Commit eb690ef8 authored by Alexander Duyck's avatar Alexander Duyck Committed by Jakub Kicinski

eth: fbnic: Add L2 address programming

Program the Rx TCAM to control L2 forwarding. Since we are in full
control of the NIC we need to make sure we include BMC forwarding
in the rules. When host is not present BMC will program the TCAM
to get onto the network but once we take ownership it's up to
Linux driver to make sure BMC L2 addresses are handled correctly.
Co-developed-by: default avatarSanman Pradhan <sanmanpradhan@meta.com>
Signed-off-by: default avatarSanman Pradhan <sanmanpradhan@meta.com>
Signed-off-by: default avatarAlexander Duyck <alexanderduyck@fb.com>
Link: https://patch.msgid.link/172079943202.1778861.4410412697614789017.stgit@ahduyck-xeon-server.home.arpaSigned-off-by: default avatarJakub Kicinski <kuba@kernel.org>
parent a29b8eb6
......@@ -14,5 +14,6 @@ fbnic-y := fbnic_devlink.o \
fbnic_netdev.o \
fbnic_pci.o \
fbnic_phylink.o \
fbnic_rpc.o \
fbnic_tlv.o \
fbnic_txrx.o
......@@ -12,6 +12,7 @@
#include "fbnic_csr.h"
#include "fbnic_fw.h"
#include "fbnic_mac.h"
#include "fbnic_rpc.h"
struct fbnic_dev {
struct device *dev;
......@@ -39,6 +40,10 @@ struct fbnic_dev {
u32 mps;
u32 readrq;
/* Local copy of the devices TCAM */
struct fbnic_mac_addr mac_addr[FBNIC_RPC_TCAM_MACDA_NUM_ENTRIES];
u8 mac_addr_boundary;
/* Number of TCQs/RCQs available on hardware */
u16 max_num_queues;
};
......
......@@ -537,8 +537,22 @@ enum {
#define FBNIC_RPC_RMI_CONFIG_FCS_PRESENT CSR_BIT(8)
#define FBNIC_RPC_RMI_CONFIG_ENABLE CSR_BIT(12)
#define FBNIC_RPC_RMI_CONFIG_MTU CSR_GENMASK(31, 16)
#define FBNIC_RPC_TCAM_MACDA_VALIDATE 0x0852d /* 0x214b4 */
#define FBNIC_CSR_END_RPC 0x0856b /* CSR section delimiter */
/* RPC RAM Registers */
#define FBNIC_CSR_START_RPC_RAM 0x08800 /* CSR section delimiter */
#define FBNIC_RPC_ACT_TBL_NUM_ENTRIES 64
/* TCAM Tables */
#define FBNIC_RPC_TCAM_VALIDATE CSR_BIT(31)
#define FBNIC_RPC_TCAM_MACDA(m, n) \
(0x08b80 + 0x20 * (n) + (m)) /* 0x022e00 + 128*n + 4*m */
#define FBNIC_RPC_TCAM_MACDA_VALUE CSR_GENMASK(15, 0)
#define FBNIC_RPC_TCAM_MACDA_MASK CSR_GENMASK(31, 16)
#define FBNIC_CSR_END_RPC_RAM 0x08f1f /* CSR section delimiter */
/* Fab Registers */
#define FBNIC_CSR_START_FAB 0x0C000 /* CSR section delimiter */
#define FBNIC_FAB_AXI4_AR_SPACER_2_CFG 0x0C005 /* 0x30014 */
......
......@@ -68,6 +68,8 @@ struct fbnic_dev *fbnic_devlink_alloc(struct pci_dev *pdev)
fbd->mps = pcie_get_mps(pdev);
fbd->readrq = pcie_get_readrq(pdev);
fbd->mac_addr_boundary = FBNIC_RPC_TCAM_MACDA_DEFAULT_BOUNDARY;
return fbd;
}
......
......@@ -48,6 +48,8 @@ int __fbnic_open(struct fbnic_net *fbn)
err = fbnic_pcs_irq_enable(fbd);
if (err)
goto release_ownership;
/* Pull the BMC config and initialize the RPC */
fbnic_bmc_rpc_init(fbd);
return 0;
release_ownership:
......@@ -86,12 +88,240 @@ static int fbnic_stop(struct net_device *netdev)
return 0;
}
static int fbnic_uc_sync(struct net_device *netdev, const unsigned char *addr)
{
struct fbnic_net *fbn = netdev_priv(netdev);
struct fbnic_mac_addr *avail_addr;
if (WARN_ON(!is_valid_ether_addr(addr)))
return -EADDRNOTAVAIL;
avail_addr = __fbnic_uc_sync(fbn->fbd, addr);
if (!avail_addr)
return -ENOSPC;
/* Add type flag indicating this address is in use by the host */
set_bit(FBNIC_MAC_ADDR_T_UNICAST, avail_addr->act_tcam);
return 0;
}
static int fbnic_uc_unsync(struct net_device *netdev, const unsigned char *addr)
{
struct fbnic_net *fbn = netdev_priv(netdev);
struct fbnic_dev *fbd = fbn->fbd;
int i, ret;
/* Scan from middle of list to bottom, filling bottom up.
* Skip the first entry which is reserved for dev_addr and
* leave the last entry to use for promiscuous filtering.
*/
for (i = fbd->mac_addr_boundary, ret = -ENOENT;
i < FBNIC_RPC_TCAM_MACDA_HOST_ADDR_IDX && ret; i++) {
struct fbnic_mac_addr *mac_addr = &fbd->mac_addr[i];
if (!ether_addr_equal(mac_addr->value.addr8, addr))
continue;
ret = __fbnic_uc_unsync(mac_addr);
}
return ret;
}
static int fbnic_mc_sync(struct net_device *netdev, const unsigned char *addr)
{
struct fbnic_net *fbn = netdev_priv(netdev);
struct fbnic_mac_addr *avail_addr;
if (WARN_ON(!is_multicast_ether_addr(addr)))
return -EADDRNOTAVAIL;
avail_addr = __fbnic_mc_sync(fbn->fbd, addr);
if (!avail_addr)
return -ENOSPC;
/* Add type flag indicating this address is in use by the host */
set_bit(FBNIC_MAC_ADDR_T_MULTICAST, avail_addr->act_tcam);
return 0;
}
static int fbnic_mc_unsync(struct net_device *netdev, const unsigned char *addr)
{
struct fbnic_net *fbn = netdev_priv(netdev);
struct fbnic_dev *fbd = fbn->fbd;
int i, ret;
/* Scan from middle of list to top, filling top down.
* Skip over the address reserved for the BMC MAC and
* exclude index 0 as that belongs to the broadcast address
*/
for (i = fbd->mac_addr_boundary, ret = -ENOENT;
--i > FBNIC_RPC_TCAM_MACDA_BROADCAST_IDX && ret;) {
struct fbnic_mac_addr *mac_addr = &fbd->mac_addr[i];
if (!ether_addr_equal(mac_addr->value.addr8, addr))
continue;
ret = __fbnic_mc_unsync(mac_addr);
}
return ret;
}
void __fbnic_set_rx_mode(struct net_device *netdev)
{
struct fbnic_net *fbn = netdev_priv(netdev);
bool uc_promisc = false, mc_promisc = false;
struct fbnic_dev *fbd = fbn->fbd;
struct fbnic_mac_addr *mac_addr;
int err;
/* Populate host address from dev_addr */
mac_addr = &fbd->mac_addr[FBNIC_RPC_TCAM_MACDA_HOST_ADDR_IDX];
if (!ether_addr_equal(mac_addr->value.addr8, netdev->dev_addr) ||
mac_addr->state != FBNIC_TCAM_S_VALID) {
ether_addr_copy(mac_addr->value.addr8, netdev->dev_addr);
mac_addr->state = FBNIC_TCAM_S_UPDATE;
set_bit(FBNIC_MAC_ADDR_T_UNICAST, mac_addr->act_tcam);
}
/* Populate broadcast address if broadcast is enabled */
mac_addr = &fbd->mac_addr[FBNIC_RPC_TCAM_MACDA_BROADCAST_IDX];
if (netdev->flags & IFF_BROADCAST) {
if (!is_broadcast_ether_addr(mac_addr->value.addr8) ||
mac_addr->state != FBNIC_TCAM_S_VALID) {
eth_broadcast_addr(mac_addr->value.addr8);
mac_addr->state = FBNIC_TCAM_S_ADD;
}
set_bit(FBNIC_MAC_ADDR_T_BROADCAST, mac_addr->act_tcam);
} else if (mac_addr->state == FBNIC_TCAM_S_VALID) {
__fbnic_xc_unsync(mac_addr, FBNIC_MAC_ADDR_T_BROADCAST);
}
/* Synchronize unicast and multicast address lists */
err = __dev_uc_sync(netdev, fbnic_uc_sync, fbnic_uc_unsync);
if (err == -ENOSPC)
uc_promisc = true;
err = __dev_mc_sync(netdev, fbnic_mc_sync, fbnic_mc_unsync);
if (err == -ENOSPC)
mc_promisc = true;
uc_promisc |= !!(netdev->flags & IFF_PROMISC);
mc_promisc |= !!(netdev->flags & IFF_ALLMULTI) || uc_promisc;
/* Populate last TCAM entry with promiscuous entry and 0/1 bit mask */
mac_addr = &fbd->mac_addr[FBNIC_RPC_TCAM_MACDA_PROMISC_IDX];
if (uc_promisc) {
if (!is_zero_ether_addr(mac_addr->value.addr8) ||
mac_addr->state != FBNIC_TCAM_S_VALID) {
eth_zero_addr(mac_addr->value.addr8);
eth_broadcast_addr(mac_addr->mask.addr8);
clear_bit(FBNIC_MAC_ADDR_T_ALLMULTI,
mac_addr->act_tcam);
set_bit(FBNIC_MAC_ADDR_T_PROMISC,
mac_addr->act_tcam);
mac_addr->state = FBNIC_TCAM_S_ADD;
}
} else if (mc_promisc &&
(!fbnic_bmc_present(fbd) || !fbd->fw_cap.all_multi)) {
/* We have to add a special handler for multicast as the
* BMC may have an all-multi rule already in place. As such
* adding a rule ourselves won't do any good so we will have
* to modify the rules for the ALL MULTI below if the BMC
* already has the rule in place.
*/
if (!is_multicast_ether_addr(mac_addr->value.addr8) ||
mac_addr->state != FBNIC_TCAM_S_VALID) {
eth_zero_addr(mac_addr->value.addr8);
eth_broadcast_addr(mac_addr->mask.addr8);
mac_addr->value.addr8[0] ^= 1;
mac_addr->mask.addr8[0] ^= 1;
set_bit(FBNIC_MAC_ADDR_T_ALLMULTI,
mac_addr->act_tcam);
clear_bit(FBNIC_MAC_ADDR_T_PROMISC,
mac_addr->act_tcam);
mac_addr->state = FBNIC_TCAM_S_ADD;
}
} else if (mac_addr->state == FBNIC_TCAM_S_VALID) {
if (test_bit(FBNIC_MAC_ADDR_T_BMC, mac_addr->act_tcam)) {
clear_bit(FBNIC_MAC_ADDR_T_ALLMULTI,
mac_addr->act_tcam);
clear_bit(FBNIC_MAC_ADDR_T_PROMISC,
mac_addr->act_tcam);
} else {
mac_addr->state = FBNIC_TCAM_S_DELETE;
}
}
/* Add rules for BMC all multicast if it is enabled */
fbnic_bmc_rpc_all_multi_config(fbd, mc_promisc);
/* Sift out any unshared BMC rules and place them in BMC only section */
fbnic_sift_macda(fbd);
/* Write updates to hardware */
fbnic_write_macda(fbd);
}
static void fbnic_set_rx_mode(struct net_device *netdev)
{
/* No need to update the hardware if we are not running */
if (netif_running(netdev))
__fbnic_set_rx_mode(netdev);
}
static int fbnic_set_mac(struct net_device *netdev, void *p)
{
struct sockaddr *addr = p;
if (!is_valid_ether_addr(addr->sa_data))
return -EADDRNOTAVAIL;
eth_hw_addr_set(netdev, addr->sa_data);
fbnic_set_rx_mode(netdev);
return 0;
}
void fbnic_clear_rx_mode(struct net_device *netdev)
{
struct fbnic_net *fbn = netdev_priv(netdev);
struct fbnic_dev *fbd = fbn->fbd;
int idx;
for (idx = ARRAY_SIZE(fbd->mac_addr); idx--;) {
struct fbnic_mac_addr *mac_addr = &fbd->mac_addr[idx];
if (mac_addr->state != FBNIC_TCAM_S_VALID)
continue;
bitmap_clear(mac_addr->act_tcam,
FBNIC_MAC_ADDR_T_HOST_START,
FBNIC_MAC_ADDR_T_HOST_LEN);
if (bitmap_empty(mac_addr->act_tcam,
FBNIC_RPC_TCAM_ACT_NUM_ENTRIES))
mac_addr->state = FBNIC_TCAM_S_DELETE;
}
/* Write updates to hardware */
fbnic_write_macda(fbd);
__dev_uc_unsync(netdev, NULL);
__dev_mc_unsync(netdev, NULL);
}
static const struct net_device_ops fbnic_netdev_ops = {
.ndo_open = fbnic_open,
.ndo_stop = fbnic_stop,
.ndo_validate_addr = eth_validate_addr,
.ndo_start_xmit = fbnic_xmit_frame,
.ndo_features_check = fbnic_features_check,
.ndo_set_mac_address = fbnic_set_mac,
.ndo_set_rx_mode = fbnic_set_rx_mode,
};
void fbnic_reset_queues(struct fbnic_net *fbn,
......
......@@ -49,5 +49,8 @@ void fbnic_netdev_unregister(struct net_device *netdev);
void fbnic_reset_queues(struct fbnic_net *fbn,
unsigned int tx, unsigned int rx);
void __fbnic_set_rx_mode(struct net_device *netdev);
void fbnic_clear_rx_mode(struct net_device *netdev);
int fbnic_phylink_init(struct net_device *netdev);
#endif /* _FBNIC_NETDEV_H_ */
......@@ -133,6 +133,8 @@ void fbnic_up(struct fbnic_net *fbn)
fbnic_fill(fbn);
__fbnic_set_rx_mode(fbn->netdev);
/* Enable Tx/Rx processing */
fbnic_napi_enable(fbn);
netif_tx_start_all_queues(fbn->netdev);
......@@ -148,6 +150,7 @@ static void fbnic_down_noidle(struct fbnic_net *fbn)
fbnic_napi_disable(fbn);
netif_tx_disable(fbn->netdev);
fbnic_clear_rx_mode(fbn->netdev);
fbnic_disable(fbn);
}
......
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) Meta Platforms, Inc. and affiliates. */
#include <linux/etherdevice.h>
#include "fbnic.h"
#include "fbnic_netdev.h"
#include "fbnic_rpc.h"
void fbnic_bmc_rpc_all_multi_config(struct fbnic_dev *fbd,
bool enable_host)
{
struct fbnic_mac_addr *mac_addr;
/* We need to add the all multicast filter at the end of the
* multicast address list. This way if there are any that are
* shared between the host and the BMC they can be directed to
* both. Otherwise the remainder just get sent directly to the
* BMC.
*/
mac_addr = &fbd->mac_addr[fbd->mac_addr_boundary - 1];
if (fbnic_bmc_present(fbd) && fbd->fw_cap.all_multi) {
if (mac_addr->state != FBNIC_TCAM_S_VALID) {
eth_zero_addr(mac_addr->value.addr8);
eth_broadcast_addr(mac_addr->mask.addr8);
mac_addr->value.addr8[0] ^= 1;
mac_addr->mask.addr8[0] ^= 1;
set_bit(FBNIC_MAC_ADDR_T_BMC, mac_addr->act_tcam);
mac_addr->state = FBNIC_TCAM_S_ADD;
}
if (enable_host)
set_bit(FBNIC_MAC_ADDR_T_ALLMULTI,
mac_addr->act_tcam);
else
clear_bit(FBNIC_MAC_ADDR_T_ALLMULTI,
mac_addr->act_tcam);
} else if (!test_bit(FBNIC_MAC_ADDR_T_BMC, mac_addr->act_tcam) &&
!is_zero_ether_addr(mac_addr->mask.addr8) &&
mac_addr->state == FBNIC_TCAM_S_VALID) {
clear_bit(FBNIC_MAC_ADDR_T_ALLMULTI, mac_addr->act_tcam);
clear_bit(FBNIC_MAC_ADDR_T_BMC, mac_addr->act_tcam);
mac_addr->state = FBNIC_TCAM_S_DELETE;
}
}
void fbnic_bmc_rpc_init(struct fbnic_dev *fbd)
{
int i = FBNIC_RPC_TCAM_MACDA_BMC_ADDR_IDX;
struct fbnic_mac_addr *mac_addr;
int j;
/* Check if BMC is present */
if (!fbnic_bmc_present(fbd))
return;
/* Fetch BMC MAC addresses from firmware capabilities */
for (j = 0; j < 4; j++) {
u8 *bmc_mac = fbd->fw_cap.bmc_mac_addr[j];
/* Validate BMC MAC addresses */
if (is_zero_ether_addr(bmc_mac))
continue;
if (is_multicast_ether_addr(bmc_mac))
mac_addr = __fbnic_mc_sync(fbd, bmc_mac);
else
mac_addr = &fbd->mac_addr[i++];
if (!mac_addr) {
netdev_err(fbd->netdev,
"No slot for BMC MAC address[%d]\n", j);
continue;
}
ether_addr_copy(mac_addr->value.addr8, bmc_mac);
eth_zero_addr(mac_addr->mask.addr8);
set_bit(FBNIC_MAC_ADDR_T_BMC, mac_addr->act_tcam);
mac_addr->state = FBNIC_TCAM_S_ADD;
}
/* Validate Broadcast is also present, record it and tag it */
mac_addr = &fbd->mac_addr[FBNIC_RPC_TCAM_MACDA_BROADCAST_IDX];
eth_broadcast_addr(mac_addr->value.addr8);
set_bit(FBNIC_MAC_ADDR_T_BMC, mac_addr->act_tcam);
mac_addr->state = FBNIC_TCAM_S_ADD;
fbnic_bmc_rpc_all_multi_config(fbd, false);
}
struct fbnic_mac_addr *__fbnic_uc_sync(struct fbnic_dev *fbd,
const unsigned char *addr)
{
struct fbnic_mac_addr *avail_addr = NULL;
unsigned int i;
/* Scan from middle of list to bottom, filling bottom up.
* Skip the first entry which is reserved for dev_addr and
* leave the last entry to use for promiscuous filtering.
*/
for (i = fbd->mac_addr_boundary - 1;
i < FBNIC_RPC_TCAM_MACDA_HOST_ADDR_IDX; i++) {
struct fbnic_mac_addr *mac_addr = &fbd->mac_addr[i];
if (mac_addr->state == FBNIC_TCAM_S_DISABLED) {
avail_addr = mac_addr;
} else if (ether_addr_equal(mac_addr->value.addr8, addr)) {
avail_addr = mac_addr;
break;
}
}
if (avail_addr && avail_addr->state == FBNIC_TCAM_S_DISABLED) {
ether_addr_copy(avail_addr->value.addr8, addr);
eth_zero_addr(avail_addr->mask.addr8);
avail_addr->state = FBNIC_TCAM_S_ADD;
}
return avail_addr;
}
struct fbnic_mac_addr *__fbnic_mc_sync(struct fbnic_dev *fbd,
const unsigned char *addr)
{
struct fbnic_mac_addr *avail_addr = NULL;
unsigned int i;
/* Scan from middle of list to top, filling top down.
* Skip over the address reserved for the BMC MAC and
* exclude index 0 as that belongs to the broadcast address
*/
for (i = fbd->mac_addr_boundary;
--i > FBNIC_RPC_TCAM_MACDA_BROADCAST_IDX;) {
struct fbnic_mac_addr *mac_addr = &fbd->mac_addr[i];
if (mac_addr->state == FBNIC_TCAM_S_DISABLED) {
avail_addr = mac_addr;
} else if (ether_addr_equal(mac_addr->value.addr8, addr)) {
avail_addr = mac_addr;
break;
}
}
/* Scan the BMC addresses to see if it may have already
* reserved the address.
*/
while (--i) {
struct fbnic_mac_addr *mac_addr = &fbd->mac_addr[i];
if (!is_zero_ether_addr(mac_addr->mask.addr8))
continue;
/* Only move on if we find a match */
if (!ether_addr_equal(mac_addr->value.addr8, addr))
continue;
/* We need to pull this address to the shared area */
if (avail_addr) {
memcpy(avail_addr, mac_addr, sizeof(*mac_addr));
mac_addr->state = FBNIC_TCAM_S_DELETE;
avail_addr->state = FBNIC_TCAM_S_ADD;
}
break;
}
if (avail_addr && avail_addr->state == FBNIC_TCAM_S_DISABLED) {
ether_addr_copy(avail_addr->value.addr8, addr);
eth_zero_addr(avail_addr->mask.addr8);
avail_addr->state = FBNIC_TCAM_S_ADD;
}
return avail_addr;
}
int __fbnic_xc_unsync(struct fbnic_mac_addr *mac_addr, unsigned int tcam_idx)
{
if (!test_and_clear_bit(tcam_idx, mac_addr->act_tcam))
return -ENOENT;
if (bitmap_empty(mac_addr->act_tcam, FBNIC_RPC_TCAM_ACT_NUM_ENTRIES))
mac_addr->state = FBNIC_TCAM_S_DELETE;
return 0;
}
void fbnic_sift_macda(struct fbnic_dev *fbd)
{
int dest, src;
/* Move BMC only addresses back into BMC region */
for (dest = FBNIC_RPC_TCAM_MACDA_BMC_ADDR_IDX,
src = FBNIC_RPC_TCAM_MACDA_MULTICAST_IDX;
++dest < FBNIC_RPC_TCAM_MACDA_BROADCAST_IDX &&
src < fbd->mac_addr_boundary;) {
struct fbnic_mac_addr *dest_addr = &fbd->mac_addr[dest];
if (dest_addr->state != FBNIC_TCAM_S_DISABLED)
continue;
while (src < fbd->mac_addr_boundary) {
struct fbnic_mac_addr *src_addr = &fbd->mac_addr[src++];
/* Verify BMC bit is set */
if (!test_bit(FBNIC_MAC_ADDR_T_BMC, src_addr->act_tcam))
continue;
/* Verify filter isn't already disabled */
if (src_addr->state == FBNIC_TCAM_S_DISABLED ||
src_addr->state == FBNIC_TCAM_S_DELETE)
continue;
/* Verify only BMC bit is set */
if (bitmap_weight(src_addr->act_tcam,
FBNIC_RPC_TCAM_ACT_NUM_ENTRIES) != 1)
continue;
/* Verify we are not moving wildcard address */
if (!is_zero_ether_addr(src_addr->mask.addr8))
continue;
memcpy(dest_addr, src_addr, sizeof(*src_addr));
src_addr->state = FBNIC_TCAM_S_DELETE;
dest_addr->state = FBNIC_TCAM_S_ADD;
}
}
}
static void fbnic_clear_macda_entry(struct fbnic_dev *fbd, unsigned int idx)
{
int i;
/* Invalidate entry and clear addr state info */
for (i = 0; i <= FBNIC_RPC_TCAM_MACDA_WORD_LEN; i++)
wr32(fbd, FBNIC_RPC_TCAM_MACDA(idx, i), 0);
}
static void fbnic_write_macda_entry(struct fbnic_dev *fbd, unsigned int idx,
struct fbnic_mac_addr *mac_addr)
{
__be16 *mask, *value;
int i;
mask = &mac_addr->mask.addr16[FBNIC_RPC_TCAM_MACDA_WORD_LEN - 1];
value = &mac_addr->value.addr16[FBNIC_RPC_TCAM_MACDA_WORD_LEN - 1];
for (i = 0; i < FBNIC_RPC_TCAM_MACDA_WORD_LEN; i++)
wr32(fbd, FBNIC_RPC_TCAM_MACDA(idx, i),
FIELD_PREP(FBNIC_RPC_TCAM_MACDA_MASK, ntohs(*mask--)) |
FIELD_PREP(FBNIC_RPC_TCAM_MACDA_VALUE, ntohs(*value--)));
wrfl(fbd);
wr32(fbd, FBNIC_RPC_TCAM_MACDA(idx, i), FBNIC_RPC_TCAM_VALIDATE);
}
void fbnic_write_macda(struct fbnic_dev *fbd)
{
int idx;
for (idx = ARRAY_SIZE(fbd->mac_addr); idx--;) {
struct fbnic_mac_addr *mac_addr = &fbd->mac_addr[idx];
/* Check if update flag is set else exit. */
if (!(mac_addr->state & FBNIC_TCAM_S_UPDATE))
continue;
/* Clear by writing 0s. */
if (mac_addr->state == FBNIC_TCAM_S_DELETE) {
/* Invalidate entry and clear addr state info */
fbnic_clear_macda_entry(fbd, idx);
memset(mac_addr, 0, sizeof(*mac_addr));
continue;
}
fbnic_write_macda_entry(fbd, idx, mac_addr);
mac_addr->state = FBNIC_TCAM_S_VALID;
}
}
/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright (c) Meta Platforms, Inc. and affiliates. */
#ifndef _FBNIC_RPC_H_
#define _FBNIC_RPC_H_
#include <uapi/linux/in6.h>
#include <linux/bitfield.h>
/* The TCAM state definitions follow an expected ordering.
* They start out disabled, then move through the following states:
* Disabled 0 -> Add 2
* Add 2 -> Valid 1
*
* Valid 1 -> Add/Update 2
* Add 2 -> Valid 1
*
* Valid 1 -> Delete 3
* Delete 3 -> Disabled 0
*/
enum {
FBNIC_TCAM_S_DISABLED = 0,
FBNIC_TCAM_S_VALID = 1,
FBNIC_TCAM_S_ADD = 2,
FBNIC_TCAM_S_UPDATE = FBNIC_TCAM_S_ADD,
FBNIC_TCAM_S_DELETE = 3,
};
/* 32 MAC Destination Address TCAM Entries
* 4 registers DA[1:0], DA[3:2], DA[5:4], Validate
*/
#define FBNIC_RPC_TCAM_MACDA_WORD_LEN 3
#define FBNIC_RPC_TCAM_MACDA_NUM_ENTRIES 32
#define FBNIC_RPC_TCAM_ACT_WORD_LEN 11
#define FBNIC_RPC_TCAM_ACT_NUM_ENTRIES 64
struct fbnic_mac_addr {
union {
unsigned char addr8[ETH_ALEN];
__be16 addr16[FBNIC_RPC_TCAM_MACDA_WORD_LEN];
} mask, value;
unsigned char state;
DECLARE_BITMAP(act_tcam, FBNIC_RPC_TCAM_ACT_NUM_ENTRIES);
};
struct fbnic_act_tcam {
struct {
u16 tcam[FBNIC_RPC_TCAM_ACT_WORD_LEN];
} mask, value;
unsigned char state;
u16 rss_en_mask;
u32 dest;
};
enum {
FBNIC_RSS_EN_HOST_ETHER,
FBNIC_RSS_EN_XCAST_ETHER,
#define FBNIC_RSS_EN_NUM_UNICAST FBNIC_RSS_EN_XCAST_ETHER
FBNIC_RSS_EN_NUM_ENTRIES
};
/* Reserve the first 2 entries for the use by the BMC so that we can
* avoid allowing rules to get in the way of BMC unicast traffic.
*/
#define FBNIC_RPC_ACT_TBL_BMC_OFFSET 0
#define FBNIC_RPC_ACT_TBL_BMC_ALL_MULTI_OFFSET 1
/* We reserve the last 14 entries for RSS rules on the host. The BMC
* unicast rule will need to be populated above these and is expected to
* use MACDA TCAM entry 23 to store the BMC MAC address.
*/
#define FBNIC_RPC_ACT_TBL_RSS_OFFSET \
(FBNIC_RPC_ACT_TBL_NUM_ENTRIES - FBNIC_RSS_EN_NUM_ENTRIES)
/* Flags used to identify the owner for this MAC filter. Note that any
* flags set for Broadcast thru Promisc indicate that the rule belongs
* to the RSS filters for the host.
*/
enum {
FBNIC_MAC_ADDR_T_BMC = 0,
FBNIC_MAC_ADDR_T_BROADCAST = FBNIC_RPC_ACT_TBL_RSS_OFFSET,
#define FBNIC_MAC_ADDR_T_HOST_START FBNIC_MAC_ADDR_T_BROADCAST
FBNIC_MAC_ADDR_T_MULTICAST,
FBNIC_MAC_ADDR_T_UNICAST,
FBNIC_MAC_ADDR_T_ALLMULTI, /* BROADCAST ... MULTICAST*/
FBNIC_MAC_ADDR_T_PROMISC, /* BROADCAST ... UNICAST */
FBNIC_MAC_ADDR_T_HOST_LAST
};
#define FBNIC_MAC_ADDR_T_HOST_LEN \
(FBNIC_MAC_ADDR_T_HOST_LAST - FBNIC_MAC_ADDR_T_HOST_START)
#define FBNIC_RPC_TCAM_ACT1_L2_MACDA_IDX CSR_GENMASK(9, 5)
#define FBNIC_RPC_TCAM_ACT1_L2_MACDA_VALID CSR_BIT(10)
/* TCAM 0 - 3 reserved for BMC MAC addresses */
#define FBNIC_RPC_TCAM_MACDA_BMC_ADDR_IDX 0
/* TCAM 4 reserved for broadcast MAC address */
#define FBNIC_RPC_TCAM_MACDA_BROADCAST_IDX 4
/* TCAMs 5 - 30 will be used for multicast and unicast addresses. The
* boundary between the two can be variable it is currently set to 24
* on which the unicast addresses start. The general idea is that we will
* always go top-down with unicast, and bottom-up with multicast so that
* there should be free-space in the middle between the two.
*
* The entry at MADCA_DEFAULT_BOUNDARY is a special case as it can be used
* for the ALL MULTI address if the list is full, or the BMC has requested
* it.
*/
#define FBNIC_RPC_TCAM_MACDA_MULTICAST_IDX 5
#define FBNIC_RPC_TCAM_MACDA_DEFAULT_BOUNDARY 24
#define FBNIC_RPC_TCAM_MACDA_HOST_ADDR_IDX 30
/* Reserved for use to record Multicast promisc, or Promiscuous */
#define FBNIC_RPC_TCAM_MACDA_PROMISC_IDX 31
struct fbnic_dev;
void fbnic_bmc_rpc_init(struct fbnic_dev *fbd);
void fbnic_bmc_rpc_all_multi_config(struct fbnic_dev *fbd, bool enable_host);
int __fbnic_xc_unsync(struct fbnic_mac_addr *mac_addr, unsigned int tcam_idx);
struct fbnic_mac_addr *__fbnic_uc_sync(struct fbnic_dev *fbd,
const unsigned char *addr);
struct fbnic_mac_addr *__fbnic_mc_sync(struct fbnic_dev *fbd,
const unsigned char *addr);
void fbnic_sift_macda(struct fbnic_dev *fbd);
void fbnic_write_macda(struct fbnic_dev *fbd);
static inline int __fbnic_uc_unsync(struct fbnic_mac_addr *mac_addr)
{
return __fbnic_xc_unsync(mac_addr, FBNIC_MAC_ADDR_T_UNICAST);
}
static inline int __fbnic_mc_unsync(struct fbnic_mac_addr *mac_addr)
{
return __fbnic_xc_unsync(mac_addr, FBNIC_MAC_ADDR_T_MULTICAST);
}
#endif /* _FBNIC_RPC_H_ */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment