item {
__le32 parent_teid;
u8 num_qs;
u8 rsvd;
/* The length of the q_id array varies according to num_qs */
__le16 q_id[1];
/* This only applies from F8 onward */
#define ICE_AQC_Q_DIS_BUF_ELEM_TYPE_S 15
#define ICE_AQC_Q_DIS_BUF_ELEM_TYPE_LAN_Q \
(0 << ICE_AQC_Q_DIS_BUF_ELEM_TYPE_S)
#define ICE_AQC_Q_DIS_BUF_ELEM_TYPE_RDMA_QSET \
(1 << ICE_AQC_Q_DIS_BUF_ELEM_TYPE_S)
};
struct ice_aqc_dis_txq {
struct ice_aqc_dis_txq_item qgrps[1];
};
/**
* struct ice_aq_desc - Admin Queue (AQ) descriptor
* @flags: ICE_AQ_FLAG_* flags
......@@ -1008,6 +1089,8 @@ struct ice_aq_desc {
struct ice_aqc_query_txsched_res query_sched_res;
struct ice_aqc_add_move_delete_elem add_move_delete_elem;
struct ice_aqc_nvm nvm;
struct ice_aqc_add_txqs add_txqs;
struct ice_aqc_dis_txqs dis_txqs;
struct ice_aqc_add_get_update_free_vsi vsi_cmd;
struct ice_aqc_alloc_free_res_cmd sw_res_ctrl;
struct ice_aqc_get_link_status get_link_status;
......@@ -1088,6 +1171,9 @@ enum ice_adminq_opc {
/* NVM commands */
ice_aqc_opc_nvm_read = 0x0701,
/* TX queue handling commands/events */
ice_aqc_opc_add_txqs = 0x0C30,
ice_aqc_opc_dis_txqs = 0x0C31,
};
#endif /* _ICE_ADMINQ_CMD_H_ */
This diff is collapsed.
......@@ -30,9 +30,15 @@ ice_sq_send_cmd(struct ice_hw *hw, struct ice_ctl_q_info *cq,
struct ice_sq_cd *cd);
void ice_clear_pxe_mode(struct ice_hw *hw);
enum ice_status ice_get_caps(struct ice_hw *hw);
enum ice_status
ice_write_rxq_ctx(struct ice_hw *hw, struct ice_rlan_ctx *rlan_ctx,
u32 rxq_index);
bool ice_check_sq_alive(struct ice_hw *hw, struct ice_ctl_q_info *cq);
enum ice_status ice_aq_q_shutdown(struct ice_hw *hw, bool unloading);
void ice_fill_dflt_direct_cmd_desc(struct ice_aq_desc *desc, u16 opcode);
extern const struct ice_ctx_ele ice_tlan_ctx_info[];
enum ice_status
ice_set_ctx(u8 *src_ctx, u8 *dest_ctx, const struct ice_ctx_ele *ce_info);
enum ice_status
ice_aq_send_cmd(struct ice_hw *hw, struct ice_aq_desc *desc,
void *buf, u16 buf_size, struct ice_sq_cd *cd);
......@@ -41,4 +47,11 @@ enum ice_status ice_clear_pf_cfg(struct ice_hw *hw);
enum ice_status
ice_aq_get_link_info(struct ice_port_info *pi, bool ena_lse,
struct ice_link_status *link, struct ice_sq_cd *cd);
enum ice_status
ice_dis_vsi_txq(struct ice_port_info *pi, u8 num_queues, u16 *q_ids,
u32 *q_teids, struct ice_sq_cd *cmd_details);
enum ice_status
ice_ena_vsi_txq(struct ice_port_info *pi, u16 vsi_id, u8 tc, u8 num_qgrps,
struct ice_aqc_add_tx_qgrp *buf, u16 buf_size,
struct ice_sq_cd *cd);
#endif /* _ICE_COMMON_H_ */
......@@ -6,6 +6,7 @@
#ifndef _ICE_HW_AUTOGEN_H_
#define _ICE_HW_AUTOGEN_H_
#define QTX_COMM_DBELL(_DBQM) (0x002C0000 + ((_DBQM) * 4))
#define PF_FW_ARQBAH 0x00080180
#define PF_FW_ARQBAL 0x00080080
#define PF_FW_ARQH 0x00080380
......@@ -40,6 +41,44 @@
#define PF_FW_ATQLEN_ATQENABLE_S 31
#define PF_FW_ATQLEN_ATQENABLE_M BIT(PF_FW_ATQLEN_ATQENABLE_S)
#define PF_FW_ATQT 0x00080400
#define GLFLXP_RXDID_FLAGS(_i, _j) (0x0045D000 + ((_i) * 4 + (_j) * 256))
#define GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S 0
#define GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_M ICE_M(0x3F, GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_S)
#define GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S 8
#define GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_M ICE_M(0x3F, GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_1_S)
#define GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S 16
#define GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_M ICE_M(0x3F, GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_2_S)
#define GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S 24
#define GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_M ICE_M(0x3F, GLFLXP_RXDID_FLAGS_FLEXIFLAG_4N_3_S)
#define GLFLXP_RXDID_FLX_WRD_0(_i) (0x0045c800 + ((_i) * 4))
#define GLFLXP_RXDID_FLX_WRD_0_PROT_MDID_S 0
#define GLFLXP_RXDID_FLX_WRD_0_PROT_MDID_M ICE_M(0xFF, GLFLXP_RXDID_FLX_WRD_0_PROT_MDID_S)
#define GLFLXP_RXDID_FLX_WRD_0_RXDID_OPCODE_S 30
#define GLFLXP_RXDID_FLX_WRD_0_RXDID_OPCODE_M ICE_M(0x3, GLFLXP_RXDID_FLX_WRD_0_RXDID_OPCODE_S)
#define GLFLXP_RXDID_FLX_WRD_1(_i) (0x0045c900 + ((_i) * 4))
#define GLFLXP_RXDID_FLX_WRD_1_PROT_MDID_S 0
#define GLFLXP_RXDID_FLX_WRD_1_PROT_MDID_M ICE_M(0xFF, GLFLXP_RXDID_FLX_WRD_1_PROT_MDID_S)
#define GLFLXP_RXDID_FLX_WRD_1_RXDID_OPCODE_S 30
#define GLFLXP_RXDID_FLX_WRD_1_RXDID_OPCODE_M ICE_M(0x3, GLFLXP_RXDID_FLX_WRD_1_RXDID_OPCODE_S)
#define GLFLXP_RXDID_FLX_WRD_2(_i) (0x0045ca00 + ((_i) * 4))
#define GLFLXP_RXDID_FLX_WRD_2_PROT_MDID_S 0
#define GLFLXP_RXDID_FLX_WRD_2_PROT_MDID_M ICE_M(0xFF, GLFLXP_RXDID_FLX_WRD_2_PROT_MDID_S)
#define GLFLXP_RXDID_FLX_WRD_2_RXDID_OPCODE_S 30
#define GLFLXP_RXDID_FLX_WRD_2_RXDID_OPCODE_M ICE_M(0x3, GLFLXP_RXDID_FLX_WRD_2_RXDID_OPCODE_S)
#define GLFLXP_RXDID_FLX_WRD_3(_i) (0x0045cb00 + ((_i) * 4))
#define GLFLXP_RXDID_FLX_WRD_3_PROT_MDID_S 0
#define GLFLXP_RXDID_FLX_WRD_3_PROT_MDID_M ICE_M(0xFF, GLFLXP_RXDID_FLX_WRD_3_PROT_MDID_S)
#define GLFLXP_RXDID_FLX_WRD_3_RXDID_OPCODE_S 30
#define GLFLXP_RXDID_FLX_WRD_3_RXDID_OPCODE_M ICE_M(0x3, GLFLXP_RXDID_FLX_WRD_3_RXDID_OPCODE_S)
#define QRXFLXP_CNTXT(_QRX) (0x00480000 + ((_QRX) * 4))
#define QRXFLXP_CNTXT_RXDID_IDX_S 0
#define QRXFLXP_CNTXT_RXDID_IDX_M ICE_M(0x3F, QRXFLXP_CNTXT_RXDID_IDX_S)
#define QRXFLXP_CNTXT_RXDID_PRIO_S 8
#define QRXFLXP_CNTXT_RXDID_PRIO_M ICE_M(0x7, QRXFLXP_CNTXT_RXDID_PRIO_S)
#define QRXFLXP_CNTXT_TS_S 11
#define QRXFLXP_CNTXT_TS_M BIT(QRXFLXP_CNTXT_TS_S)
#define GLGEN_RSTAT 0x000B8188
#define GLGEN_RSTAT_DEVSTATE_S 0
#define GLGEN_RSTAT_DEVSTATE_M ICE_M(0x3, GLGEN_RSTAT_DEVSTATE_S)
......@@ -62,6 +101,8 @@
#define GLINT_DYN_CTL_INTENA_M BIT(GLINT_DYN_CTL_INTENA_S)
#define GLINT_DYN_CTL_CLEARPBA_S 1
#define GLINT_DYN_CTL_CLEARPBA_M BIT(GLINT_DYN_CTL_CLEARPBA_S)
#define GLINT_DYN_CTL_SWINT_TRIG_S 2
#define GLINT_DYN_CTL_SWINT_TRIG_M BIT(GLINT_DYN_CTL_SWINT_TRIG_S)
#define GLINT_DYN_CTL_ITR_INDX_S 3
#define GLINT_DYN_CTL_SW_ITR_INDX_S 25
#define GLINT_DYN_CTL_SW_ITR_INDX_M ICE_M(0x3, GLINT_DYN_CTL_SW_ITR_INDX_S)
......@@ -106,7 +147,25 @@
#define PFINT_OICR_CTL_CAUSE_ENA_S 30
#define PFINT_OICR_CTL_CAUSE_ENA_M BIT(PFINT_OICR_CTL_CAUSE_ENA_S)
#define PFINT_OICR_ENA 0x0016C900
#define QINT_RQCTL(_QRX) (0x00150000 + ((_QRX) * 4))
#define QINT_RQCTL_MSIX_INDX_S 0
#define QINT_RQCTL_ITR_INDX_S 11
#define QINT_RQCTL_CAUSE_ENA_S 30
#define QINT_RQCTL_CAUSE_ENA_M BIT(QINT_RQCTL_CAUSE_ENA_S)
#define QINT_TQCTL(_DBQM) (0x00140000 + ((_DBQM) * 4))
#define QINT_TQCTL_MSIX_INDX_S 0
#define QINT_TQCTL_ITR_INDX_S 11
#define QINT_TQCTL_CAUSE_ENA_S 30
#define QINT_TQCTL_CAUSE_ENA_M BIT(QINT_TQCTL_CAUSE_ENA_S)
#define GLLAN_RCTL_0 0x002941F8
#define QRX_CONTEXT(_i, _QRX) (0x00280000 + ((_i) * 8192 + (_QRX) * 4))
#define QRX_CTRL(_QRX) (0x00120000 + ((_QRX) * 4))
#define QRX_CTRL_MAX_INDEX 2047
#define QRX_CTRL_QENA_REQ_S 0
#define QRX_CTRL_QENA_REQ_M BIT(QRX_CTRL_QENA_REQ_S)
#define QRX_CTRL_QENA_STAT_S 2
#define QRX_CTRL_QENA_STAT_M BIT(QRX_CTRL_QENA_STAT_S)
#define QRX_TAIL(_QRX) (0x00290000 + ((_QRX) * 4))
#define GLNVM_FLA 0x000B6108
#define GLNVM_FLA_LOCKED_S 6
#define GLNVM_FLA_LOCKED_M BIT(GLNVM_FLA_LOCKED_S)
......
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) 2018, Intel Corporation. */
#ifndef _ICE_LAN_TX_RX_H_
#define _ICE_LAN_TX_RX_H_
union ice_32byte_rx_desc {
struct {
__le64 pkt_addr; /* Packet buffer address */
__le64 hdr_addr; /* Header buffer address */
/* bit 0 of hdr_addr is DD bit */
__le64 rsvd1;
__le64 rsvd2;
} read;
struct {
struct {
struct {
__le16 mirroring_status;
__le16 l2tag1;
} lo_dword;
union {
__le32 rss; /* RSS Hash */
__le32 fd_id; /* Flow Director filter id */
} hi_dword;
} qword0;
struct {
/* status/error/PTYPE/length */
__le64 status_error_len;
} qword1;
struct {
__le16 ext_status; /* extended status */
__le16 rsvd;
__le16 l2tag2_1;
__le16 l2tag2_2;
} qword2;
struct {
__le32 reserved;
__le32 fd_id;
} qword3;
} wb; /* writeback */
};
/* RX Flex Descriptor
* This descriptor is used instead of the legacy version descriptor when
* ice_rlan_ctx.adv_desc is set
*/
union ice_32b_rx_flex_desc {
struct {
__le64 pkt_addr; /* Packet buffer address */
__le64 hdr_addr; /* Header buffer address */
/* bit 0 of hdr_addr is DD bit */
__le64 rsvd1;
__le64 rsvd2;
} read;
struct {
/* Qword 0 */
u8 rxdid; /* descriptor builder profile id */
u8 mir_id_umb_cast; /* mirror=[5:0], umb=[7:6] */
__le16 ptype_flex_flags0; /* ptype=[9:0], ff0=[15:10] */
__le16 pkt_len; /* [15:14] are reserved */
__le16 hdr_len_sph_flex_flags1; /* header=[10:0] */
/* sph=[11:11] */
/* ff1/ext=[15:12] */
/* Qword 1 */
__le16 status_error0;
__le16 l2tag1;
__le16 flex_meta0;
__le16 flex_meta1;
/* Qword 2 */
__le16 status_error1;
u8 flex_flags2;
u8 time_stamp_low;
__le16 l2tag2_1st;
__le16 l2tag2_2nd;
/* Qword 3 */
__le16 flex_meta2;
__le16 flex_meta3;
union {
struct {
__le16 flex_meta4;
__le16 flex_meta5;
} flex;
__le32 ts_high;
} flex_ts;
} wb; /* writeback */
};
/* Receive Flex Descriptor profile IDs: There are a total
* of 64 profiles where profile IDs 0/1 are for legacy; and
* profiles 2-63 are flex profiles that can be programmed
* with a specific metadata (profile 7 reserved for HW)
*/
enum ice_rxdid {
ICE_RXDID_START = 0,
ICE_RXDID_LEGACY_0 = ICE_RXDID_START,
ICE_RXDID_LEGACY_1,
ICE_RXDID_FLX_START,
ICE_RXDID_FLEX_NIC = ICE_RXDID_FLX_START,
ICE_RXDID_FLX_LAST = 63,
ICE_RXDID_LAST = ICE_RXDID_FLX_LAST
};
/* Receive Flex Descriptor Rx opcode values */
#define ICE_RX_OPC_MDID 0x01
/* Receive Descriptor MDID values */
#define ICE_RX_MDID_FLOW_ID_LOWER 5
#define ICE_RX_MDID_FLOW_ID_HIGH 6
#define ICE_RX_MDID_HASH_LOW 56
#define ICE_RX_MDID_HASH_HIGH 57
/* Rx Flag64 packet flag bits */
enum ice_rx_flg64_bits {
ICE_RXFLG_PKT_DSI = 0,
ICE_RXFLG_EVLAN_x8100 = 15,
ICE_RXFLG_EVLAN_x9100,
ICE_RXFLG_VLAN_x8100,
ICE_RXFLG_TNL_MAC = 22,
ICE_RXFLG_TNL_VLAN,
ICE_RXFLG_PKT_FRG,
ICE_RXFLG_FIN = 32,
ICE_RXFLG_SYN,
ICE_RXFLG_RST,
ICE_RXFLG_TNL0 = 38,
ICE_RXFLG_TNL1,
ICE_RXFLG_TNL2,
ICE_RXFLG_UDP_GRE,
ICE_RXFLG_RSVD = 63
};
#define ICE_RXQ_CTX_SIZE_DWORDS 8
#define ICE_RXQ_CTX_SZ (ICE_RXQ_CTX_SIZE_DWORDS * sizeof(u32))
/* RLAN Rx queue context data
*
* The sizes of the variables may be larger than needed due to crossing byte
* boundaries. If we do not have the width of the variable set to the correct
* size then we could end up shifting bits off the top of the variable when the
* variable is at the top of a byte and crosses over into the next byte.
*/
struct ice_rlan_ctx {
u16 head;
u16 cpuid; /* bigger than needed, see above for reason */
u64 base;
u16 qlen;
#define ICE_RLAN_CTX_DBUF_S 7
u16 dbuf; /* bigger than needed, see above for reason */
#define ICE_RLAN_CTX_HBUF_S 6
u16 hbuf; /* bigger than needed, see above for reason */
u8 dtype;
u8 dsize;
u8 crcstrip;
u8 l2tsel;
u8 hsplit_0;
u8 hsplit_1;
u8 showiv;
u32 rxmax; /* bigger than needed, see above for reason */
u8 tphrdesc_ena;
u8 tphwdesc_ena;
u8 tphdata_ena;
u8 tphhead_ena;
u16 lrxqthresh; /* bigger than needed, see above for reason */
};
struct ice_ctx_ele {
u16 offset;
u16 size_of;
u16 width;
u16 lsb;
};
#define ICE_CTX_STORE(_struct, _ele, _width, _lsb) { \
.offset = offsetof(struct _struct, _ele), \
.size_of = FIELD_SIZEOF(struct _struct, _ele), \
.width = _width, \
.lsb = _lsb, \
}
/* for hsplit_0 field of Rx RLAN context */
enum ice_rlan_ctx_rx_hsplit_0 {
ICE_RLAN_RX_HSPLIT_0_NO_SPLIT = 0,
ICE_RLAN_RX_HSPLIT_0_SPLIT_L2 = 1,
ICE_RLAN_RX_HSPLIT_0_SPLIT_IP = 2,
ICE_RLAN_RX_HSPLIT_0_SPLIT_TCP_UDP = 4,
ICE_RLAN_RX_HSPLIT_0_SPLIT_SCTP = 8,
};
/* for hsplit_1 field of Rx RLAN context */
enum ice_rlan_ctx_rx_hsplit_1 {
ICE_RLAN_RX_HSPLIT_1_NO_SPLIT = 0,
ICE_RLAN_RX_HSPLIT_1_SPLIT_L2 = 1,
ICE_RLAN_RX_HSPLIT_1_SPLIT_ALWAYS = 2,
};
/* TX Descriptor */
struct ice_tx_desc {
__le64 buf_addr; /* Address of descriptor's data buf */
__le64 cmd_type_offset_bsz;
};
#define ICE_LAN_TXQ_MAX_QGRPS 127
#define ICE_LAN_TXQ_MAX_QDIS 1023
/* Tx queue context data
*
* The sizes of the variables may be larger than needed due to crossing byte
* boundaries. If we do not have the width of the variable set to the correct
* size then we could end up shifting bits off the top of the variable when the
* variable is at the top of a byte and crosses over into the next byte.
*/
struct ice_tlan_ctx {
#define ICE_TLAN_CTX_BASE_S 7
u64 base; /* base is defined in 128-byte units */
u8 port_num;
u16 cgd_num; /* bigger than needed, see above for reason */
u8 pf_num;
u16 vmvf_num;
u8 vmvf_type;
#define ICE_TLAN_CTX_VMVF_TYPE_VMQ 1
#define ICE_TLAN_CTX_VMVF_TYPE_PF 2
u16 src_vsi;
u8 tsyn_ena;
u8 alt_vlan;
u16 cpuid; /* bigger than needed, see above for reason */
u8 wb_mode;
u8 tphrd_desc;
u8 tphrd;
u8 tphwr_desc;
u16 cmpq_id;
u16 qnum_in_func;
u8 itr_notification_mode;
u8 adjust_prof_id;
u32 qlen; /* bigger than needed, see above for reason */
u8 quanta_prof_idx;
u8 tso_ena;
u16 tso_qnum;
u8 legacy_int;
u8 drop_ena;
u8 cache_prof_idx;
u8 pkt_shaper_prof_idx;
u8 int_q_state; /* width not needed - internal do not write */
};
#endif /* _ICE_LAN_TX_RX_H_ */
This diff is collapsed.
......@@ -462,6 +462,18 @@ void ice_sched_cleanup_all(struct ice_hw *hw)
hw->max_cgds = 0;
}
/**
* ice_sched_get_qgrp_layer - get the current queue group layer number
* @hw: pointer to the hw struct
*
* This function returns the current queue group layer number
*/
static u8 ice_sched_get_qgrp_layer(struct ice_hw *hw)
{
/* It's always total layers - 1, the array is 0 relative so -2 */
return hw->num_tx_sched_layers - ICE_QGRP_LAYER_OFFSET;
}
/**
* ice_rm_dflt_leaf_node - remove the default leaf node in the tree
* @pi: port information structure
......@@ -666,3 +678,96 @@ enum ice_status ice_sched_query_res_alloc(struct ice_hw *hw)
devm_kfree(ice_hw_to_dev(hw), buf);
return status;
}
/**
* ice_sched_get_vsi_info_entry - Get the vsi entry list for given vsi_id
* @pi: port information structure
* @vsi_id: vsi id
*
* This function retrieves the vsi list for the given vsi id
*/
static struct ice_sched_vsi_info *
ice_sched_get_vsi_info_entry(struct ice_port_info *pi, u16 vsi_id)
{
struct ice_sched_vsi_info *list_elem;
if (!pi)
return NULL;
list_for_each_entry(list_elem, &pi->vsi_info_list, list_entry)
if (list_elem->vsi_id == vsi_id)
return list_elem;
return NULL;
}
/**
* ice_sched_find_node_in_subtree - Find node in part of base node subtree
* @hw: pointer to the hw struct
* @base: pointer to the base node
* @node: pointer to the node to search
*
* This function checks whether a given node is part of the base node
* subtree or not
*/
static bool
ice_sched_find_node_in_subtree(struct ice_hw *hw, struct ice_sched_node *base,
struct ice_sched_node *node)
{
u8 i;
for (i = 0; i < base->num_children; i++) {
struct ice_sched_node *child = base->children[i];
if (node == child)
return true;
if (child->tx_sched_layer > node->tx_sched_layer)
return false;
/* this recursion is intentional, and wouldn't
* go more than 8 calls
*/
if (ice_sched_find_node_in_subtree(hw, child, node))
return true;
}
return false;
}
/**
* ice_sched_get_free_qparent - Get a free lan or rdma q group node
* @pi: port information structure
* @vsi_id: vsi id
* @tc: branch number
* @owner: lan or rdma
*
* This function retrieves a free lan or rdma q group node
*/
struct ice_sched_node *
ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_id, u8 tc,
u8 owner)
{
struct ice_sched_node *vsi_node, *qgrp_node = NULL;
struct ice_sched_vsi_info *list_elem;
u16 max_children;
u8 qgrp_layer;
qgrp_layer = ice_sched_get_qgrp_layer(pi->hw);
max_children = le16_to_cpu(pi->hw->layer_info[qgrp_layer].max_children);
list_elem = ice_sched_get_vsi_info_entry(pi, vsi_id);
if (!list_elem)
goto lan_q_exit;
vsi_node = list_elem->vsi_node[tc];
/* validate invalid VSI id */
if (!vsi_node)
goto lan_q_exit;
/* get the first q group node from VSI sub-tree */
qgrp_node = ice_sched_get_first_node(pi->hw, vsi_node, qgrp_layer);
while (qgrp_node) {
/* make sure the qgroup node is part of the VSI subtree */
if (ice_sched_find_node_in_subtree(pi->hw, vsi_node, qgrp_node))
if (qgrp_node->num_children < max_children &&
qgrp_node->owner == owner)
break;
qgrp_node = qgrp_node->sibling;
}
lan_q_exit:
return qgrp_node;
}
......@@ -6,6 +6,8 @@
#include "ice_common.h"
#define ICE_QGRP_LAYER_OFFSET 2
struct ice_sched_agg_vsi_info {
struct list_head list_entry;
DECLARE_BITMAP(tc_bitmap, ICE_MAX_TRAFFIC_CLASS);
......@@ -31,4 +33,7 @@ ice_sched_add_node(struct ice_port_info *pi, u8 layer,
struct ice_aqc_txsched_elem_data *info);
void ice_free_sched_node(struct ice_port_info *pi, struct ice_sched_node *node);
struct ice_sched_node *ice_sched_get_tc_node(struct ice_port_info *pi, u8 tc);
struct ice_sched_node *
ice_sched_get_free_qparent(struct ice_port_info *pi, u16 vsi_id, u8 tc,
u8 owner);
#endif /* _ICE_SCHED_H_ */
......@@ -9,6 +9,7 @@ enum ice_status {
ICE_ERR_PARAM = -1,
ICE_ERR_NOT_IMPL = -2,
ICE_ERR_NOT_READY = -3,
ICE_ERR_BAD_PTR = -5,
ICE_ERR_INVAL_SIZE = -6,
ICE_ERR_DEVICE_NOT_SUPPORTED = -8,
ICE_ERR_RESET_FAILED = -9,
......@@ -18,6 +19,7 @@ enum ice_status {
ICE_ERR_OUT_OF_RANGE = -13,
ICE_ERR_ALREADY_EXISTS = -14,
ICE_ERR_DOES_NOT_EXIST = -15,
ICE_ERR_MAX_LIMIT = -17,
ICE_ERR_BUF_TOO_SHORT = -52,
ICE_ERR_NVM_BLANK_MODE = -53,
ICE_ERR_AQ_ERROR = -100,
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2018, Intel Corporation. */
/* The driver transmit and receive code */
#include <linux/prefetch.h>
#include <linux/mm.h>
#include "ice.h"
/**
* ice_unmap_and_free_tx_buf - Release a Tx buffer
* @ring: the ring that owns the buffer
* @tx_buf: the buffer to free
*/
static void
ice_unmap_and_free_tx_buf(struct ice_ring *ring, struct ice_tx_buf *tx_buf)
{
if (tx_buf->skb) {
dev_kfree_skb_any(tx_buf->skb);
if (dma_unmap_len(tx_buf, len))
dma_unmap_single(ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
} else if (dma_unmap_len(tx_buf, len)) {
dma_unmap_page(ring->dev,
dma_unmap_addr(tx_buf, dma),
dma_unmap_len(tx_buf, len),
DMA_TO_DEVICE);
}
tx_buf->next_to_watch = NULL;
tx_buf->skb = NULL;
dma_unmap_len_set(tx_buf, len, 0);
/* tx_buf must be completely set up in the transmit path */
}
static struct netdev_queue *txring_txq(const struct ice_ring *ring)
{
return netdev_get_tx_queue(ring->netdev, ring->q_index);
}
/**
* ice_clean_tx_ring - Free any empty Tx buffers
* @tx_ring: ring to be cleaned
*/
void ice_clean_tx_ring(struct ice_ring *tx_ring)
{
unsigned long size;
u16 i;
/* ring already cleared, nothing to do */
if (!tx_ring->tx_buf)
return;
/* Free all the Tx ring sk_bufss */
for (i = 0; i < tx_ring->count; i++)
ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
size = sizeof(struct ice_tx_buf) * tx_ring->count;
memset(tx_ring->tx_buf, 0, size);
/* Zero out the descriptor ring */
memset(tx_ring->desc, 0, tx_ring->size);
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
if (!tx_ring->netdev)
return;
/* cleanup Tx queue statistics */
netdev_tx_reset_queue(txring_txq(tx_ring));
}
/**
* ice_free_tx_ring - Free Tx resources per queue
* @tx_ring: Tx descriptor ring for a specific queue
*
* Free all transmit software resources
*/
void ice_free_tx_ring(struct ice_ring *tx_ring)
{
ice_clean_tx_ring(tx_ring);
devm_kfree(tx_ring->dev, tx_ring->tx_buf);
tx_ring->tx_buf = NULL;
if (tx_ring->desc) {
dmam_free_coherent(tx_ring->dev, tx_ring->size,
tx_ring->desc, tx_ring->dma);
tx_ring->desc = NULL;
}
}
/**
* ice_setup_tx_ring - Allocate the Tx descriptors
* @tx_ring: the tx ring to set up
*
* Return 0 on success, negative on error
*/
int ice_setup_tx_ring(struct ice_ring *tx_ring)
{
struct device *dev = tx_ring->dev;
int bi_size;
if (!dev)
return -ENOMEM;
/* warn if we are about to overwrite the pointer */
WARN_ON(tx_ring->tx_buf);
bi_size = sizeof(struct ice_tx_buf) * tx_ring->count;
tx_ring->tx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
if (!tx_ring->tx_buf)
return -ENOMEM;
/* round up to nearest 4K */
tx_ring->size = tx_ring->count * sizeof(struct ice_tx_desc);
tx_ring->size = ALIGN(tx_ring->size, 4096);
tx_ring->desc = dmam_alloc_coherent(dev, tx_ring->size, &tx_ring->dma,
GFP_KERNEL);
if (!tx_ring->desc) {
dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
tx_ring->size);
goto err;
}
tx_ring->next_to_use = 0;
tx_ring->next_to_clean = 0;
return 0;
err:
devm_kfree(dev, tx_ring->tx_buf);
tx_ring->tx_buf = NULL;
return -ENOMEM;
}
/**
* ice_clean_rx_ring - Free Rx buffers
* @rx_ring: ring to be cleaned
*/
void ice_clean_rx_ring(struct ice_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
unsigned long size;
u16 i;
/* ring already cleared, nothing to do */
if (!rx_ring->rx_buf)
return;
/* Free all the Rx ring sk_buffs */
for (i = 0; i < rx_ring->count; i++) {
struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
if (rx_buf->skb) {
dev_kfree_skb(rx_buf->skb);
rx_buf->skb = NULL;
}
if (!rx_buf->page)
continue;
dma_unmap_page(dev, rx_buf->dma, PAGE_SIZE, DMA_FROM_DEVICE);
__free_pages(rx_buf->page, 0);
rx_buf->page = NULL;
rx_buf->page_offset = 0;
}
size = sizeof(struct ice_rx_buf) * rx_ring->count;
memset(rx_ring->rx_buf, 0, size);
/* Zero out the descriptor ring */
memset(rx_ring->desc, 0, rx_ring->size);
rx_ring->next_to_alloc = 0;
rx_ring->next_to_clean = 0;
rx_ring->next_to_use = 0;
}
/**
* ice_free_rx_ring - Free Rx resources
* @rx_ring: ring to clean the resources from
*
* Free all receive software resources
*/
void ice_free_rx_ring(struct ice_ring *rx_ring)
{
ice_clean_rx_ring(rx_ring);
devm_kfree(rx_ring->dev, rx_ring->rx_buf);
rx_ring->rx_buf = NULL;
if (rx_ring->desc) {
dmam_free_coherent(rx_ring->dev, rx_ring->size,
rx_ring->desc, rx_ring->dma);
rx_ring->desc = NULL;
}
}
/**
* ice_setup_rx_ring - Allocate the Rx descriptors
* @rx_ring: the rx ring to set up
*
* Return 0 on success, negative on error
*/
int ice_setup_rx_ring(struct ice_ring *rx_ring)
{
struct device *dev = rx_ring->dev;
int bi_size;
if (!dev)
return -ENOMEM;
/* warn if we are about to overwrite the pointer */
WARN_ON(rx_ring->rx_buf);
bi_size = sizeof(struct ice_rx_buf) * rx_ring->count;
rx_ring->rx_buf = devm_kzalloc(dev, bi_size, GFP_KERNEL);
if (!rx_ring->rx_buf)
return -ENOMEM;
/* round up to nearest 4K */
rx_ring->size = rx_ring->count * sizeof(union ice_32byte_rx_desc);
rx_ring->size = ALIGN(rx_ring->size, 4096);
rx_ring->desc = dmam_alloc_coherent(dev, rx_ring->size, &rx_ring->dma,
GFP_KERNEL);
if (!rx_ring->desc) {
dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
rx_ring->size);
goto err;
}
rx_ring->next_to_use = 0;
rx_ring->next_to_clean = 0;
return 0;
err:
devm_kfree(dev, rx_ring->rx_buf);
rx_ring->rx_buf = NULL;
return -ENOMEM;
}
/**
* ice_release_rx_desc - Store the new tail and head values
* @rx_ring: ring to bump
* @val: new head index
*/
static void ice_release_rx_desc(struct ice_ring *rx_ring, u32 val)
{
rx_ring->next_to_use = val;
/* update next to alloc since we have filled the ring */
rx_ring->next_to_alloc = val;
/* Force memory writes to complete before letting h/w
* know there are new descriptors to fetch. (Only
* applicable for weak-ordered memory model archs,
* such as IA-64).
*/
wmb();
writel(val, rx_ring->tail);
}
/**
* ice_alloc_mapped_page - recycle or make a new page
* @rx_ring: ring to use
* @bi: rx_buf struct to modify
*
* Returns true if the page was successfully allocated or
* reused.
*/
static bool ice_alloc_mapped_page(struct ice_ring *rx_ring,
struct ice_rx_buf *bi)
{
struct page *page = bi->page;
dma_addr_t dma;
/* since we are recycling buffers we should seldom need to alloc */
if (likely(page))
return true;
/* alloc new page for storage */
page = alloc_page(GFP_ATOMIC | __GFP_NOWARN);
if (unlikely(!page))
return false;
/* map page for use */
dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
/* if mapping failed free memory back to system since
* there isn't much point in holding memory we can't use
*/
if (dma_mapping_error(rx_ring->dev, dma)) {
__free_pages(page, 0);
return false;
}
bi->dma = dma;
bi->page = page;
bi->page_offset = 0;
return true;
}
/**
* ice_alloc_rx_bufs - Replace used receive buffers
* @rx_ring: ring to place buffers on
* @cleaned_count: number of buffers to replace
*
* Returns false if all allocations were successful, true if any fail
*/
bool ice_alloc_rx_bufs(struct ice_ring *rx_ring, u16 cleaned_count)
{
union ice_32b_rx_flex_desc *rx_desc;
u16 ntu = rx_ring->next_to_use;
struct ice_rx_buf *bi;
/* do nothing if no valid netdev defined */
if (!rx_ring->netdev || !cleaned_count)
return false;
/* get the RX descriptor and buffer based on next_to_use */
rx_desc = ICE_RX_DESC(rx_ring, ntu);
bi = &rx_ring->rx_buf[ntu];
do {
if (!ice_alloc_mapped_page(rx_ring, bi))
goto no_bufs;
/* Refresh the desc even if buffer_addrs didn't change
* because each write-back erases this info.
*/
rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
rx_desc++;
bi++;
ntu++;
if (unlikely(ntu == rx_ring->count)) {
rx_desc = ICE_RX_DESC(rx_ring, 0);
bi = rx_ring->rx_buf;
ntu = 0;
}
/* clear the status bits for the next_to_use descriptor */
rx_desc->wb.status_error0 = 0;
cleaned_count--;
} while (cleaned_count);
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
return false;
no_bufs:
if (rx_ring->next_to_use != ntu)
ice_release_rx_desc(rx_ring, ntu);
/* make sure to come back via polling to try again after
* allocation failure
*/
return true;
}
......@@ -5,6 +5,30 @@
#define _ICE_TXRX_H_
#define ICE_DFLT_IRQ_WORK 256
#define ICE_RXBUF_2048 2048
#define ICE_MAX_CHAINED_RX_BUFS 5
#define ICE_MAX_TXQ_PER_TXQG 128
#define ICE_DESC_UNUSED(R) \
((((R)->next_to_clean > (R)->next_to_use) ? 0 : (R)->count) + \
(R)->next_to_clean - (R)->next_to_use - 1)
struct ice_tx_buf {
struct ice_tx_desc *next_to_watch;
struct sk_buff *skb;
unsigned int bytecount;
unsigned short gso_segs;
u32 tx_flags;
DEFINE_DMA_UNMAP_ADDR(dma);
DEFINE_DMA_UNMAP_LEN(len);
};
struct ice_rx_buf {
struct sk_buff *skb;
dma_addr_t dma;
struct page *page;
unsigned int page_offset;
};
/* this enum matches hardware bits and is meant to be used by DYN_CTLN
* registers and QINT registers or more generally anywhere in the manual
......@@ -18,33 +42,77 @@ enum ice_dyn_idx_t {
ICE_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
};
/* Header split modes defined by DTYPE field of Rx RLAN context */
enum ice_rx_dtype {
ICE_RX_DTYPE_NO_SPLIT = 0,
ICE_RX_DTYPE_HEADER_SPLIT = 1,
ICE_RX_DTYPE_SPLIT_ALWAYS = 2,
};
/* indices into GLINT_ITR registers */
#define ICE_RX_ITR ICE_IDX_ITR0
#define ICE_TX_ITR ICE_IDX_ITR1
#define ICE_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
#define ICE_ITR_8K 0x003E
/* apply ITR HW granularity translation to program the HW registers */
#define ITR_TO_REG(val, itr_gran) (((val) & ~ICE_ITR_DYNAMIC) >> (itr_gran))
/* Legacy or Advanced Mode Queue */
#define ICE_TX_ADVANCED 0
#define ICE_TX_LEGACY 1
/* descriptor ring, associated with a VSI */
struct ice_ring {
struct ice_ring *next; /* pointer to next ring in q_vector */
void *desc; /* Descriptor ring memory */
struct device *dev; /* Used for DMA mapping */
struct net_device *netdev; /* netdev ring maps to */
struct ice_vsi *vsi; /* Backreference to associated VSI */
struct ice_q_vector *q_vector; /* Backreference to associated vector */
u8 __iomem *tail;
union {
struct ice_tx_buf *tx_buf;
struct ice_rx_buf *rx_buf;
};
u16 q_index; /* Queue number of ring */
u32 txq_teid; /* Added Tx queue TEID */
/* high bit set means dynamic, use accessor routines to read/write.
* hardware supports 2us/1us resolution for the ITR registers.
* these values always store the USER setting, and must be converted
* before programming to a register.
*/
u16 rx_itr_setting;
u16 tx_itr_setting;
u16 count; /* Number of descriptors */
u16 reg_idx; /* HW register index of the ring */
/* used in interrupt processing */
u16 next_to_use;
u16 next_to_clean;
bool ring_active; /* is ring online or not */
unsigned int size; /* length of descriptor ring in bytes */
dma_addr_t dma; /* physical address of ring */
struct rcu_head rcu; /* to avoid race on free */
u16 next_to_alloc;
} ____cacheline_internodealigned_in_smp;
enum ice_latency_range {
ICE_LOWEST_LATENCY = 0,
ICE_LOW_LATENCY = 1,
ICE_BULK_LATENCY = 2,
ICE_ULTRA_LATENCY = 3,
};
struct ice_ring_container {
/* array of pointers to rings */
struct ice_ring *ring;
unsigned int total_bytes; /* total bytes processed this int */
unsigned int total_pkts; /* total packets processed this int */
enum ice_latency_range latency_range;
u16 itr;
};
......@@ -52,4 +120,11 @@ struct ice_ring_container {
#define ice_for_each_ring(pos, head) \
for (pos = (head).ring; pos; pos = pos->next)
bool ice_alloc_rx_bufs(struct ice_ring *rxr, u16 cleaned_count);
void ice_clean_tx_ring(struct ice_ring *tx_ring);
void ice_clean_rx_ring(struct ice_ring *rx_ring);
int ice_setup_tx_ring(struct ice_ring *tx_ring);
int ice_setup_rx_ring(struct ice_ring *rx_ring);
void ice_free_tx_ring(struct ice_ring *tx_ring);
void ice_free_rx_ring(struct ice_ring *rx_ring);
#endif /* _ICE_TXRX_H_ */
......@@ -8,9 +8,11 @@
#include "ice_hw_autogen.h"
#include "ice_osdep.h"
#include "ice_controlq.h"
#include "ice_lan_tx_rx.h"
/* debug masks - set these bits in hw->debug_mask to control output */
#define ICE_DBG_INIT BIT_ULL(1)
#define ICE_DBG_QCTX BIT_ULL(6)
#define ICE_DBG_NVM BIT_ULL(7)
#define ICE_DBG_LAN BIT_ULL(8)
#define ICE_DBG_SW BIT_ULL(13)
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment