Commit da7a59ff authored by Dave Jones's avatar Dave Jones Committed by Linus Torvalds

[PATCH] documentation for userspace access.

From: Jon Foster <jon@jon-foster.co.uk>

This patch against 2.5.63 adds kerneldoc comments to the public API in these files:
- include/asm-i386/uaccess.h
- arch/i386/lib/usercopy.c

This patch only changes comments and one of the templates used by "make htmldocs",
it does not change any code.
parent 470aab84
......@@ -89,7 +89,11 @@ KAO -->
<title>Memory Management in Linux</title>
<sect1><title>The Slab Cache</title>
!Emm/slab.c
</sect1>
</sect1>
<sect1><title>User Space Memory Access</title>
!Iinclude/asm-i386/uaccess.h
!Iarch/i386/lib/usercopy.c
</sect1>
</chapter>
<chapter id="proc">
......
......@@ -50,6 +50,26 @@ do { \
: "memory"); \
} while (0)
/**
* __strncpy_from_user: - Copy a NULL terminated string from userspace, with less checking.
* @dst: Destination address, in kernel space. This buffer must be at
* least @count bytes long.
* @src: Source address, in user space.
* @count: Maximum number of bytes to copy, including the trailing NULL.
*
* Copies a NULL-terminated string from userspace to kernel space.
* Caller must check the specified block with access_ok() before calling
* this function.
*
* On success, returns the length of the string (not including the trailing
* NULL).
*
* If access to userspace fails, returns -EFAULT (some data may have been
* copied).
*
* If @count is smaller than the length of the string, copies @count bytes
* and returns @count.
*/
long
__strncpy_from_user(char *dst, const char *src, long count)
{
......@@ -58,6 +78,24 @@ __strncpy_from_user(char *dst, const char *src, long count)
return res;
}
/**
* strncpy_from_user: - Copy a NULL terminated string from userspace.
* @dst: Destination address, in kernel space. This buffer must be at
* least @count bytes long.
* @src: Source address, in user space.
* @count: Maximum number of bytes to copy, including the trailing NULL.
*
* Copies a NULL-terminated string from userspace to kernel space.
*
* On success, returns the length of the string (not including the trailing
* NULL).
*
* If access to userspace fails, returns -EFAULT (some data may have been
* copied).
*
* If @count is smaller than the length of the string, copies @count bytes
* and returns @count.
*/
long
strncpy_from_user(char *dst, const char *src, long count)
{
......@@ -93,6 +131,16 @@ do { \
: "r"(size & 3), "0"(size / 4), "1"(addr), "a"(0)); \
} while (0)
/**
* clear_user: - Zero a block of memory in user space.
* @to: Destination address, in user space.
* @n: Number of bytes to zero.
*
* Zero a block of memory in user space.
*
* Returns number of bytes that could not be cleared.
* On success, this will be zero.
*/
unsigned long
clear_user(void *to, unsigned long n)
{
......@@ -101,6 +149,17 @@ clear_user(void *to, unsigned long n)
return n;
}
/**
* __clear_user: - Zero a block of memory in user space, with less checking.
* @to: Destination address, in user space.
* @n: Number of bytes to zero.
*
* Zero a block of memory in user space. Caller must check
* the specified block with access_ok() before calling this function.
*
* Returns number of bytes that could not be cleared.
* On success, this will be zero.
*/
unsigned long
__clear_user(void *to, unsigned long n)
{
......@@ -108,12 +167,17 @@ __clear_user(void *to, unsigned long n)
return n;
}
/*
* Return the size of a string (including the ending 0)
/**
* strlen_user: - Get the size of a string in user space.
* @s: The string to measure.
* @n: The maximum valid length
*
* Return 0 on exception, a value greater than N if too long
* Get the size of a NULL-terminated string in user space.
*
* Returns the size of the string INCLUDING the terminating NULL.
* On exception, returns 0.
* If the string is too long, returns a value greater than @n.
*/
long strnlen_user(const char *s, long n)
{
unsigned long mask = -__addr_ok(s);
......
......@@ -47,7 +47,13 @@ int __verify_write(const void *, unsigned long);
#define __addr_ok(addr) ((unsigned long)(addr) < (current_thread_info()->addr_limit.seg))
/*
* Uhhuh, this needs 33-bit arithmetic. We have a carry..
* Test whether a block of memory is a valid user space address.
* Returns 0 if the range is valid, nonzero otherwise.
*
* This is equivalent to the following test:
* (u33)addr + (u33)size >= (u33)current->addr_limit.seg
*
* This needs 33-bit arithmetic. We have a carry...
*/
#define __range_ok(addr,size) ({ \
unsigned long flag,sum; \
......@@ -58,6 +64,25 @@ int __verify_write(const void *, unsigned long);
#ifdef CONFIG_X86_WP_WORKS_OK
/**
* access_ok: - Checks if a user space pointer is valid
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
* %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
* to write to a block, it is always safe to read from it.
* @addr: User space pointer to start of block to check
* @size: Size of block to check
*
* Context: User context only. This function may sleep.
*
* Checks if a pointer to a block of memory in user space is valid.
*
* Returns true (nonzero) if the memory block may be valid, false (zero)
* if it is definitely invalid.
*
* Note that, depending on architecture, this function probably just
* checks that the pointer is in the user space range - after calling
* this function, memory access functions may still return -EFAULT.
*/
#define access_ok(type,addr,size) (__range_ok(addr,size) == 0)
#else
......@@ -68,6 +93,23 @@ int __verify_write(const void *, unsigned long);
#endif
/**
* verify_area: - Obsolete, use access_ok()
* @type: Type of access: %VERIFY_READ or %VERIFY_WRITE
* @addr: User space pointer to start of block to check
* @size: Size of block to check
*
* Context: User context only. This function may sleep.
*
* This function has been replaced by access_ok().
*
* Checks if a pointer to a block of memory in user space is valid.
*
* Returns zero if the memory block may be valid, -EFAULT
* if it is definitely invalid.
*
* See access_ok() for more details.
*/
static inline int verify_area(int type, const void * addr, unsigned long size)
{
return access_ok(type,addr,size) ? 0 : -EFAULT;
......@@ -118,7 +160,25 @@ extern void __get_user_4(void);
:"=a" (ret),"=d" (x) \
:"0" (ptr))
/* Careful: we have to cast the result to the type of the pointer for sign reasons */
/**
* get_user: - Get a simple variable from user space.
* @x: Variable to store result.
* @ptr: Source address, in user space.
*
* Context: User context only. This function may sleep.
*
* This macro copies a single simple variable from user space to kernel
* space. It supports simple types like char and int, but not larger
* data types like structures or arrays.
*
* @ptr must have pointer-to-simple-variable type, and the result of
* dereferencing @ptr must be assignable to @x without a cast.
*
* Returns zero on success, or -EFAULT on error.
* On error, the variable @x is set to zero.
*/
#define get_user(x,ptr) \
({ int __ret_gu,__val_gu; \
switch(sizeof (*(ptr))) { \
......@@ -138,11 +198,70 @@ extern void __put_user_8(void);
extern void __put_user_bad(void);
/**
* put_user: - Write a simple value into user space.
* @x: Value to copy to user space.
* @ptr: Destination address, in user space.
*
* Context: User context only. This function may sleep.
*
* This macro copies a single simple value from kernel space to user
* space. It supports simple types like char and int, but not larger
* data types like structures or arrays.
*
* @ptr must have pointer-to-simple-variable type, and @x must be assignable
* to the result of dereferencing @ptr.
*
* Returns zero on success, or -EFAULT on error.
*/
#define put_user(x,ptr) \
__put_user_check((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
/**
* __get_user: - Get a simple variable from user space, with less checking.
* @x: Variable to store result.
* @ptr: Source address, in user space.
*
* Context: User context only. This function may sleep.
*
* This macro copies a single simple variable from user space to kernel
* space. It supports simple types like char and int, but not larger
* data types like structures or arrays.
*
* @ptr must have pointer-to-simple-variable type, and the result of
* dereferencing @ptr must be assignable to @x without a cast.
*
* Caller must check the pointer with access_ok() before calling this
* function.
*
* Returns zero on success, or -EFAULT on error.
* On error, the variable @x is set to zero.
*/
#define __get_user(x,ptr) \
__get_user_nocheck((x),(ptr),sizeof(*(ptr)))
/**
* __put_user: - Write a simple value into user space, with less checking.
* @x: Value to copy to user space.
* @ptr: Destination address, in user space.
*
* Context: User context only. This function may sleep.
*
* This macro copies a single simple value from kernel space to user
* space. It supports simple types like char and int, but not larger
* data types like structures or arrays.
*
* @ptr must have pointer-to-simple-variable type, and @x must be assignable
* to the result of dereferencing @ptr.
*
* Caller must check the pointer with access_ok() before calling this
* function.
*
* Returns zero on success, or -EFAULT on error.
*/
#define __put_user(x,ptr) \
__put_user_nocheck((__typeof__(*(ptr)))(x),(ptr),sizeof(*(ptr)))
......@@ -263,6 +382,21 @@ unsigned long __copy_from_user_ll(void *to, const void *from, unsigned long n);
* If a store crosses a page boundary and gets a fault, the x86 will not write
* anything, so this is accurate.
*/
/**
* __copy_to_user: - Copy a block of data into user space, with less checking.
* @to: Destination address, in user space.
* @from: Source address, in kernel space.
* @n: Number of bytes to copy.
*
* Context: User context only. This function may sleep.
*
* Copy data from kernel space to user space. Caller must check
* the specified block with access_ok() before calling this function.
*
* Returns number of bytes that could not be copied.
* On success, this will be zero.
*/
static inline unsigned long
__copy_to_user(void *to, const void *from, unsigned long n)
{
......@@ -284,6 +418,23 @@ __copy_to_user(void *to, const void *from, unsigned long n)
return __copy_to_user_ll(to, from, n);
}
/**
* __copy_from_user: - Copy a block of data from user space, with less checking.
* @to: Destination address, in kernel space.
* @from: Source address, in user space.
* @n: Number of bytes to copy.
*
* Context: User context only. This function may sleep.
*
* Copy data from user space to kernel space. Caller must check
* the specified block with access_ok() before calling this function.
*
* Returns number of bytes that could not be copied.
* On success, this will be zero.
*
* If some data could not be copied, this function will pad the copied
* data to the requested size using zero bytes.
*/
static inline unsigned long
__copy_from_user(void *to, const void *from, unsigned long n)
{
......@@ -305,6 +456,19 @@ __copy_from_user(void *to, const void *from, unsigned long n)
return __copy_from_user_ll(to, from, n);
}
/**
* copy_to_user: - Copy a block of data into user space.
* @to: Destination address, in user space.
* @from: Source address, in kernel space.
* @n: Number of bytes to copy.
*
* Context: User context only. This function may sleep.
*
* Copy data from kernel space to user space.
*
* Returns number of bytes that could not be copied.
* On success, this will be zero.
*/
static inline unsigned long
copy_to_user(void *to, const void *from, unsigned long n)
{
......@@ -313,6 +477,22 @@ copy_to_user(void *to, const void *from, unsigned long n)
return n;
}
/**
* copy_from_user: - Copy a block of data from user space.
* @to: Destination address, in kernel space.
* @from: Source address, in user space.
* @n: Number of bytes to copy.
*
* Context: User context only. This function may sleep.
*
* Copy data from user space to kernel space.
*
* Returns number of bytes that could not be copied.
* On success, this will be zero.
*
* If some data could not be copied, this function will pad the copied
* data to the requested size using zero bytes.
*/
static inline unsigned long
copy_from_user(void *to, const void *from, unsigned long n)
{
......@@ -323,7 +503,23 @@ copy_from_user(void *to, const void *from, unsigned long n)
long strncpy_from_user(char *dst, const char *src, long count);
long __strncpy_from_user(char *dst, const char *src, long count);
/**
* strlen_user: - Get the size of a string in user space.
* @str: The string to measure.
*
* Context: User context only. This function may sleep.
*
* Get the size of a NULL-terminated string in user space.
*
* Returns the size of the string INCLUDING the terminating NULL.
* On exception, returns 0.
*
* If there is a limit on the length of a valid string, you may wish to
* consider using strnlen_user() instead.
*/
#define strlen_user(str) strnlen_user(str, ~0UL >> 1)
long strnlen_user(const char *str, long n);
unsigned long clear_user(void *mem, unsigned long len);
unsigned long __clear_user(void *mem, unsigned long len);
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment