KVM: x86: Preserve TDP MMU roots until they are explicitly invalidated
Preserve TDP MMU roots until they are explicitly invalidated by gifting the TDP MMU itself a reference to a root when it is allocated. Keeping a reference in the TDP MMU fixes a flaw where the TDP MMU exhibits terrible performance, and can potentially even soft-hang a vCPU, if a vCPU frequently unloads its roots, e.g. when KVM is emulating SMI+RSM. When KVM emulates something that invalidates _all_ TLB entries, e.g. SMI and RSM, KVM unloads all of the vCPUs roots (KVM keeps a small per-vCPU cache of previous roots). Unloading roots is a simple way to ensure KVM flushes and synchronizes all roots for the vCPU, as KVM flushes and syncs when allocating a "new" root (from the vCPU's perspective). In the shadow MMU, KVM keeps track of all shadow pages, roots included, in a per-VM hash table. Unloading a shadow MMU root just wipes it from the per-vCPU cache; the root is still tracked in the per-VM hash table. When KVM loads a "new" root for the vCPU, KVM will find the old, unloaded root in the per-VM hash table. Unlike the shadow MMU, the TDP MMU doesn't track "inactive" roots in a per-VM structure, where "active" in this case means a root is either in-use or cached as a previous root by at least one vCPU. When a TDP MMU root becomes inactive, i.e. the last vCPU reference to the root is put, KVM immediately frees the root (asterisk on "immediately" as the actual freeing may be done by a worker, but for all intents and purposes the root is gone). The TDP MMU behavior is especially problematic for 1-vCPU setups, as unloading all roots effectively frees all roots. The issue is mitigated to some degree in multi-vCPU setups as a different vCPU usually holds a reference to an unloaded root and thus keeps the root alive, allowing the vCPU to reuse its old root after unloading (with a flush+sync). The TDP MMU flaw has been known for some time, as until very recently, KVM's handling of CR0.WP also triggered unloading of all roots. The CR0.WP toggling scenario was eventually addressed by not unloading roots when _only_ CR0.WP is toggled, but such an approach doesn't Just Work for emulating SMM as KVM must emulate a full TLB flush on entry and exit to/from SMM. Given that the shadow MMU plays nice with unloading roots at will, teaching the TDP MMU to do the same is far less complex than modifying KVM to track which roots need to be flushed before reuse. Note, preserving all possible TDP MMU roots is not a concern with respect to memory consumption. Now that the role for direct MMUs doesn't include information about the guest, e.g. CR0.PG, CR0.WP, CR4.SMEP, etc., there are _at most_ six possible roots (where "guest_mode" here means L2): 1. 4-level !SMM !guest_mode 2. 4-level SMM !guest_mode 3. 5-level !SMM !guest_mode 4. 5-level SMM !guest_mode 5. 4-level !SMM guest_mode 6. 5-level !SMM guest_mode And because each vCPU can track 4 valid roots, a VM can already have all 6 root combinations live at any given time. Not to mention that, in practice, no sane VMM will advertise different guest.MAXPHYADDR values across vCPUs, i.e. KVM won't ever use both 4-level and 5-level roots for a single VM. Furthermore, the vast majority of modern hypervisors will utilize EPT/NPT when available, thus the guest_mode=%true cases are also unlikely to be utilized. Reported-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Link: https://lore.kernel.org/all/959c5bce-beb5-b463-7158-33fc4a4f910c@linux.microsoft.com Link: https://lkml.kernel.org/r/20220209170020.1775368-1-pbonzini%40redhat.com Link: https://lore.kernel.org/all/20230322013731.102955-1-minipli@grsecurity.net Link: https://lore.kernel.org/all/000000000000a0bc2b05f9dd7fab@google.com Link: https://lore.kernel.org/all/000000000000eca0b905fa0f7756@google.com Cc: Ben Gardon <bgardon@google.com> Cc: David Matlack <dmatlack@google.com> Cc: stable@vger.kernel.org Tested-by: Jeremi Piotrowski <jpiotrowski@linux.microsoft.com> Link: https://lore.kernel.org/r/20230426220323.3079789-1-seanjc@google.comSigned-off-by: Sean Christopherson <seanjc@google.com>
Showing
Please register or sign in to comment