Commit d4c6ff18 authored by Julien Stephan's avatar Julien Stephan Committed by Jonathan Cameron

iio: adc: ad7380: enable sequencer for single-ended parts

ad7386/7/8(-4) single-ended parts have a 2:1 mux in front of each ADC.

>From an IIO point of view, all inputs are exported, i.e ad7386/7/8
export 4 channels and ad7386-4/7-4/8-4 export 8 channels. First inputs
of muxes correspond to the first half of IIO channels (i.e 0-1 or 0-3)
and second inputs correspond to second half (i.e 2-3 or 4-7)

Currently, the driver supports only sampling first half OR second half of
the IIO channels. To enable sampling all channels simultaneously, these
parts have an internal sequencer that automatically cycles through the
mux entries.

When enabled, the maximum throughput is divided by two. Moreover, the ADCs
need additional settling time, so we add an extra CS toggle to correctly
propagate setting, and an additional spi transfer to read the second
half.
Signed-off-by: default avatarJulien Stephan <jstephan@baylibre.com>
Reviewed-by: default avatarDavid Lechner <dlechner@baylibre.com>
Link: https://patch.msgid.link/20240731-ad7380-add-single-ended-chips-v2-6-cd63bf05744c@baylibre.comSigned-off-by: default avatarJonathan Cameron <Jonathan.Cameron@huawei.com>
parent ae20f31d
...@@ -33,7 +33,7 @@ ...@@ -33,7 +33,7 @@
#include <linux/iio/trigger_consumer.h> #include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h> #include <linux/iio/triggered_buffer.h>
#define MAX_NUM_CHANNELS 4 #define MAX_NUM_CHANNELS 8
/* 2.5V internal reference voltage */ /* 2.5V internal reference voltage */
#define AD7380_INTERNAL_REF_MV 2500 #define AD7380_INTERNAL_REF_MV 2500
...@@ -52,6 +52,7 @@ ...@@ -52,6 +52,7 @@
#define AD7380_REG_ADDR_ALERT_HIGH_TH 0x5 #define AD7380_REG_ADDR_ALERT_HIGH_TH 0x5
#define AD7380_CONFIG1_CH BIT(11) #define AD7380_CONFIG1_CH BIT(11)
#define AD7380_CONFIG1_SEQ BIT(10)
#define AD7380_CONFIG1_OS_MODE BIT(9) #define AD7380_CONFIG1_OS_MODE BIT(9)
#define AD7380_CONFIG1_OSR GENMASK(8, 6) #define AD7380_CONFIG1_OSR GENMASK(8, 6)
#define AD7380_CONFIG1_CRC_W BIT(5) #define AD7380_CONFIG1_CRC_W BIT(5)
...@@ -290,16 +291,28 @@ static const unsigned long ad7380_4_channel_scan_masks[] = { ...@@ -290,16 +291,28 @@ static const unsigned long ad7380_4_channel_scan_masks[] = {
* *
* Since this is simultaneous sampling for AinX0 OR AinX1 we have two separate * Since this is simultaneous sampling for AinX0 OR AinX1 we have two separate
* scan masks. * scan masks.
* When sequencer mode is enabled, chip automatically cycles through
* AinX0 and AinX1 channels. From an IIO point of view, we ca enable all
* channels, at the cost of an extra read, thus dividing the maximum rate by
* two.
*/ */
enum {
AD7380_SCAN_MASK_CH_0,
AD7380_SCAN_MASK_CH_1,
AD7380_SCAN_MASK_SEQ,
};
static const unsigned long ad7380_2x2_channel_scan_masks[] = { static const unsigned long ad7380_2x2_channel_scan_masks[] = {
GENMASK(1, 0), [AD7380_SCAN_MASK_CH_0] = GENMASK(1, 0),
GENMASK(3, 2), [AD7380_SCAN_MASK_CH_1] = GENMASK(3, 2),
[AD7380_SCAN_MASK_SEQ] = GENMASK(3, 0),
0 0
}; };
static const unsigned long ad7380_2x4_channel_scan_masks[] = { static const unsigned long ad7380_2x4_channel_scan_masks[] = {
GENMASK(3, 0), [AD7380_SCAN_MASK_CH_0] = GENMASK(3, 0),
GENMASK(7, 4), [AD7380_SCAN_MASK_CH_1] = GENMASK(7, 4),
[AD7380_SCAN_MASK_SEQ] = GENMASK(7, 0),
0 0
}; };
...@@ -467,11 +480,14 @@ struct ad7380_state { ...@@ -467,11 +480,14 @@ struct ad7380_state {
unsigned int oversampling_ratio; unsigned int oversampling_ratio;
bool resolution_boost_enabled; bool resolution_boost_enabled;
unsigned int ch; unsigned int ch;
bool seq;
unsigned int vref_mv; unsigned int vref_mv;
unsigned int vcm_mv[MAX_NUM_CHANNELS]; unsigned int vcm_mv[MAX_NUM_CHANNELS];
/* xfers, message an buffer for reading sample data */ /* xfers, message an buffer for reading sample data */
struct spi_transfer xfer[2]; struct spi_transfer normal_xfer[2];
struct spi_message msg; struct spi_message normal_msg;
struct spi_transfer seq_xfer[4];
struct spi_message seq_msg;
/* /*
* DMA (thus cache coherency maintenance) requires the transfer buffers * DMA (thus cache coherency maintenance) requires the transfer buffers
* to live in their own cache lines. * to live in their own cache lines.
...@@ -609,33 +625,47 @@ static int ad7380_set_ch(struct ad7380_state *st, unsigned int ch) ...@@ -609,33 +625,47 @@ static int ad7380_set_ch(struct ad7380_state *st, unsigned int ch)
static void ad7380_update_xfers(struct ad7380_state *st, static void ad7380_update_xfers(struct ad7380_state *st,
const struct iio_scan_type *scan_type) const struct iio_scan_type *scan_type)
{ {
/* struct spi_transfer *xfer = st->seq ? st->seq_xfer : st->normal_xfer;
* First xfer only triggers conversion and has to be long enough for unsigned int t_convert = T_CONVERT_NS;
* all conversions to complete, which can be multiple conversion in the
* case of oversampling. Technically T_CONVERT_X_NS is lower for some
* chips, but we use the maximum value for simplicity for now.
*/
if (st->oversampling_ratio > 1)
st->xfer[0].delay.value = T_CONVERT_0_NS + T_CONVERT_X_NS *
(st->oversampling_ratio - 1);
else
st->xfer[0].delay.value = T_CONVERT_NS;
st->xfer[0].delay.unit = SPI_DELAY_UNIT_NSECS;
/* /*
* Second xfer reads all channels. Data size depends on if resolution * In the case of oversampling, conversion time is higher than in normal
* boost is enabled or not. * mode. Technically T_CONVERT_X_NS is lower for some chips, but we use
* the maximum value for simplicity for now.
*/ */
st->xfer[1].bits_per_word = scan_type->realbits; if (st->oversampling_ratio > 1)
st->xfer[1].len = BITS_TO_BYTES(scan_type->storagebits) * t_convert = T_CONVERT_0_NS + T_CONVERT_X_NS *
st->chip_info->num_simult_channels; (st->oversampling_ratio - 1);
if (st->seq) {
xfer[0].delay.value = xfer[1].delay.value = t_convert;
xfer[0].delay.unit = xfer[1].delay.unit = SPI_DELAY_UNIT_NSECS;
xfer[2].bits_per_word = xfer[3].bits_per_word =
scan_type->realbits;
xfer[2].len = xfer[3].len =
BITS_TO_BYTES(scan_type->storagebits) *
st->chip_info->num_simult_channels;
xfer[3].rx_buf = xfer[2].rx_buf + xfer[2].len;
/* Additional delay required here when oversampling is enabled */
if (st->oversampling_ratio > 1)
xfer[2].delay.value = t_convert;
else
xfer[2].delay.value = 0;
xfer[2].delay.unit = SPI_DELAY_UNIT_NSECS;
} else {
xfer[0].delay.value = t_convert;
xfer[0].delay.unit = SPI_DELAY_UNIT_NSECS;
xfer[1].bits_per_word = scan_type->realbits;
xfer[1].len = BITS_TO_BYTES(scan_type->storagebits) *
st->chip_info->num_simult_channels;
}
} }
static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev) static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev)
{ {
struct ad7380_state *st = iio_priv(indio_dev); struct ad7380_state *st = iio_priv(indio_dev);
const struct iio_scan_type *scan_type; const struct iio_scan_type *scan_type;
struct spi_message *msg = &st->normal_msg;
/* /*
* Currently, we always read all channels at the same time. The scan_type * Currently, we always read all channels at the same time. The scan_type
...@@ -651,28 +681,57 @@ static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev) ...@@ -651,28 +681,57 @@ static int ad7380_triggered_buffer_preenable(struct iio_dev *indio_dev)
/* /*
* Depending on the requested scan_mask and current state, * Depending on the requested scan_mask and current state,
* we need to change CH bit to sample correct data. * we need to either change CH bit, or enable sequencer mode
* to sample correct data.
* Sequencer mode is enabled if active mask corresponds to all
* IIO channels enabled. Otherwise, CH bit is set.
*/ */
ret = iio_active_scan_mask_index(indio_dev); ret = iio_active_scan_mask_index(indio_dev);
if (ret < 0) if (ret < 0)
return ret; return ret;
index = ret; index = ret;
ret = ad7380_set_ch(st, index); if (index == AD7380_SCAN_MASK_SEQ) {
if (ret) ret = regmap_update_bits(st->regmap,
return ret; AD7380_REG_ADDR_CONFIG1,
AD7380_CONFIG1_SEQ,
FIELD_PREP(AD7380_CONFIG1_SEQ, 1));
if (ret)
return ret;
msg = &st->seq_msg;
st->seq = true;
} else {
ret = ad7380_set_ch(st, index);
if (ret)
return ret;
}
} }
ad7380_update_xfers(st, scan_type); ad7380_update_xfers(st, scan_type);
return spi_optimize_message(st->spi, &st->msg); return spi_optimize_message(st->spi, msg);
} }
static int ad7380_triggered_buffer_postdisable(struct iio_dev *indio_dev) static int ad7380_triggered_buffer_postdisable(struct iio_dev *indio_dev)
{ {
struct ad7380_state *st = iio_priv(indio_dev); struct ad7380_state *st = iio_priv(indio_dev);
struct spi_message *msg = &st->normal_msg;
int ret;
if (st->seq) {
ret = regmap_update_bits(st->regmap,
AD7380_REG_ADDR_CONFIG1,
AD7380_CONFIG1_SEQ,
FIELD_PREP(AD7380_CONFIG1_SEQ, 0));
if (ret)
return ret;
msg = &st->seq_msg;
st->seq = false;
}
spi_unoptimize_message(&st->msg); spi_unoptimize_message(msg);
return 0; return 0;
} }
...@@ -687,9 +746,10 @@ static irqreturn_t ad7380_trigger_handler(int irq, void *p) ...@@ -687,9 +746,10 @@ static irqreturn_t ad7380_trigger_handler(int irq, void *p)
struct iio_poll_func *pf = p; struct iio_poll_func *pf = p;
struct iio_dev *indio_dev = pf->indio_dev; struct iio_dev *indio_dev = pf->indio_dev;
struct ad7380_state *st = iio_priv(indio_dev); struct ad7380_state *st = iio_priv(indio_dev);
struct spi_message *msg = st->seq ? &st->seq_msg : &st->normal_msg;
int ret; int ret;
ret = spi_sync(st->spi, &st->msg); ret = spi_sync(st->spi, msg);
if (ret) if (ret)
goto out; goto out;
...@@ -723,7 +783,7 @@ static int ad7380_read_direct(struct ad7380_state *st, unsigned int scan_index, ...@@ -723,7 +783,7 @@ static int ad7380_read_direct(struct ad7380_state *st, unsigned int scan_index,
ad7380_update_xfers(st, scan_type); ad7380_update_xfers(st, scan_type);
ret = spi_sync(st->spi, &st->msg); ret = spi_sync(st->spi, &st->normal_msg);
if (ret < 0) if (ret < 0)
return ret; return ret;
...@@ -919,6 +979,7 @@ static int ad7380_init(struct ad7380_state *st, struct regulator *vref) ...@@ -919,6 +979,7 @@ static int ad7380_init(struct ad7380_state *st, struct regulator *vref)
/* This is the default value after reset. */ /* This is the default value after reset. */
st->oversampling_ratio = 1; st->oversampling_ratio = 1;
st->ch = 0; st->ch = 0;
st->seq = false;
/* SPI 1-wire mode */ /* SPI 1-wire mode */
return regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2, return regmap_update_bits(st->regmap, AD7380_REG_ADDR_CONFIG2,
...@@ -1020,21 +1081,45 @@ static int ad7380_probe(struct spi_device *spi) ...@@ -1020,21 +1081,45 @@ static int ad7380_probe(struct spi_device *spi)
"failed to allocate register map\n"); "failed to allocate register map\n");
/* /*
* Setting up a low latency read for getting sample data. Used for both * Setting up xfer structures for both normal and sequence mode. These
* direct read an triggered buffer. Additional fields will be set up in * struct are used for both direct read and triggered buffer. Additional
* ad7380_update_xfers() based on the current state of the driver at the * fields will be set up in ad7380_update_xfers() based on the current
* time of the read. * state of the driver at the time of the read.
*/ */
/* toggle CS (no data xfer) to trigger a conversion */ /*
st->xfer[0].cs_change = 1; * In normal mode a read is composed of two steps:
st->xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns; * - first, toggle CS (no data xfer) to trigger a conversion
st->xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS; * - then, read data
*/
/* then do a second xfer to read the data */ st->normal_xfer[0].cs_change = 1;
st->xfer[1].rx_buf = st->scan_data; st->normal_xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
st->normal_xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
st->normal_xfer[1].rx_buf = st->scan_data;
spi_message_init_with_transfers(&st->msg, st->xfer, ARRAY_SIZE(st->xfer)); spi_message_init_with_transfers(&st->normal_msg, st->normal_xfer,
ARRAY_SIZE(st->normal_xfer));
/*
* In sequencer mode a read is composed of four steps:
* - CS toggle (no data xfer) to get the right point in the sequence
* - CS toggle (no data xfer) to trigger a conversion of AinX0 and
* acquisition of AinX1
* - 2 data reads, to read AinX0 and AinX1
*/
st->seq_xfer[0].cs_change = 1;
st->seq_xfer[0].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
st->seq_xfer[0].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
st->seq_xfer[1].cs_change = 1;
st->seq_xfer[1].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
st->seq_xfer[1].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
st->seq_xfer[2].rx_buf = st->scan_data;
st->seq_xfer[2].cs_change = 1;
st->seq_xfer[2].cs_change_delay.value = st->chip_info->timing_specs->t_csh_ns;
st->seq_xfer[2].cs_change_delay.unit = SPI_DELAY_UNIT_NSECS;
spi_message_init_with_transfers(&st->seq_msg, st->seq_xfer,
ARRAY_SIZE(st->seq_xfer));
indio_dev->channels = st->chip_info->channels; indio_dev->channels = st->chip_info->channels;
indio_dev->num_channels = st->chip_info->num_channels; indio_dev->num_channels = st->chip_info->num_channels;
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment