Commit f0a08fcb authored by Linus Torvalds's avatar Linus Torvalds

Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile

Pull arch/tile updates from Chris Metcalf:
 "These changes provide support for PCIe root complex and USB host mode
  for tilegx's on-chip I/Os.

  In addition, this pull provides the required underpinning for the
  on-chip networking support that was pulled into 3.5.  The changes have
  all been through LKML (with several rounds for PCIe RC) and on
  linux-next."

* git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile:
  tile: updates to pci root complex from community feedback
  bounce: allow use of bounce pool via config option
  usb: add host support for the tilegx architecture
  arch/tile: provide kernel support for the tilegx USB shim
  tile pci: enable IOMMU to support DMA for legacy devices
  arch/tile: enable ZONE_DMA for tilegx
  tilegx pci: support I/O to arbitrarily-cached pages
  tile: remove unused header
  arch/tile: tilegx PCI root complex support
  arch/tile: provide kernel support for the tilegx TRIO shim
  arch/tile: break out the "csum a long" function to <asm/checksum.h>
  arch/tile: provide kernel support for the tilegx mPIPE shim
  arch/tile: common DMA code for the GXIO IORPC subsystem
  arch/tile: support MMIO-based readb/writeb etc.
  arch/tile: introduce GXIO IORPC framework for tilegx
parents 474183b1 f6d2ce00
......@@ -3,6 +3,8 @@
config TILE
def_bool y
select HAVE_DMA_ATTRS
select HAVE_DMA_API_DEBUG
select HAVE_KVM if !TILEGX
select GENERIC_FIND_FIRST_BIT
select USE_GENERIC_SMP_HELPERS
......@@ -79,6 +81,9 @@ config ARCH_DMA_ADDR_T_64BIT
config NEED_DMA_MAP_STATE
def_bool y
config ARCH_HAS_DMA_SET_COHERENT_MASK
bool
config LOCKDEP_SUPPORT
def_bool y
......@@ -212,6 +217,22 @@ config HIGHMEM
If unsure, say "true".
config ZONE_DMA
def_bool y
config IOMMU_HELPER
bool
config NEED_SG_DMA_LENGTH
bool
config SWIOTLB
bool
default TILEGX
select IOMMU_HELPER
select NEED_SG_DMA_LENGTH
select ARCH_HAS_DMA_SET_COHERENT_MASK
# We do not currently support disabling NUMA.
config NUMA
bool # "NUMA Memory Allocation and Scheduler Support"
......@@ -345,6 +366,8 @@ config KERNEL_PL
kernel will be built to run at. Generally you should use
the default value here.
source "arch/tile/gxio/Kconfig"
endmenu # Tilera-specific configuration
menu "Bus options"
......@@ -354,6 +377,9 @@ config PCI
default y
select PCI_DOMAINS
select GENERIC_PCI_IOMAP
select TILE_GXIO_TRIO if TILEGX
select ARCH_SUPPORTS_MSI if TILEGX
select PCI_MSI if TILEGX
---help---
Enable PCI root complex support, so PCIe endpoint devices can
be attached to the Tile chip. Many, but not all, PCI devices
......@@ -370,6 +396,22 @@ config NO_IOPORT
source "drivers/pci/Kconfig"
config TILE_USB
tristate "Tilera USB host adapter support"
default y
depends on USB
depends on TILEGX
select TILE_GXIO_USB_HOST
---help---
Provides USB host adapter support for the built-in EHCI and OHCI
interfaces on TILE-Gx chips.
# USB OHCI needs the bounce pool since tilegx will often have more
# than 4GB of memory, but we don't currently use the IOTLB to present
# a 32-bit address to OHCI. So we need to use a bounce pool instead.
config NEED_BOUNCE_POOL
def_bool USB_OHCI_HCD
config HOTPLUG
bool "Support for hot-pluggable devices"
---help---
......
......@@ -59,6 +59,8 @@ libs-y += $(LIBGCC_PATH)
# See arch/tile/Kbuild for content of core part of the kernel
core-y += arch/tile/
core-$(CONFIG_TILE_GXIO) += arch/tile/gxio/
ifdef TILERA_ROOT
INSTALL_PATH ?= $(TILERA_ROOT)/tile/boot
endif
......
# Support direct access to TILE-Gx hardware from user space, via the
# gxio library, or from kernel space, via kernel IORPC support.
config TILE_GXIO
bool
depends on TILEGX
# Support direct access to the common I/O DMA facility within the
# TILE-Gx mPIPE and Trio hardware from kernel space.
config TILE_GXIO_DMA
bool
select TILE_GXIO
# Support direct access to the TILE-Gx mPIPE hardware from kernel space.
config TILE_GXIO_MPIPE
bool
select TILE_GXIO
select TILE_GXIO_DMA
# Support direct access to the TILE-Gx TRIO hardware from kernel space.
config TILE_GXIO_TRIO
bool
select TILE_GXIO
select TILE_GXIO_DMA
# Support direct access to the TILE-Gx USB hardware from kernel space.
config TILE_GXIO_USB_HOST
bool
select TILE_GXIO
#
# Makefile for the Tile-Gx device access support.
#
obj-$(CONFIG_TILE_GXIO) += iorpc_globals.o kiorpc.o
obj-$(CONFIG_TILE_GXIO_DMA) += dma_queue.o
obj-$(CONFIG_TILE_GXIO_MPIPE) += mpipe.o iorpc_mpipe.o iorpc_mpipe_info.o
obj-$(CONFIG_TILE_GXIO_TRIO) += trio.o iorpc_trio.o
obj-$(CONFIG_TILE_GXIO_USB_HOST) += usb_host.o iorpc_usb_host.o
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/io.h>
#include <linux/atomic.h>
#include <linux/module.h>
#include <gxio/dma_queue.h>
/* Wait for a memory read to complete. */
#define wait_for_value(val) \
__asm__ __volatile__("move %0, %0" :: "r"(val))
/* The index is in the low 16. */
#define DMA_QUEUE_INDEX_MASK ((1 << 16) - 1)
/*
* The hardware descriptor-ring type.
* This matches the types used by mpipe (MPIPE_EDMA_POST_REGION_VAL_t)
* and trio (TRIO_PUSH_DMA_REGION_VAL_t or TRIO_PULL_DMA_REGION_VAL_t).
* See those types for more documentation on the individual fields.
*/
typedef union {
struct {
#ifndef __BIG_ENDIAN__
uint64_t ring_idx:16;
uint64_t count:16;
uint64_t gen:1;
uint64_t __reserved:31;
#else
uint64_t __reserved:31;
uint64_t gen:1;
uint64_t count:16;
uint64_t ring_idx:16;
#endif
};
uint64_t word;
} __gxio_ring_t;
void __gxio_dma_queue_init(__gxio_dma_queue_t *dma_queue,
void *post_region_addr, unsigned int num_entries)
{
/*
* Limit 65536 entry rings to 65535 credits because we only have a
* 16 bit completion counter.
*/
int64_t credits = (num_entries < 65536) ? num_entries : 65535;
memset(dma_queue, 0, sizeof(*dma_queue));
dma_queue->post_region_addr = post_region_addr;
dma_queue->hw_complete_count = 0;
dma_queue->credits_and_next_index = credits << DMA_QUEUE_CREDIT_SHIFT;
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_init);
void __gxio_dma_queue_update_credits(__gxio_dma_queue_t *dma_queue)
{
__gxio_ring_t val;
uint64_t count;
uint64_t delta;
uint64_t new_count;
/*
* Read the 64-bit completion count without touching the cache, so
* we later avoid having to evict any sharers of this cache line
* when we update it below.
*/
uint64_t orig_hw_complete_count =
cmpxchg(&dma_queue->hw_complete_count,
-1, -1);
/* Make sure the load completes before we access the hardware. */
wait_for_value(orig_hw_complete_count);
/* Read the 16-bit count of how many packets it has completed. */
val.word = __gxio_mmio_read(dma_queue->post_region_addr);
count = val.count;
/*
* Calculate the number of completions since we last updated the
* 64-bit counter. It's safe to ignore the high bits because the
* maximum credit value is 65535.
*/
delta = (count - orig_hw_complete_count) & 0xffff;
if (delta == 0)
return;
/*
* Try to write back the count, advanced by delta. If we race with
* another thread, this might fail, in which case we return
* immediately on the assumption that some credits are (or at least
* were) available.
*/
new_count = orig_hw_complete_count + delta;
if (cmpxchg(&dma_queue->hw_complete_count,
orig_hw_complete_count,
new_count) != orig_hw_complete_count)
return;
/*
* We succeeded in advancing the completion count; add back the
* corresponding number of egress credits.
*/
__insn_fetchadd(&dma_queue->credits_and_next_index,
(delta << DMA_QUEUE_CREDIT_SHIFT));
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_update_credits);
/*
* A separate 'blocked' method for put() so that backtraces and
* profiles will clearly indicate that we're wasting time spinning on
* egress availability rather than actually posting commands.
*/
int64_t __gxio_dma_queue_wait_for_credits(__gxio_dma_queue_t *dma_queue,
int64_t modifier)
{
int backoff = 16;
int64_t old;
do {
int i;
/* Back off to avoid spamming memory networks. */
for (i = backoff; i > 0; i--)
__insn_mfspr(SPR_PASS);
/* Check credits again. */
__gxio_dma_queue_update_credits(dma_queue);
old = __insn_fetchaddgez(&dma_queue->credits_and_next_index,
modifier);
/* Calculate bounded exponential backoff for next iteration. */
if (backoff < 256)
backoff *= 2;
} while (old + modifier < 0);
return old;
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_wait_for_credits);
int64_t __gxio_dma_queue_reserve_aux(__gxio_dma_queue_t *dma_queue,
unsigned int num, int wait)
{
return __gxio_dma_queue_reserve(dma_queue, num, wait != 0, true);
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_reserve_aux);
int __gxio_dma_queue_is_complete(__gxio_dma_queue_t *dma_queue,
int64_t completion_slot, int update)
{
if (update) {
if (ACCESS_ONCE(dma_queue->hw_complete_count) >
completion_slot)
return 1;
__gxio_dma_queue_update_credits(dma_queue);
}
return ACCESS_ONCE(dma_queue->hw_complete_count) > completion_slot;
}
EXPORT_SYMBOL_GPL(__gxio_dma_queue_is_complete);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#include "gxio/iorpc_globals.h"
struct arm_pollfd_param {
union iorpc_pollfd pollfd;
};
int __iorpc_arm_pollfd(int fd, int pollfd_cookie)
{
struct arm_pollfd_param temp;
struct arm_pollfd_param *params = &temp;
params->pollfd.kernel.cookie = pollfd_cookie;
return hv_dev_pwrite(fd, 0, (HV_VirtAddr) params, sizeof(*params),
IORPC_OP_ARM_POLLFD);
}
EXPORT_SYMBOL(__iorpc_arm_pollfd);
struct close_pollfd_param {
union iorpc_pollfd pollfd;
};
int __iorpc_close_pollfd(int fd, int pollfd_cookie)
{
struct close_pollfd_param temp;
struct close_pollfd_param *params = &temp;
params->pollfd.kernel.cookie = pollfd_cookie;
return hv_dev_pwrite(fd, 0, (HV_VirtAddr) params, sizeof(*params),
IORPC_OP_CLOSE_POLLFD);
}
EXPORT_SYMBOL(__iorpc_close_pollfd);
struct get_mmio_base_param {
HV_PTE base;
};
int __iorpc_get_mmio_base(int fd, HV_PTE *base)
{
int __result;
struct get_mmio_base_param temp;
struct get_mmio_base_param *params = &temp;
__result =
hv_dev_pread(fd, 0, (HV_VirtAddr) params, sizeof(*params),
IORPC_OP_GET_MMIO_BASE);
*base = params->base;
return __result;
}
EXPORT_SYMBOL(__iorpc_get_mmio_base);
struct check_mmio_offset_param {
unsigned long offset;
unsigned long size;
};
int __iorpc_check_mmio_offset(int fd, unsigned long offset, unsigned long size)
{
struct check_mmio_offset_param temp;
struct check_mmio_offset_param *params = &temp;
params->offset = offset;
params->size = size;
return hv_dev_pwrite(fd, 0, (HV_VirtAddr) params, sizeof(*params),
IORPC_OP_CHECK_MMIO_OFFSET);
}
EXPORT_SYMBOL(__iorpc_check_mmio_offset);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#include "gxio/iorpc_mpipe.h"
struct alloc_buffer_stacks_param {
unsigned int count;
unsigned int first;
unsigned int flags;
};
int gxio_mpipe_alloc_buffer_stacks(gxio_mpipe_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags)
{
struct alloc_buffer_stacks_param temp;
struct alloc_buffer_stacks_param *params = &temp;
params->count = count;
params->first = first;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_MPIPE_OP_ALLOC_BUFFER_STACKS);
}
EXPORT_SYMBOL(gxio_mpipe_alloc_buffer_stacks);
struct init_buffer_stack_aux_param {
union iorpc_mem_buffer buffer;
unsigned int stack;
unsigned int buffer_size_enum;
};
int gxio_mpipe_init_buffer_stack_aux(gxio_mpipe_context_t * context,
void *mem_va, size_t mem_size,
unsigned int mem_flags, unsigned int stack,
unsigned int buffer_size_enum)
{
int __result;
unsigned long long __cpa;
pte_t __pte;
struct init_buffer_stack_aux_param temp;
struct init_buffer_stack_aux_param *params = &temp;
__result = va_to_cpa_and_pte(mem_va, &__cpa, &__pte);
if (__result != 0)
return __result;
params->buffer.kernel.cpa = __cpa;
params->buffer.kernel.size = mem_size;
params->buffer.kernel.pte = __pte;
params->buffer.kernel.flags = mem_flags;
params->stack = stack;
params->buffer_size_enum = buffer_size_enum;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_MPIPE_OP_INIT_BUFFER_STACK_AUX);
}
EXPORT_SYMBOL(gxio_mpipe_init_buffer_stack_aux);
struct alloc_notif_rings_param {
unsigned int count;
unsigned int first;
unsigned int flags;
};
int gxio_mpipe_alloc_notif_rings(gxio_mpipe_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags)
{
struct alloc_notif_rings_param temp;
struct alloc_notif_rings_param *params = &temp;
params->count = count;
params->first = first;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_ALLOC_NOTIF_RINGS);
}
EXPORT_SYMBOL(gxio_mpipe_alloc_notif_rings);
struct init_notif_ring_aux_param {
union iorpc_mem_buffer buffer;
unsigned int ring;
};
int gxio_mpipe_init_notif_ring_aux(gxio_mpipe_context_t * context, void *mem_va,
size_t mem_size, unsigned int mem_flags,
unsigned int ring)
{
int __result;
unsigned long long __cpa;
pte_t __pte;
struct init_notif_ring_aux_param temp;
struct init_notif_ring_aux_param *params = &temp;
__result = va_to_cpa_and_pte(mem_va, &__cpa, &__pte);
if (__result != 0)
return __result;
params->buffer.kernel.cpa = __cpa;
params->buffer.kernel.size = mem_size;
params->buffer.kernel.pte = __pte;
params->buffer.kernel.flags = mem_flags;
params->ring = ring;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_MPIPE_OP_INIT_NOTIF_RING_AUX);
}
EXPORT_SYMBOL(gxio_mpipe_init_notif_ring_aux);
struct request_notif_ring_interrupt_param {
union iorpc_interrupt interrupt;
unsigned int ring;
};
int gxio_mpipe_request_notif_ring_interrupt(gxio_mpipe_context_t * context,
int inter_x, int inter_y,
int inter_ipi, int inter_event,
unsigned int ring)
{
struct request_notif_ring_interrupt_param temp;
struct request_notif_ring_interrupt_param *params = &temp;
params->interrupt.kernel.x = inter_x;
params->interrupt.kernel.y = inter_y;
params->interrupt.kernel.ipi = inter_ipi;
params->interrupt.kernel.event = inter_event;
params->ring = ring;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_MPIPE_OP_REQUEST_NOTIF_RING_INTERRUPT);
}
EXPORT_SYMBOL(gxio_mpipe_request_notif_ring_interrupt);
struct enable_notif_ring_interrupt_param {
unsigned int ring;
};
int gxio_mpipe_enable_notif_ring_interrupt(gxio_mpipe_context_t * context,
unsigned int ring)
{
struct enable_notif_ring_interrupt_param temp;
struct enable_notif_ring_interrupt_param *params = &temp;
params->ring = ring;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_MPIPE_OP_ENABLE_NOTIF_RING_INTERRUPT);
}
EXPORT_SYMBOL(gxio_mpipe_enable_notif_ring_interrupt);
struct alloc_notif_groups_param {
unsigned int count;
unsigned int first;
unsigned int flags;
};
int gxio_mpipe_alloc_notif_groups(gxio_mpipe_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags)
{
struct alloc_notif_groups_param temp;
struct alloc_notif_groups_param *params = &temp;
params->count = count;
params->first = first;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_ALLOC_NOTIF_GROUPS);
}
EXPORT_SYMBOL(gxio_mpipe_alloc_notif_groups);
struct init_notif_group_param {
unsigned int group;
gxio_mpipe_notif_group_bits_t bits;
};
int gxio_mpipe_init_notif_group(gxio_mpipe_context_t * context,
unsigned int group,
gxio_mpipe_notif_group_bits_t bits)
{
struct init_notif_group_param temp;
struct init_notif_group_param *params = &temp;
params->group = group;
params->bits = bits;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_INIT_NOTIF_GROUP);
}
EXPORT_SYMBOL(gxio_mpipe_init_notif_group);
struct alloc_buckets_param {
unsigned int count;
unsigned int first;
unsigned int flags;
};
int gxio_mpipe_alloc_buckets(gxio_mpipe_context_t * context, unsigned int count,
unsigned int first, unsigned int flags)
{
struct alloc_buckets_param temp;
struct alloc_buckets_param *params = &temp;
params->count = count;
params->first = first;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_ALLOC_BUCKETS);
}
EXPORT_SYMBOL(gxio_mpipe_alloc_buckets);
struct init_bucket_param {
unsigned int bucket;
MPIPE_LBL_INIT_DAT_BSTS_TBL_t bucket_info;
};
int gxio_mpipe_init_bucket(gxio_mpipe_context_t * context, unsigned int bucket,
MPIPE_LBL_INIT_DAT_BSTS_TBL_t bucket_info)
{
struct init_bucket_param temp;
struct init_bucket_param *params = &temp;
params->bucket = bucket;
params->bucket_info = bucket_info;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_INIT_BUCKET);
}
EXPORT_SYMBOL(gxio_mpipe_init_bucket);
struct alloc_edma_rings_param {
unsigned int count;
unsigned int first;
unsigned int flags;
};
int gxio_mpipe_alloc_edma_rings(gxio_mpipe_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags)
{
struct alloc_edma_rings_param temp;
struct alloc_edma_rings_param *params = &temp;
params->count = count;
params->first = first;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_ALLOC_EDMA_RINGS);
}
EXPORT_SYMBOL(gxio_mpipe_alloc_edma_rings);
struct init_edma_ring_aux_param {
union iorpc_mem_buffer buffer;
unsigned int ring;
unsigned int channel;
};
int gxio_mpipe_init_edma_ring_aux(gxio_mpipe_context_t * context, void *mem_va,
size_t mem_size, unsigned int mem_flags,
unsigned int ring, unsigned int channel)
{
int __result;
unsigned long long __cpa;
pte_t __pte;
struct init_edma_ring_aux_param temp;
struct init_edma_ring_aux_param *params = &temp;
__result = va_to_cpa_and_pte(mem_va, &__cpa, &__pte);
if (__result != 0)
return __result;
params->buffer.kernel.cpa = __cpa;
params->buffer.kernel.size = mem_size;
params->buffer.kernel.pte = __pte;
params->buffer.kernel.flags = mem_flags;
params->ring = ring;
params->channel = channel;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_INIT_EDMA_RING_AUX);
}
EXPORT_SYMBOL(gxio_mpipe_init_edma_ring_aux);
int gxio_mpipe_commit_rules(gxio_mpipe_context_t * context, const void *blob,
size_t blob_size)
{
const void *params = blob;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params, blob_size,
GXIO_MPIPE_OP_COMMIT_RULES);
}
EXPORT_SYMBOL(gxio_mpipe_commit_rules);
struct register_client_memory_param {
unsigned int iotlb;
HV_PTE pte;
unsigned int flags;
};
int gxio_mpipe_register_client_memory(gxio_mpipe_context_t * context,
unsigned int iotlb, HV_PTE pte,
unsigned int flags)
{
struct register_client_memory_param temp;
struct register_client_memory_param *params = &temp;
params->iotlb = iotlb;
params->pte = pte;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_MPIPE_OP_REGISTER_CLIENT_MEMORY);
}
EXPORT_SYMBOL(gxio_mpipe_register_client_memory);
struct link_open_aux_param {
_gxio_mpipe_link_name_t name;
unsigned int flags;
};
int gxio_mpipe_link_open_aux(gxio_mpipe_context_t * context,
_gxio_mpipe_link_name_t name, unsigned int flags)
{
struct link_open_aux_param temp;
struct link_open_aux_param *params = &temp;
params->name = name;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_LINK_OPEN_AUX);
}
EXPORT_SYMBOL(gxio_mpipe_link_open_aux);
struct link_close_aux_param {
int mac;
};
int gxio_mpipe_link_close_aux(gxio_mpipe_context_t * context, int mac)
{
struct link_close_aux_param temp;
struct link_close_aux_param *params = &temp;
params->mac = mac;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_LINK_CLOSE_AUX);
}
EXPORT_SYMBOL(gxio_mpipe_link_close_aux);
struct get_timestamp_aux_param {
uint64_t sec;
uint64_t nsec;
uint64_t cycles;
};
int gxio_mpipe_get_timestamp_aux(gxio_mpipe_context_t * context, uint64_t * sec,
uint64_t * nsec, uint64_t * cycles)
{
int __result;
struct get_timestamp_aux_param temp;
struct get_timestamp_aux_param *params = &temp;
__result =
hv_dev_pread(context->fd, 0, (HV_VirtAddr) params, sizeof(*params),
GXIO_MPIPE_OP_GET_TIMESTAMP_AUX);
*sec = params->sec;
*nsec = params->nsec;
*cycles = params->cycles;
return __result;
}
EXPORT_SYMBOL(gxio_mpipe_get_timestamp_aux);
struct set_timestamp_aux_param {
uint64_t sec;
uint64_t nsec;
uint64_t cycles;
};
int gxio_mpipe_set_timestamp_aux(gxio_mpipe_context_t * context, uint64_t sec,
uint64_t nsec, uint64_t cycles)
{
struct set_timestamp_aux_param temp;
struct set_timestamp_aux_param *params = &temp;
params->sec = sec;
params->nsec = nsec;
params->cycles = cycles;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_SET_TIMESTAMP_AUX);
}
EXPORT_SYMBOL(gxio_mpipe_set_timestamp_aux);
struct adjust_timestamp_aux_param {
int64_t nsec;
};
int gxio_mpipe_adjust_timestamp_aux(gxio_mpipe_context_t * context,
int64_t nsec)
{
struct adjust_timestamp_aux_param temp;
struct adjust_timestamp_aux_param *params = &temp;
params->nsec = nsec;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_MPIPE_OP_ADJUST_TIMESTAMP_AUX);
}
EXPORT_SYMBOL(gxio_mpipe_adjust_timestamp_aux);
struct arm_pollfd_param {
union iorpc_pollfd pollfd;
};
int gxio_mpipe_arm_pollfd(gxio_mpipe_context_t * context, int pollfd_cookie)
{
struct arm_pollfd_param temp;
struct arm_pollfd_param *params = &temp;
params->pollfd.kernel.cookie = pollfd_cookie;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_ARM_POLLFD);
}
EXPORT_SYMBOL(gxio_mpipe_arm_pollfd);
struct close_pollfd_param {
union iorpc_pollfd pollfd;
};
int gxio_mpipe_close_pollfd(gxio_mpipe_context_t * context, int pollfd_cookie)
{
struct close_pollfd_param temp;
struct close_pollfd_param *params = &temp;
params->pollfd.kernel.cookie = pollfd_cookie;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_CLOSE_POLLFD);
}
EXPORT_SYMBOL(gxio_mpipe_close_pollfd);
struct get_mmio_base_param {
HV_PTE base;
};
int gxio_mpipe_get_mmio_base(gxio_mpipe_context_t * context, HV_PTE *base)
{
int __result;
struct get_mmio_base_param temp;
struct get_mmio_base_param *params = &temp;
__result =
hv_dev_pread(context->fd, 0, (HV_VirtAddr) params, sizeof(*params),
GXIO_MPIPE_OP_GET_MMIO_BASE);
*base = params->base;
return __result;
}
EXPORT_SYMBOL(gxio_mpipe_get_mmio_base);
struct check_mmio_offset_param {
unsigned long offset;
unsigned long size;
};
int gxio_mpipe_check_mmio_offset(gxio_mpipe_context_t * context,
unsigned long offset, unsigned long size)
{
struct check_mmio_offset_param temp;
struct check_mmio_offset_param *params = &temp;
params->offset = offset;
params->size = size;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_MPIPE_OP_CHECK_MMIO_OFFSET);
}
EXPORT_SYMBOL(gxio_mpipe_check_mmio_offset);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#include "gxio/iorpc_mpipe_info.h"
struct enumerate_aux_param {
_gxio_mpipe_link_name_t name;
_gxio_mpipe_link_mac_t mac;
};
int gxio_mpipe_info_enumerate_aux(gxio_mpipe_info_context_t * context,
unsigned int idx,
_gxio_mpipe_link_name_t * name,
_gxio_mpipe_link_mac_t * mac)
{
int __result;
struct enumerate_aux_param temp;
struct enumerate_aux_param *params = &temp;
__result =
hv_dev_pread(context->fd, 0, (HV_VirtAddr) params, sizeof(*params),
(((uint64_t) idx << 32) |
GXIO_MPIPE_INFO_OP_ENUMERATE_AUX));
*name = params->name;
*mac = params->mac;
return __result;
}
EXPORT_SYMBOL(gxio_mpipe_info_enumerate_aux);
struct get_mmio_base_param {
HV_PTE base;
};
int gxio_mpipe_info_get_mmio_base(gxio_mpipe_info_context_t * context,
HV_PTE *base)
{
int __result;
struct get_mmio_base_param temp;
struct get_mmio_base_param *params = &temp;
__result =
hv_dev_pread(context->fd, 0, (HV_VirtAddr) params, sizeof(*params),
GXIO_MPIPE_INFO_OP_GET_MMIO_BASE);
*base = params->base;
return __result;
}
EXPORT_SYMBOL(gxio_mpipe_info_get_mmio_base);
struct check_mmio_offset_param {
unsigned long offset;
unsigned long size;
};
int gxio_mpipe_info_check_mmio_offset(gxio_mpipe_info_context_t * context,
unsigned long offset, unsigned long size)
{
struct check_mmio_offset_param temp;
struct check_mmio_offset_param *params = &temp;
params->offset = offset;
params->size = size;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_MPIPE_INFO_OP_CHECK_MMIO_OFFSET);
}
EXPORT_SYMBOL(gxio_mpipe_info_check_mmio_offset);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#include "gxio/iorpc_trio.h"
struct alloc_asids_param {
unsigned int count;
unsigned int first;
unsigned int flags;
};
int gxio_trio_alloc_asids(gxio_trio_context_t * context, unsigned int count,
unsigned int first, unsigned int flags)
{
struct alloc_asids_param temp;
struct alloc_asids_param *params = &temp;
params->count = count;
params->first = first;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_ALLOC_ASIDS);
}
EXPORT_SYMBOL(gxio_trio_alloc_asids);
struct alloc_memory_maps_param {
unsigned int count;
unsigned int first;
unsigned int flags;
};
int gxio_trio_alloc_memory_maps(gxio_trio_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags)
{
struct alloc_memory_maps_param temp;
struct alloc_memory_maps_param *params = &temp;
params->count = count;
params->first = first;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_ALLOC_MEMORY_MAPS);
}
EXPORT_SYMBOL(gxio_trio_alloc_memory_maps);
struct alloc_pio_regions_param {
unsigned int count;
unsigned int first;
unsigned int flags;
};
int gxio_trio_alloc_pio_regions(gxio_trio_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags)
{
struct alloc_pio_regions_param temp;
struct alloc_pio_regions_param *params = &temp;
params->count = count;
params->first = first;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_ALLOC_PIO_REGIONS);
}
EXPORT_SYMBOL(gxio_trio_alloc_pio_regions);
struct init_pio_region_aux_param {
unsigned int pio_region;
unsigned int mac;
uint32_t bus_address_hi;
unsigned int flags;
};
int gxio_trio_init_pio_region_aux(gxio_trio_context_t * context,
unsigned int pio_region, unsigned int mac,
uint32_t bus_address_hi, unsigned int flags)
{
struct init_pio_region_aux_param temp;
struct init_pio_region_aux_param *params = &temp;
params->pio_region = pio_region;
params->mac = mac;
params->bus_address_hi = bus_address_hi;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_INIT_PIO_REGION_AUX);
}
EXPORT_SYMBOL(gxio_trio_init_pio_region_aux);
struct init_memory_map_mmu_aux_param {
unsigned int map;
unsigned long va;
uint64_t size;
unsigned int asid;
unsigned int mac;
uint64_t bus_address;
unsigned int node;
unsigned int order_mode;
};
int gxio_trio_init_memory_map_mmu_aux(gxio_trio_context_t * context,
unsigned int map, unsigned long va,
uint64_t size, unsigned int asid,
unsigned int mac, uint64_t bus_address,
unsigned int node,
unsigned int order_mode)
{
struct init_memory_map_mmu_aux_param temp;
struct init_memory_map_mmu_aux_param *params = &temp;
params->map = map;
params->va = va;
params->size = size;
params->asid = asid;
params->mac = mac;
params->bus_address = bus_address;
params->node = node;
params->order_mode = order_mode;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_TRIO_OP_INIT_MEMORY_MAP_MMU_AUX);
}
EXPORT_SYMBOL(gxio_trio_init_memory_map_mmu_aux);
struct get_port_property_param {
struct pcie_trio_ports_property trio_ports;
};
int gxio_trio_get_port_property(gxio_trio_context_t * context,
struct pcie_trio_ports_property *trio_ports)
{
int __result;
struct get_port_property_param temp;
struct get_port_property_param *params = &temp;
__result =
hv_dev_pread(context->fd, 0, (HV_VirtAddr) params, sizeof(*params),
GXIO_TRIO_OP_GET_PORT_PROPERTY);
*trio_ports = params->trio_ports;
return __result;
}
EXPORT_SYMBOL(gxio_trio_get_port_property);
struct config_legacy_intr_param {
union iorpc_interrupt interrupt;
unsigned int mac;
unsigned int intx;
};
int gxio_trio_config_legacy_intr(gxio_trio_context_t * context, int inter_x,
int inter_y, int inter_ipi, int inter_event,
unsigned int mac, unsigned int intx)
{
struct config_legacy_intr_param temp;
struct config_legacy_intr_param *params = &temp;
params->interrupt.kernel.x = inter_x;
params->interrupt.kernel.y = inter_y;
params->interrupt.kernel.ipi = inter_ipi;
params->interrupt.kernel.event = inter_event;
params->mac = mac;
params->intx = intx;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_CONFIG_LEGACY_INTR);
}
EXPORT_SYMBOL(gxio_trio_config_legacy_intr);
struct config_msi_intr_param {
union iorpc_interrupt interrupt;
unsigned int mac;
unsigned int mem_map;
uint64_t mem_map_base;
uint64_t mem_map_limit;
unsigned int asid;
};
int gxio_trio_config_msi_intr(gxio_trio_context_t * context, int inter_x,
int inter_y, int inter_ipi, int inter_event,
unsigned int mac, unsigned int mem_map,
uint64_t mem_map_base, uint64_t mem_map_limit,
unsigned int asid)
{
struct config_msi_intr_param temp;
struct config_msi_intr_param *params = &temp;
params->interrupt.kernel.x = inter_x;
params->interrupt.kernel.y = inter_y;
params->interrupt.kernel.ipi = inter_ipi;
params->interrupt.kernel.event = inter_event;
params->mac = mac;
params->mem_map = mem_map;
params->mem_map_base = mem_map_base;
params->mem_map_limit = mem_map_limit;
params->asid = asid;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_CONFIG_MSI_INTR);
}
EXPORT_SYMBOL(gxio_trio_config_msi_intr);
struct set_mps_mrs_param {
uint16_t mps;
uint16_t mrs;
unsigned int mac;
};
int gxio_trio_set_mps_mrs(gxio_trio_context_t * context, uint16_t mps,
uint16_t mrs, unsigned int mac)
{
struct set_mps_mrs_param temp;
struct set_mps_mrs_param *params = &temp;
params->mps = mps;
params->mrs = mrs;
params->mac = mac;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_SET_MPS_MRS);
}
EXPORT_SYMBOL(gxio_trio_set_mps_mrs);
struct force_rc_link_up_param {
unsigned int mac;
};
int gxio_trio_force_rc_link_up(gxio_trio_context_t * context, unsigned int mac)
{
struct force_rc_link_up_param temp;
struct force_rc_link_up_param *params = &temp;
params->mac = mac;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_FORCE_RC_LINK_UP);
}
EXPORT_SYMBOL(gxio_trio_force_rc_link_up);
struct force_ep_link_up_param {
unsigned int mac;
};
int gxio_trio_force_ep_link_up(gxio_trio_context_t * context, unsigned int mac)
{
struct force_ep_link_up_param temp;
struct force_ep_link_up_param *params = &temp;
params->mac = mac;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_FORCE_EP_LINK_UP);
}
EXPORT_SYMBOL(gxio_trio_force_ep_link_up);
struct get_mmio_base_param {
HV_PTE base;
};
int gxio_trio_get_mmio_base(gxio_trio_context_t * context, HV_PTE *base)
{
int __result;
struct get_mmio_base_param temp;
struct get_mmio_base_param *params = &temp;
__result =
hv_dev_pread(context->fd, 0, (HV_VirtAddr) params, sizeof(*params),
GXIO_TRIO_OP_GET_MMIO_BASE);
*base = params->base;
return __result;
}
EXPORT_SYMBOL(gxio_trio_get_mmio_base);
struct check_mmio_offset_param {
unsigned long offset;
unsigned long size;
};
int gxio_trio_check_mmio_offset(gxio_trio_context_t * context,
unsigned long offset, unsigned long size)
{
struct check_mmio_offset_param temp;
struct check_mmio_offset_param *params = &temp;
params->offset = offset;
params->size = size;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_TRIO_OP_CHECK_MMIO_OFFSET);
}
EXPORT_SYMBOL(gxio_trio_check_mmio_offset);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#include "gxio/iorpc_usb_host.h"
struct cfg_interrupt_param {
union iorpc_interrupt interrupt;
};
int gxio_usb_host_cfg_interrupt(gxio_usb_host_context_t * context, int inter_x,
int inter_y, int inter_ipi, int inter_event)
{
struct cfg_interrupt_param temp;
struct cfg_interrupt_param *params = &temp;
params->interrupt.kernel.x = inter_x;
params->interrupt.kernel.y = inter_y;
params->interrupt.kernel.ipi = inter_ipi;
params->interrupt.kernel.event = inter_event;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params), GXIO_USB_HOST_OP_CFG_INTERRUPT);
}
EXPORT_SYMBOL(gxio_usb_host_cfg_interrupt);
struct register_client_memory_param {
HV_PTE pte;
unsigned int flags;
};
int gxio_usb_host_register_client_memory(gxio_usb_host_context_t * context,
HV_PTE pte, unsigned int flags)
{
struct register_client_memory_param temp;
struct register_client_memory_param *params = &temp;
params->pte = pte;
params->flags = flags;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_USB_HOST_OP_REGISTER_CLIENT_MEMORY);
}
EXPORT_SYMBOL(gxio_usb_host_register_client_memory);
struct get_mmio_base_param {
HV_PTE base;
};
int gxio_usb_host_get_mmio_base(gxio_usb_host_context_t * context, HV_PTE *base)
{
int __result;
struct get_mmio_base_param temp;
struct get_mmio_base_param *params = &temp;
__result =
hv_dev_pread(context->fd, 0, (HV_VirtAddr) params, sizeof(*params),
GXIO_USB_HOST_OP_GET_MMIO_BASE);
*base = params->base;
return __result;
}
EXPORT_SYMBOL(gxio_usb_host_get_mmio_base);
struct check_mmio_offset_param {
unsigned long offset;
unsigned long size;
};
int gxio_usb_host_check_mmio_offset(gxio_usb_host_context_t * context,
unsigned long offset, unsigned long size)
{
struct check_mmio_offset_param temp;
struct check_mmio_offset_param *params = &temp;
params->offset = offset;
params->size = size;
return hv_dev_pwrite(context->fd, 0, (HV_VirtAddr) params,
sizeof(*params),
GXIO_USB_HOST_OP_CHECK_MMIO_OFFSET);
}
EXPORT_SYMBOL(gxio_usb_host_check_mmio_offset);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*
* TILE-Gx IORPC support for kernel I/O drivers.
*/
#include <linux/mmzone.h>
#include <linux/module.h>
#include <linux/io.h>
#include <gxio/iorpc_globals.h>
#include <gxio/kiorpc.h>
#ifdef DEBUG_IORPC
#define TRACE(FMT, ...) pr_info(SIMPLE_MSG_LINE FMT, ## __VA_ARGS__)
#else
#define TRACE(...)
#endif
/* Create kernel-VA-space MMIO mapping for an on-chip IO device. */
void __iomem *iorpc_ioremap(int hv_fd, resource_size_t offset,
unsigned long size)
{
pgprot_t mmio_base, prot = { 0 };
unsigned long pfn;
int err;
/* Look up the shim's lotar and base PA. */
err = __iorpc_get_mmio_base(hv_fd, &mmio_base);
if (err) {
TRACE("get_mmio_base() failure: %d\n", err);
return NULL;
}
/* Make sure the HV driver approves of our offset and size. */
err = __iorpc_check_mmio_offset(hv_fd, offset, size);
if (err) {
TRACE("check_mmio_offset() failure: %d\n", err);
return NULL;
}
/*
* mmio_base contains a base pfn and homing coordinates. Turn
* it into an MMIO pgprot and offset pfn.
*/
prot = hv_pte_set_lotar(prot, hv_pte_get_lotar(mmio_base));
pfn = pte_pfn(mmio_base) + PFN_DOWN(offset);
return ioremap_prot(PFN_PHYS(pfn), size, prot);
}
EXPORT_SYMBOL(iorpc_ioremap);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/*
* Implementation of mpipe gxio calls.
*/
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/module.h>
#include <gxio/iorpc_globals.h>
#include <gxio/iorpc_mpipe.h>
#include <gxio/iorpc_mpipe_info.h>
#include <gxio/kiorpc.h>
#include <gxio/mpipe.h>
/* HACK: Avoid pointless "shadow" warnings. */
#define link link_shadow
int gxio_mpipe_init(gxio_mpipe_context_t *context, unsigned int mpipe_index)
{
char file[32];
int fd;
int i;
snprintf(file, sizeof(file), "mpipe/%d/iorpc", mpipe_index);
fd = hv_dev_open((HV_VirtAddr) file, 0);
if (fd < 0) {
if (fd >= GXIO_ERR_MIN && fd <= GXIO_ERR_MAX)
return fd;
else
return -ENODEV;
}
context->fd = fd;
/* Map in the MMIO space. */
context->mmio_cfg_base = (void __force *)
iorpc_ioremap(fd, HV_MPIPE_CONFIG_MMIO_OFFSET,
HV_MPIPE_CONFIG_MMIO_SIZE);
if (context->mmio_cfg_base == NULL)
goto cfg_failed;
context->mmio_fast_base = (void __force *)
iorpc_ioremap(fd, HV_MPIPE_FAST_MMIO_OFFSET,
HV_MPIPE_FAST_MMIO_SIZE);
if (context->mmio_fast_base == NULL)
goto fast_failed;
/* Initialize the stacks. */
for (i = 0; i < 8; i++)
context->__stacks.stacks[i] = 255;
return 0;
fast_failed:
iounmap((void __force __iomem *)(context->mmio_cfg_base));
cfg_failed:
hv_dev_close(context->fd);
return -ENODEV;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_init);
int gxio_mpipe_destroy(gxio_mpipe_context_t *context)
{
iounmap((void __force __iomem *)(context->mmio_cfg_base));
iounmap((void __force __iomem *)(context->mmio_fast_base));
return hv_dev_close(context->fd);
}
EXPORT_SYMBOL_GPL(gxio_mpipe_destroy);
static int16_t gxio_mpipe_buffer_sizes[8] =
{ 128, 256, 512, 1024, 1664, 4096, 10368, 16384 };
gxio_mpipe_buffer_size_enum_t gxio_mpipe_buffer_size_to_buffer_size_enum(size_t
size)
{
int i;
for (i = 0; i < 7; i++)
if (size <= gxio_mpipe_buffer_sizes[i])
break;
return i;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_buffer_size_to_buffer_size_enum);
size_t gxio_mpipe_buffer_size_enum_to_buffer_size(gxio_mpipe_buffer_size_enum_t
buffer_size_enum)
{
if (buffer_size_enum > 7)
buffer_size_enum = 7;
return gxio_mpipe_buffer_sizes[buffer_size_enum];
}
EXPORT_SYMBOL_GPL(gxio_mpipe_buffer_size_enum_to_buffer_size);
size_t gxio_mpipe_calc_buffer_stack_bytes(unsigned long buffers)
{
const int BUFFERS_PER_LINE = 12;
/* Count the number of cachlines. */
unsigned long lines =
(buffers + BUFFERS_PER_LINE - 1) / BUFFERS_PER_LINE;
/* Convert to bytes. */
return lines * CHIP_L2_LINE_SIZE();
}
EXPORT_SYMBOL_GPL(gxio_mpipe_calc_buffer_stack_bytes);
int gxio_mpipe_init_buffer_stack(gxio_mpipe_context_t *context,
unsigned int stack,
gxio_mpipe_buffer_size_enum_t
buffer_size_enum, void *mem, size_t mem_size,
unsigned int mem_flags)
{
int result;
memset(mem, 0, mem_size);
result = gxio_mpipe_init_buffer_stack_aux(context, mem, mem_size,
mem_flags, stack,
buffer_size_enum);
if (result < 0)
return result;
/* Save the stack. */
context->__stacks.stacks[buffer_size_enum] = stack;
return 0;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_init_buffer_stack);
int gxio_mpipe_init_notif_ring(gxio_mpipe_context_t *context,
unsigned int ring,
void *mem, size_t mem_size,
unsigned int mem_flags)
{
return gxio_mpipe_init_notif_ring_aux(context, mem, mem_size,
mem_flags, ring);
}
EXPORT_SYMBOL_GPL(gxio_mpipe_init_notif_ring);
int gxio_mpipe_init_notif_group_and_buckets(gxio_mpipe_context_t *context,
unsigned int group,
unsigned int ring,
unsigned int num_rings,
unsigned int bucket,
unsigned int num_buckets,
gxio_mpipe_bucket_mode_t mode)
{
int i;
int result;
gxio_mpipe_bucket_info_t bucket_info = { {
.group = group,
.mode = mode,
}
};
gxio_mpipe_notif_group_bits_t bits = { {0} };
for (i = 0; i < num_rings; i++)
gxio_mpipe_notif_group_add_ring(&bits, ring + i);
result = gxio_mpipe_init_notif_group(context, group, bits);
if (result != 0)
return result;
for (i = 0; i < num_buckets; i++) {
bucket_info.notifring = ring + (i % num_rings);
result = gxio_mpipe_init_bucket(context, bucket + i,
bucket_info);
if (result != 0)
return result;
}
return 0;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_init_notif_group_and_buckets);
int gxio_mpipe_init_edma_ring(gxio_mpipe_context_t *context,
unsigned int ring, unsigned int channel,
void *mem, size_t mem_size,
unsigned int mem_flags)
{
memset(mem, 0, mem_size);
return gxio_mpipe_init_edma_ring_aux(context, mem, mem_size, mem_flags,
ring, channel);
}
EXPORT_SYMBOL_GPL(gxio_mpipe_init_edma_ring);
void gxio_mpipe_rules_init(gxio_mpipe_rules_t *rules,
gxio_mpipe_context_t *context)
{
rules->context = context;
memset(&rules->list, 0, sizeof(rules->list));
}
EXPORT_SYMBOL_GPL(gxio_mpipe_rules_init);
int gxio_mpipe_rules_begin(gxio_mpipe_rules_t *rules,
unsigned int bucket, unsigned int num_buckets,
gxio_mpipe_rules_stacks_t *stacks)
{
int i;
int stack = 255;
gxio_mpipe_rules_list_t *list = &rules->list;
/* Current rule. */
gxio_mpipe_rules_rule_t *rule =
(gxio_mpipe_rules_rule_t *) (list->rules + list->head);
unsigned int head = list->tail;
/*
* Align next rule properly.
*Note that "dmacs_and_vlans" will also be aligned.
*/
unsigned int pad = 0;
while (((head + pad) % __alignof__(gxio_mpipe_rules_rule_t)) != 0)
pad++;
/*
* Verify room.
* ISSUE: Mark rules as broken on error?
*/
if (head + pad + sizeof(*rule) >= sizeof(list->rules))
return GXIO_MPIPE_ERR_RULES_FULL;
/* Verify num_buckets is a power of 2. */
if (__builtin_popcount(num_buckets) != 1)
return GXIO_MPIPE_ERR_RULES_INVALID;
/* Add padding to previous rule. */
rule->size += pad;
/* Start a new rule. */
list->head = head + pad;
rule = (gxio_mpipe_rules_rule_t *) (list->rules + list->head);
/* Default some values. */
rule->headroom = 2;
rule->tailroom = 0;
rule->capacity = 16384;
/* Save the bucket info. */
rule->bucket_mask = num_buckets - 1;
rule->bucket_first = bucket;
for (i = 8 - 1; i >= 0; i--) {
int maybe =
stacks ? stacks->stacks[i] : rules->context->__stacks.
stacks[i];
if (maybe != 255)
stack = maybe;
rule->stacks.stacks[i] = stack;
}
if (stack == 255)
return GXIO_MPIPE_ERR_RULES_INVALID;
/* NOTE: Only entries at the end of the array can be 255. */
for (i = 8 - 1; i > 0; i--) {
if (rule->stacks.stacks[i] == 255) {
rule->stacks.stacks[i] = stack;
rule->capacity =
gxio_mpipe_buffer_size_enum_to_buffer_size(i -
1);
}
}
rule->size = sizeof(*rule);
list->tail = list->head + rule->size;
return 0;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_rules_begin);
int gxio_mpipe_rules_add_channel(gxio_mpipe_rules_t *rules,
unsigned int channel)
{
gxio_mpipe_rules_list_t *list = &rules->list;
gxio_mpipe_rules_rule_t *rule =
(gxio_mpipe_rules_rule_t *) (list->rules + list->head);
/* Verify channel. */
if (channel >= 32)
return GXIO_MPIPE_ERR_RULES_INVALID;
/* Verify begun. */
if (list->tail == 0)
return GXIO_MPIPE_ERR_RULES_EMPTY;
rule->channel_bits |= (1UL << channel);
return 0;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_rules_add_channel);
int gxio_mpipe_rules_set_headroom(gxio_mpipe_rules_t *rules, uint8_t headroom)
{
gxio_mpipe_rules_list_t *list = &rules->list;
gxio_mpipe_rules_rule_t *rule =
(gxio_mpipe_rules_rule_t *) (list->rules + list->head);
/* Verify begun. */
if (list->tail == 0)
return GXIO_MPIPE_ERR_RULES_EMPTY;
rule->headroom = headroom;
return 0;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_rules_set_headroom);
int gxio_mpipe_rules_commit(gxio_mpipe_rules_t *rules)
{
gxio_mpipe_rules_list_t *list = &rules->list;
unsigned int size =
offsetof(gxio_mpipe_rules_list_t, rules) + list->tail;
return gxio_mpipe_commit_rules(rules->context, list, size);
}
EXPORT_SYMBOL_GPL(gxio_mpipe_rules_commit);
int gxio_mpipe_iqueue_init(gxio_mpipe_iqueue_t *iqueue,
gxio_mpipe_context_t *context,
unsigned int ring,
void *mem, size_t mem_size, unsigned int mem_flags)
{
/* The init call below will verify that "mem_size" is legal. */
unsigned int num_entries = mem_size / sizeof(gxio_mpipe_idesc_t);
iqueue->context = context;
iqueue->idescs = (gxio_mpipe_idesc_t *)mem;
iqueue->ring = ring;
iqueue->num_entries = num_entries;
iqueue->mask_num_entries = num_entries - 1;
iqueue->log2_num_entries = __builtin_ctz(num_entries);
iqueue->head = 1;
#ifdef __BIG_ENDIAN__
iqueue->swapped = 0;
#endif
/* Initialize the "tail". */
__gxio_mmio_write(mem, iqueue->head);
return gxio_mpipe_init_notif_ring(context, ring, mem, mem_size,
mem_flags);
}
EXPORT_SYMBOL_GPL(gxio_mpipe_iqueue_init);
int gxio_mpipe_equeue_init(gxio_mpipe_equeue_t *equeue,
gxio_mpipe_context_t *context,
unsigned int edma_ring_id,
unsigned int channel,
void *mem, unsigned int mem_size,
unsigned int mem_flags)
{
/* The init call below will verify that "mem_size" is legal. */
unsigned int num_entries = mem_size / sizeof(gxio_mpipe_edesc_t);
/* Offset used to read number of completed commands. */
MPIPE_EDMA_POST_REGION_ADDR_t offset;
int result = gxio_mpipe_init_edma_ring(context, edma_ring_id, channel,
mem, mem_size, mem_flags);
if (result < 0)
return result;
memset(equeue, 0, sizeof(*equeue));
offset.word = 0;
offset.region =
MPIPE_MMIO_ADDR__REGION_VAL_EDMA -
MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
offset.ring = edma_ring_id;
__gxio_dma_queue_init(&equeue->dma_queue,
context->mmio_fast_base + offset.word,
num_entries);
equeue->edescs = mem;
equeue->mask_num_entries = num_entries - 1;
equeue->log2_num_entries = __builtin_ctz(num_entries);
return 0;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_equeue_init);
int gxio_mpipe_set_timestamp(gxio_mpipe_context_t *context,
const struct timespec *ts)
{
cycles_t cycles = get_cycles();
return gxio_mpipe_set_timestamp_aux(context, (uint64_t)ts->tv_sec,
(uint64_t)ts->tv_nsec,
(uint64_t)cycles);
}
int gxio_mpipe_get_timestamp(gxio_mpipe_context_t *context,
struct timespec *ts)
{
int ret;
cycles_t cycles_prev, cycles_now, clock_rate;
cycles_prev = get_cycles();
ret = gxio_mpipe_get_timestamp_aux(context, (uint64_t *)&ts->tv_sec,
(uint64_t *)&ts->tv_nsec,
(uint64_t *)&cycles_now);
if (ret < 0) {
return ret;
}
clock_rate = get_clock_rate();
ts->tv_nsec -= (cycles_now - cycles_prev) * 1000000000LL / clock_rate;
if (ts->tv_nsec < 0) {
ts->tv_nsec += 1000000000LL;
ts->tv_sec -= 1;
}
return ret;
}
int gxio_mpipe_adjust_timestamp(gxio_mpipe_context_t *context, int64_t delta)
{
return gxio_mpipe_adjust_timestamp_aux(context, delta);
}
/* Get our internal context used for link name access. This context is
* special in that it is not associated with an mPIPE service domain.
*/
static gxio_mpipe_context_t *_gxio_get_link_context(void)
{
static gxio_mpipe_context_t context;
static gxio_mpipe_context_t *contextp;
static int tried_open = 0;
static DEFINE_MUTEX(mutex);
mutex_lock(&mutex);
if (!tried_open) {
int i = 0;
tried_open = 1;
/*
* "4" here is the maximum possible number of mPIPE shims; it's
* an exaggeration but we shouldn't ever go beyond 2 anyway.
*/
for (i = 0; i < 4; i++) {
char file[80];
snprintf(file, sizeof(file), "mpipe/%d/iorpc_info", i);
context.fd = hv_dev_open((HV_VirtAddr) file, 0);
if (context.fd < 0)
continue;
contextp = &context;
break;
}
}
mutex_unlock(&mutex);
return contextp;
}
int gxio_mpipe_link_enumerate_mac(int idx, char *link_name, uint8_t *link_mac)
{
int rv;
_gxio_mpipe_link_name_t name;
_gxio_mpipe_link_mac_t mac;
gxio_mpipe_context_t *context = _gxio_get_link_context();
if (!context)
return GXIO_ERR_NO_DEVICE;
rv = gxio_mpipe_info_enumerate_aux(context, idx, &name, &mac);
if (rv >= 0) {
strncpy(link_name, name.name, sizeof(name.name));
memcpy(link_mac, mac.mac, sizeof(mac.mac));
}
return rv;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_link_enumerate_mac);
int gxio_mpipe_link_open(gxio_mpipe_link_t *link,
gxio_mpipe_context_t *context, const char *link_name,
unsigned int flags)
{
_gxio_mpipe_link_name_t name;
int rv;
strncpy(name.name, link_name, sizeof(name.name));
name.name[GXIO_MPIPE_LINK_NAME_LEN - 1] = '\0';
rv = gxio_mpipe_link_open_aux(context, name, flags);
if (rv < 0)
return rv;
link->context = context;
link->channel = rv >> 8;
link->mac = rv & 0xFF;
return 0;
}
EXPORT_SYMBOL_GPL(gxio_mpipe_link_open);
int gxio_mpipe_link_close(gxio_mpipe_link_t *link)
{
return gxio_mpipe_link_close_aux(link->context, link->mac);
}
EXPORT_SYMBOL_GPL(gxio_mpipe_link_close);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/*
* Implementation of trio gxio calls.
*/
#include <linux/errno.h>
#include <linux/io.h>
#include <linux/module.h>
#include <gxio/trio.h>
#include <gxio/iorpc_globals.h>
#include <gxio/iorpc_trio.h>
#include <gxio/kiorpc.h>
int gxio_trio_init(gxio_trio_context_t *context, unsigned int trio_index)
{
char file[32];
int fd;
snprintf(file, sizeof(file), "trio/%d/iorpc", trio_index);
fd = hv_dev_open((HV_VirtAddr) file, 0);
if (fd < 0) {
context->fd = -1;
if (fd >= GXIO_ERR_MIN && fd <= GXIO_ERR_MAX)
return fd;
else
return -ENODEV;
}
context->fd = fd;
return 0;
}
EXPORT_SYMBOL_GPL(gxio_trio_init);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/*
*
* Implementation of USB gxio calls.
*/
#include <linux/io.h>
#include <linux/errno.h>
#include <linux/module.h>
#include <gxio/iorpc_globals.h>
#include <gxio/iorpc_usb_host.h>
#include <gxio/kiorpc.h>
#include <gxio/usb_host.h>
int gxio_usb_host_init(gxio_usb_host_context_t * context, int usb_index,
int is_ehci)
{
char file[32];
int fd;
if (is_ehci)
snprintf(file, sizeof(file), "usb_host/%d/iorpc/ehci",
usb_index);
else
snprintf(file, sizeof(file), "usb_host/%d/iorpc/ohci",
usb_index);
fd = hv_dev_open((HV_VirtAddr) file, 0);
if (fd < 0) {
if (fd >= GXIO_ERR_MIN && fd <= GXIO_ERR_MAX)
return fd;
else
return -ENODEV;
}
context->fd = fd;
// Map in the MMIO space.
context->mmio_base =
(void __force *)iorpc_ioremap(fd, 0, HV_USB_HOST_MMIO_SIZE);
if (context->mmio_base == NULL) {
hv_dev_close(context->fd);
return -ENODEV;
}
return 0;
}
EXPORT_SYMBOL_GPL(gxio_usb_host_init);
int gxio_usb_host_destroy(gxio_usb_host_context_t * context)
{
iounmap((void __force __iomem *)(context->mmio_base));
hv_dev_close(context->fd);
context->mmio_base = NULL;
context->fd = -1;
return 0;
}
EXPORT_SYMBOL_GPL(gxio_usb_host_destroy);
void *gxio_usb_host_get_reg_start(gxio_usb_host_context_t * context)
{
return context->mmio_base;
}
EXPORT_SYMBOL_GPL(gxio_usb_host_get_reg_start);
size_t gxio_usb_host_get_reg_len(gxio_usb_host_context_t * context)
{
return HV_USB_HOST_MMIO_SIZE;
}
EXPORT_SYMBOL_GPL(gxio_usb_host_get_reg_len);
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_MPIPE_H__
#define __ARCH_MPIPE_H__
#include <arch/abi.h>
#include <arch/mpipe_def.h>
#ifndef __ASSEMBLER__
/*
* MMIO Ingress DMA Release Region Address.
* This is a description of the physical addresses used to manipulate ingress
* credit counters. Accesses to this address space should use an address of
* this form and a value like that specified in IDMA_RELEASE_REGION_VAL.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Reserved. */
uint_reg_t __reserved_0 : 3;
/* NotifRing to be released */
uint_reg_t ring : 8;
/* Bucket to be released */
uint_reg_t bucket : 13;
/* Enable NotifRing release */
uint_reg_t ring_enable : 1;
/* Enable Bucket release */
uint_reg_t bucket_enable : 1;
/*
* This field of the address selects the region (address space) to be
* accessed. For the iDMA release region, this field must be 4.
*/
uint_reg_t region : 3;
/* Reserved. */
uint_reg_t __reserved_1 : 6;
/* This field of the address indexes the 32 entry service domain table. */
uint_reg_t svc_dom : 5;
/* Reserved. */
uint_reg_t __reserved_2 : 24;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_2 : 24;
uint_reg_t svc_dom : 5;
uint_reg_t __reserved_1 : 6;
uint_reg_t region : 3;
uint_reg_t bucket_enable : 1;
uint_reg_t ring_enable : 1;
uint_reg_t bucket : 13;
uint_reg_t ring : 8;
uint_reg_t __reserved_0 : 3;
#endif
};
uint_reg_t word;
} MPIPE_IDMA_RELEASE_REGION_ADDR_t;
/*
* MMIO Ingress DMA Release Region Value - Release NotifRing and/or Bucket.
* Provides release of the associated NotifRing. The address of the MMIO
* operation is described in IDMA_RELEASE_REGION_ADDR.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/*
* Number of packets being released. The load balancer's count of
* inflight packets will be decremented by this amount for the associated
* Bucket and/or NotifRing
*/
uint_reg_t count : 16;
/* Reserved. */
uint_reg_t __reserved : 48;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved : 48;
uint_reg_t count : 16;
#endif
};
uint_reg_t word;
} MPIPE_IDMA_RELEASE_REGION_VAL_t;
/*
* MMIO Buffer Stack Manager Region Address.
* This MMIO region is used for posting or fetching buffers to/from the
* buffer stack manager. On an MMIO load, this pops a buffer descriptor from
* the top of stack if one is available. On an MMIO store, this pushes a
* buffer to the stack. The value read or written is described in
* BSM_REGION_VAL.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Reserved. */
uint_reg_t __reserved_0 : 3;
/* BufferStack being accessed. */
uint_reg_t stack : 5;
/* Reserved. */
uint_reg_t __reserved_1 : 18;
/*
* This field of the address selects the region (address space) to be
* accessed. For the buffer stack manager region, this field must be 6.
*/
uint_reg_t region : 3;
/* Reserved. */
uint_reg_t __reserved_2 : 6;
/* This field of the address indexes the 32 entry service domain table. */
uint_reg_t svc_dom : 5;
/* Reserved. */
uint_reg_t __reserved_3 : 24;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_3 : 24;
uint_reg_t svc_dom : 5;
uint_reg_t __reserved_2 : 6;
uint_reg_t region : 3;
uint_reg_t __reserved_1 : 18;
uint_reg_t stack : 5;
uint_reg_t __reserved_0 : 3;
#endif
};
uint_reg_t word;
} MPIPE_BSM_REGION_ADDR_t;
/*
* MMIO Buffer Stack Manager Region Value.
* This MMIO region is used for posting or fetching buffers to/from the
* buffer stack manager. On an MMIO load, this pops a buffer descriptor from
* the top of stack if one is available. On an MMIO store, this pushes a
* buffer to the stack. The address of the MMIO operation is described in
* BSM_REGION_ADDR.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Reserved. */
uint_reg_t __reserved_0 : 7;
/*
* Base virtual address of the buffer. Must be sign extended by consumer.
*/
int_reg_t va : 35;
/* Reserved. */
uint_reg_t __reserved_1 : 6;
/*
* Index of the buffer stack to which this buffer belongs. Ignored on
* writes since the offset bits specify the stack being accessed.
*/
uint_reg_t stack_idx : 5;
/* Reserved. */
uint_reg_t __reserved_2 : 5;
/*
* Reads as one to indicate that this is a hardware managed buffer.
* Ignored on writes since all buffers on a given stack are the same size.
*/
uint_reg_t hwb : 1;
/*
* Encoded size of buffer (ignored on writes):
* 0 = 128 bytes
* 1 = 256 bytes
* 2 = 512 bytes
* 3 = 1024 bytes
* 4 = 1664 bytes
* 5 = 4096 bytes
* 6 = 10368 bytes
* 7 = 16384 bytes
*/
uint_reg_t size : 3;
/*
* Valid indication for the buffer. Ignored on writes.
* 0 : Valid buffer descriptor popped from stack.
* 3 : Could not pop a buffer from the stack. Either the stack is empty,
* or the hardware's prefetch buffer is empty for this stack.
*/
uint_reg_t c : 2;
#else /* __BIG_ENDIAN__ */
uint_reg_t c : 2;
uint_reg_t size : 3;
uint_reg_t hwb : 1;
uint_reg_t __reserved_2 : 5;
uint_reg_t stack_idx : 5;
uint_reg_t __reserved_1 : 6;
int_reg_t va : 35;
uint_reg_t __reserved_0 : 7;
#endif
};
uint_reg_t word;
} MPIPE_BSM_REGION_VAL_t;
/*
* MMIO Egress DMA Post Region Address.
* Used to post descriptor locations to the eDMA descriptor engine. The
* value to be written is described in EDMA_POST_REGION_VAL
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Reserved. */
uint_reg_t __reserved_0 : 3;
/* eDMA ring being accessed */
uint_reg_t ring : 5;
/* Reserved. */
uint_reg_t __reserved_1 : 18;
/*
* This field of the address selects the region (address space) to be
* accessed. For the egress DMA post region, this field must be 5.
*/
uint_reg_t region : 3;
/* Reserved. */
uint_reg_t __reserved_2 : 6;
/* This field of the address indexes the 32 entry service domain table. */
uint_reg_t svc_dom : 5;
/* Reserved. */
uint_reg_t __reserved_3 : 24;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_3 : 24;
uint_reg_t svc_dom : 5;
uint_reg_t __reserved_2 : 6;
uint_reg_t region : 3;
uint_reg_t __reserved_1 : 18;
uint_reg_t ring : 5;
uint_reg_t __reserved_0 : 3;
#endif
};
uint_reg_t word;
} MPIPE_EDMA_POST_REGION_ADDR_t;
/*
* MMIO Egress DMA Post Region Value.
* Used to post descriptor locations to the eDMA descriptor engine. The
* address is described in EDMA_POST_REGION_ADDR.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/*
* For writes, this specifies the current ring tail pointer prior to any
* post. For example, to post 1 or more descriptors starting at location
* 23, this would contain 23 (not 24). On writes, this index must be
* masked based on the ring size. The new tail pointer after this post
* is COUNT+RING_IDX (masked by the ring size).
*
* For reads, this provides the hardware descriptor fetcher's head
* pointer. The descriptors prior to the head pointer, however, may not
* yet have been processed so this indicator is only used to determine
* how full the ring is and if software may post more descriptors.
*/
uint_reg_t ring_idx : 16;
/*
* For writes, this specifies number of contiguous descriptors that are
* being posted. Software may post up to RingSize descriptors with a
* single MMIO store. A zero in this field on a write will "wake up" an
* eDMA ring and cause it fetch descriptors regardless of the hardware's
* current view of the state of the tail pointer.
*
* For reads, this field provides a rolling count of the number of
* descriptors that have been completely processed. This may be used by
* software to determine when buffers associated with a descriptor may be
* returned or reused. When the ring's flush bit is cleared by software
* (after having been set by HW or SW), the COUNT will be cleared.
*/
uint_reg_t count : 16;
/*
* For writes, this specifies the generation number of the tail being
* posted. Note that if tail+cnt wraps to the beginning of the ring, the
* eDMA hardware assumes that the descriptors posted at the beginning of
* the ring are also valid so it is okay to post around the wrap point.
*
* For reads, this is the current generation number. Valid descriptors
* will have the inverse of this generation number.
*/
uint_reg_t gen : 1;
/* Reserved. */
uint_reg_t __reserved : 31;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved : 31;
uint_reg_t gen : 1;
uint_reg_t count : 16;
uint_reg_t ring_idx : 16;
#endif
};
uint_reg_t word;
} MPIPE_EDMA_POST_REGION_VAL_t;
/*
* Load Balancer Bucket Status Data.
* Read/Write data for load balancer Bucket-Status Table. 4160 entries
* indexed by LBL_INIT_CTL.IDX when LBL_INIT_CTL.STRUCT_SEL is BSTS_TBL
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* NotifRing currently assigned to this bucket. */
uint_reg_t notifring : 8;
/* Current reference count. */
uint_reg_t count : 16;
/* Group associated with this bucket. */
uint_reg_t group : 5;
/* Mode select for this bucket. */
uint_reg_t mode : 3;
/* Reserved. */
uint_reg_t __reserved : 32;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved : 32;
uint_reg_t mode : 3;
uint_reg_t group : 5;
uint_reg_t count : 16;
uint_reg_t notifring : 8;
#endif
};
uint_reg_t word;
} MPIPE_LBL_INIT_DAT_BSTS_TBL_t;
#endif /* !defined(__ASSEMBLER__) */
#endif /* !defined(__ARCH_MPIPE_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef __ARCH_MPIPE_CONSTANTS_H__
#define __ARCH_MPIPE_CONSTANTS_H__
#define MPIPE_NUM_CLASSIFIERS 10
#define MPIPE_CLS_MHZ 1200
#define MPIPE_NUM_EDMA_RINGS 32
#define MPIPE_NUM_SGMII_MACS 16
#define MPIPE_NUM_XAUI_MACS 4
#define MPIPE_NUM_LOOPBACK_CHANNELS 4
#define MPIPE_NUM_NON_LB_CHANNELS 28
#define MPIPE_NUM_IPKT_BLOCKS 1536
#define MPIPE_NUM_BUCKETS 4160
#define MPIPE_NUM_NOTIF_RINGS 256
#define MPIPE_NUM_NOTIF_GROUPS 32
#define MPIPE_NUM_TLBS_PER_ASID 16
#define MPIPE_TLB_IDX_WIDTH 4
#define MPIPE_MMIO_NUM_SVC_DOM 32
#endif /* __ARCH_MPIPE_CONSTANTS_H__ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_MPIPE_DEF_H__
#define __ARCH_MPIPE_DEF_H__
#define MPIPE_MMIO_ADDR__REGION_SHIFT 26
#define MPIPE_MMIO_ADDR__REGION_VAL_CFG 0x0
#define MPIPE_MMIO_ADDR__REGION_VAL_IDMA 0x4
#define MPIPE_MMIO_ADDR__REGION_VAL_EDMA 0x5
#define MPIPE_MMIO_ADDR__REGION_VAL_BSM 0x6
#define MPIPE_BSM_REGION_VAL__VA_SHIFT 7
#define MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_128 0x0
#define MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_256 0x1
#define MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_512 0x2
#define MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1024 0x3
#define MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1664 0x4
#define MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_4096 0x5
#define MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_10368 0x6
#define MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_16384 0x7
#define MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_DFA 0x0
#define MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_FIXED 0x1
#define MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_ALWAYS_PICK 0x2
#define MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY 0x3
#define MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY_RAND 0x7
#define MPIPE_LBL_NR_STATE__FIRST_WORD 0x2138
#endif /* !defined(__ARCH_MPIPE_DEF_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_MPIPE_SHM_H__
#define __ARCH_MPIPE_SHM_H__
#include <arch/abi.h>
#include <arch/mpipe_shm_def.h>
#ifndef __ASSEMBLER__
/**
* MPIPE eDMA Descriptor.
* The eDMA descriptor is written by software and consumed by hardware. It
* is used to specify the location of egress packet data to be sent out of
* the chip via one of the packet interfaces.
*/
__extension__
typedef union
{
struct
{
/* Word 0 */
#ifndef __BIG_ENDIAN__
/**
* Generation number. Used to indicate a valid descriptor in ring. When
* a new descriptor is written into the ring, software must toggle this
* bit. The net effect is that the GEN bit being written into new
* descriptors toggles each time the ring tail pointer wraps.
*/
uint_reg_t gen : 1;
/** Reserved. Must be zero. */
uint_reg_t r0 : 7;
/** Checksum generation enabled for this transfer. */
uint_reg_t csum : 1;
/**
* Nothing to be sent. Used, for example, when software has dropped a
* packet but still wishes to return all of the associated buffers.
*/
uint_reg_t ns : 1;
/**
* Notification interrupt will be delivered when packet has been egressed.
*/
uint_reg_t notif : 1;
/**
* Boundary indicator. When 1, this transfer includes the EOP for this
* command. Must be clear on all but the last descriptor for an egress
* packet.
*/
uint_reg_t bound : 1;
/** Reserved. Must be zero. */
uint_reg_t r1 : 4;
/**
* Number of bytes to be sent for this descriptor. When zero, no data
* will be moved and the buffer descriptor will be ignored. If the
* buffer descriptor indicates that it is chained, the low 7 bits of the
* VA indicate the offset within the first buffer (e.g. 127 bytes is the
* maximum offset into the first buffer). If the size exceeds a single
* buffer, subsequent buffer descriptors will be fetched prior to
* processing the next eDMA descriptor in the ring.
*/
uint_reg_t xfer_size : 14;
/** Reserved. Must be zero. */
uint_reg_t r2 : 2;
/**
* Destination of checksum relative to CSUM_START relative to the first
* byte moved by this descriptor. Must be zero if CSUM=0 in this
* descriptor. Must be less than XFER_SIZE (e.g. the first byte of the
* CSUM_DEST must be within the span of this descriptor).
*/
uint_reg_t csum_dest : 8;
/**
* Start byte of checksum relative to the first byte moved by this
* descriptor. If this is not the first descriptor for the egress
* packet, CSUM_START is still relative to the first byte in this
* descriptor. Must be zero if CSUM=0 in this descriptor.
*/
uint_reg_t csum_start : 8;
/**
* Initial value for 16-bit 1's compliment checksum if enabled via CSUM.
* Specified in network order. That is, bits[7:0] will be added to the
* byte pointed to by CSUM_START and bits[15:8] will be added to the byte
* pointed to by CSUM_START+1 (with appropriate 1's compliment carries).
* Must be zero if CSUM=0 in this descriptor.
*/
uint_reg_t csum_seed : 16;
#else /* __BIG_ENDIAN__ */
uint_reg_t csum_seed : 16;
uint_reg_t csum_start : 8;
uint_reg_t csum_dest : 8;
uint_reg_t r2 : 2;
uint_reg_t xfer_size : 14;
uint_reg_t r1 : 4;
uint_reg_t bound : 1;
uint_reg_t notif : 1;
uint_reg_t ns : 1;
uint_reg_t csum : 1;
uint_reg_t r0 : 7;
uint_reg_t gen : 1;
#endif
/* Word 1 */
#ifndef __BIG_ENDIAN__
/** Virtual address. Must be sign extended by consumer. */
int_reg_t va : 42;
/** Reserved. */
uint_reg_t __reserved_0 : 6;
/** Index of the buffer stack to which this buffer belongs. */
uint_reg_t stack_idx : 5;
/** Reserved. */
uint_reg_t __reserved_1 : 3;
/**
* Instance ID. For devices that support more than one mPIPE instance,
* this field indicates the buffer owner. If the INST field does not
* match the mPIPE's instance number when a packet is egressed, buffers
* with HWB set will be returned to the other mPIPE instance.
*/
uint_reg_t inst : 1;
/** Reserved. */
uint_reg_t __reserved_2 : 1;
/**
* Always set to one by hardware in iDMA packet descriptors. For eDMA,
* indicates whether the buffer will be released to the buffer stack
* manager. When 0, software is responsible for releasing the buffer.
*/
uint_reg_t hwb : 1;
/**
* Encoded size of buffer. Set by the ingress hardware for iDMA packet
* descriptors. For eDMA descriptors, indicates the buffer size if .c
* indicates a chained packet. If an eDMA descriptor is not chained and
* the .hwb bit is not set, this field is ignored and the size is
* specified by the .xfer_size field.
* 0 = 128 bytes
* 1 = 256 bytes
* 2 = 512 bytes
* 3 = 1024 bytes
* 4 = 1664 bytes
* 5 = 4096 bytes
* 6 = 10368 bytes
* 7 = 16384 bytes
*/
uint_reg_t size : 3;
/**
* Chaining configuration for the buffer. Indicates that an ingress
* packet or egress command is chained across multiple buffers, with each
* buffer's size indicated by the .size field.
*/
uint_reg_t c : 2;
#else /* __BIG_ENDIAN__ */
uint_reg_t c : 2;
uint_reg_t size : 3;
uint_reg_t hwb : 1;
uint_reg_t __reserved_2 : 1;
uint_reg_t inst : 1;
uint_reg_t __reserved_1 : 3;
uint_reg_t stack_idx : 5;
uint_reg_t __reserved_0 : 6;
int_reg_t va : 42;
#endif
};
/** Word access */
uint_reg_t words[2];
} MPIPE_EDMA_DESC_t;
/**
* MPIPE Packet Descriptor.
* The packet descriptor is filled by the mPIPE's classification,
* load-balancing, and buffer management services. Some fields are consumed
* by mPIPE hardware, and others are consumed by Tile software.
*/
__extension__
typedef union
{
struct
{
/* Word 0 */
#ifndef __BIG_ENDIAN__
/**
* Notification ring into which this packet descriptor is written.
* Typically written by load balancer, but can be overridden by
* classification program if NR is asserted.
*/
uint_reg_t notif_ring : 8;
/** Source channel for this packet. Written by mPIPE DMA hardware. */
uint_reg_t channel : 5;
/** Reserved. */
uint_reg_t __reserved_0 : 1;
/**
* MAC Error.
* Generated by the MAC interface. Asserted if there was an overrun of
* the MAC's receive FIFO. This condition generally only occurs if the
* mPIPE clock is running too slowly.
*/
uint_reg_t me : 1;
/**
* Truncation Error.
* Written by the iDMA hardware. Asserted if packet was truncated due to
* insufficient space in iPkt buffer
*/
uint_reg_t tr : 1;
/**
* Written by the iDMA hardware. Indicates the number of bytes written
* to Tile memory. In general, this is the actual size of the packet as
* received from the MAC. But if the packet is truncated due to running
* out of buffers or due to the iPkt buffer filling up, then the L2_SIZE
* will be reduced to reflect the actual number of valid bytes written to
* Tile memory.
*/
uint_reg_t l2_size : 14;
/**
* CRC Error.
* Generated by the MAC. Asserted if MAC indicated an L2 CRC error or
* other L2 error (bad length etc.) on the packet.
*/
uint_reg_t ce : 1;
/**
* Cut Through.
* Written by the iDMA hardware. Asserted if packet was not completely
* received before being sent to classifier. L2_Size will indicate
* number of bytes received so far.
*/
uint_reg_t ct : 1;
/**
* Written by the classification program. Used by the load balancer to
* select the ring into which this packet descriptor is written.
*/
uint_reg_t bucket_id : 13;
/** Reserved. */
uint_reg_t __reserved_1 : 3;
/**
* Checksum.
* Written by classification program. When 1, the checksum engine will
* perform checksum based on the CSUM_SEED, CSUM_START, and CSUM_BYTES
* fields. The result will be placed in CSUM_VAL.
*/
uint_reg_t cs : 1;
/**
* Notification Ring Select.
* Written by the classification program. When 1, the NotifRingIDX is
* set by classification program rather than being set by load balancer.
*/
uint_reg_t nr : 1;
/**
* Written by classification program. Indicates whether packet and
* descriptor should both be dropped, both be delivered, or only the
* descriptor should be delivered.
*/
uint_reg_t dest : 2;
/**
* General Purpose Sequence Number Enable.
* Written by the classification program. When 1, the GP_SQN_SEL field
* contains the sequence number selector and the GP_SQN field will be
* replaced with the associated sequence number. When clear, the GP_SQN
* field is left intact and be used as "Custom" bytes.
*/
uint_reg_t sq : 1;
/**
* TimeStamp Enable.
* Enable TimeStamp insertion. When clear, timestamp field may be filled
* with custom data by classifier. When set, hardware inserts the
* timestamp when the start of packet is received from the MAC.
*/
uint_reg_t ts : 1;
/**
* Packet Sequence Number Enable.
* Enable PacketSQN insertion. When clear, PacketSQN field may be filled
* with custom data by classifier. When set, hardware inserts the packet
* sequence number when the packet descriptor is written to a
* notification ring.
*/
uint_reg_t ps : 1;
/**
* Buffer Error.
* Written by the iDMA hardware. Asserted if iDMA ran out of buffers
* while writing the packet. Software must still return any buffer
* descriptors whose C field indicates a valid descriptor was consumed.
*/
uint_reg_t be : 1;
/**
* Written by the classification program. The associated counter is
* incremented when the packet is sent.
*/
uint_reg_t ctr0 : 5;
/** Reserved. */
uint_reg_t __reserved_2 : 3;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_2 : 3;
uint_reg_t ctr0 : 5;
uint_reg_t be : 1;
uint_reg_t ps : 1;
uint_reg_t ts : 1;
uint_reg_t sq : 1;
uint_reg_t dest : 2;
uint_reg_t nr : 1;
uint_reg_t cs : 1;
uint_reg_t __reserved_1 : 3;
uint_reg_t bucket_id : 13;
uint_reg_t ct : 1;
uint_reg_t ce : 1;
uint_reg_t l2_size : 14;
uint_reg_t tr : 1;
uint_reg_t me : 1;
uint_reg_t __reserved_0 : 1;
uint_reg_t channel : 5;
uint_reg_t notif_ring : 8;
#endif
/* Word 1 */
#ifndef __BIG_ENDIAN__
/**
* Written by the classification program. The associated counter is
* incremented when the packet is sent.
*/
uint_reg_t ctr1 : 5;
/** Reserved. */
uint_reg_t __reserved_3 : 3;
/**
* Written by classification program. Indicates the start byte for
* checksum. Relative to 1st byte received from MAC.
*/
uint_reg_t csum_start : 8;
/**
* Checksum seed written by classification program. Overwritten with
* resultant checksum if CS bit is asserted. The endianness of the CSUM
* value bits when viewed by Tile software match the packet byte order.
* That is, bits[7:0] of the resulting checksum value correspond to
* earlier (more significant) bytes in the packet. To avoid classifier
* software from having to byte swap the CSUM_SEED, the iDMA checksum
* engine byte swaps the classifier's result before seeding the checksum
* calculation. Thus, the CSUM_START byte of packet data is added to
* bits[15:8] of the CSUM_SEED field generated by the classifier. This
* byte swap will be visible to Tile software if the CS bit is clear.
*/
uint_reg_t csum_seed_val : 16;
/**
* Written by the classification program. Not interpreted by mPIPE
* hardware.
*/
uint_reg_t custom0 : 32;
#else /* __BIG_ENDIAN__ */
uint_reg_t custom0 : 32;
uint_reg_t csum_seed_val : 16;
uint_reg_t csum_start : 8;
uint_reg_t __reserved_3 : 3;
uint_reg_t ctr1 : 5;
#endif
/* Word 2 */
#ifndef __BIG_ENDIAN__
/**
* Written by the classification program. Not interpreted by mPIPE
* hardware.
*/
uint_reg_t custom1 : 64;
#else /* __BIG_ENDIAN__ */
uint_reg_t custom1 : 64;
#endif
/* Word 3 */
#ifndef __BIG_ENDIAN__
/**
* Written by the classification program. Not interpreted by mPIPE
* hardware.
*/
uint_reg_t custom2 : 64;
#else /* __BIG_ENDIAN__ */
uint_reg_t custom2 : 64;
#endif
/* Word 4 */
#ifndef __BIG_ENDIAN__
/**
* Written by the classification program. Not interpreted by mPIPE
* hardware.
*/
uint_reg_t custom3 : 64;
#else /* __BIG_ENDIAN__ */
uint_reg_t custom3 : 64;
#endif
/* Word 5 */
#ifndef __BIG_ENDIAN__
/**
* Sequence number applied when packet is distributed. Classifier
* selects which sequence number is to be applied by writing the 13-bit
* SQN-selector into this field.
*/
uint_reg_t gp_sqn : 16;
/**
* Written by notification hardware. The packet sequence number is
* incremented for each packet that wasn't dropped.
*/
uint_reg_t packet_sqn : 48;
#else /* __BIG_ENDIAN__ */
uint_reg_t packet_sqn : 48;
uint_reg_t gp_sqn : 16;
#endif
/* Word 6 */
#ifndef __BIG_ENDIAN__
/**
* Written by hardware when the start-of-packet is received by the mPIPE
* from the MAC. This is the nanoseconds part of the packet timestamp.
*/
uint_reg_t time_stamp_ns : 32;
/**
* Written by hardware when the start-of-packet is received by the mPIPE
* from the MAC. This is the seconds part of the packet timestamp.
*/
uint_reg_t time_stamp_sec : 32;
#else /* __BIG_ENDIAN__ */
uint_reg_t time_stamp_sec : 32;
uint_reg_t time_stamp_ns : 32;
#endif
/* Word 7 */
#ifndef __BIG_ENDIAN__
/** Virtual address. Must be sign extended by consumer. */
int_reg_t va : 42;
/** Reserved. */
uint_reg_t __reserved_4 : 6;
/** Index of the buffer stack to which this buffer belongs. */
uint_reg_t stack_idx : 5;
/** Reserved. */
uint_reg_t __reserved_5 : 3;
/**
* Instance ID. For devices that support more than one mPIPE instance,
* this field indicates the buffer owner. If the INST field does not
* match the mPIPE's instance number when a packet is egressed, buffers
* with HWB set will be returned to the other mPIPE instance.
*/
uint_reg_t inst : 1;
/** Reserved. */
uint_reg_t __reserved_6 : 1;
/**
* Always set to one by hardware in iDMA packet descriptors. For eDMA,
* indicates whether the buffer will be released to the buffer stack
* manager. When 0, software is responsible for releasing the buffer.
*/
uint_reg_t hwb : 1;
/**
* Encoded size of buffer. Set by the ingress hardware for iDMA packet
* descriptors. For eDMA descriptors, indicates the buffer size if .c
* indicates a chained packet. If an eDMA descriptor is not chained and
* the .hwb bit is not set, this field is ignored and the size is
* specified by the .xfer_size field.
* 0 = 128 bytes
* 1 = 256 bytes
* 2 = 512 bytes
* 3 = 1024 bytes
* 4 = 1664 bytes
* 5 = 4096 bytes
* 6 = 10368 bytes
* 7 = 16384 bytes
*/
uint_reg_t size : 3;
/**
* Chaining configuration for the buffer. Indicates that an ingress
* packet or egress command is chained across multiple buffers, with each
* buffer's size indicated by the .size field.
*/
uint_reg_t c : 2;
#else /* __BIG_ENDIAN__ */
uint_reg_t c : 2;
uint_reg_t size : 3;
uint_reg_t hwb : 1;
uint_reg_t __reserved_6 : 1;
uint_reg_t inst : 1;
uint_reg_t __reserved_5 : 3;
uint_reg_t stack_idx : 5;
uint_reg_t __reserved_4 : 6;
int_reg_t va : 42;
#endif
};
/** Word access */
uint_reg_t words[8];
} MPIPE_PDESC_t;
#endif /* !defined(__ASSEMBLER__) */
#endif /* !defined(__ARCH_MPIPE_SHM_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_MPIPE_SHM_DEF_H__
#define __ARCH_MPIPE_SHM_DEF_H__
#define MPIPE_EDMA_DESC_WORD1__C_VAL_UNCHAINED 0x0
#define MPIPE_EDMA_DESC_WORD1__C_VAL_CHAINED 0x1
#define MPIPE_EDMA_DESC_WORD1__C_VAL_NOT_RDY 0x2
#define MPIPE_EDMA_DESC_WORD1__C_VAL_INVALID 0x3
#endif /* !defined(__ARCH_MPIPE_SHM_DEF_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_TRIO_H__
#define __ARCH_TRIO_H__
#include <arch/abi.h>
#include <arch/trio_def.h>
#ifndef __ASSEMBLER__
/*
* Tile PIO Region Configuration - CFG Address Format.
* This register describes the address format for PIO accesses when the
* associated region is setup with TYPE=CFG.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Register Address (full byte address). */
uint_reg_t reg_addr : 12;
/* Function Number */
uint_reg_t fn : 3;
/* Device Number */
uint_reg_t dev : 5;
/* BUS Number */
uint_reg_t bus : 8;
/* Config Type: 0 for access to directly-attached device. 1 otherwise. */
uint_reg_t type : 1;
/* Reserved. */
uint_reg_t __reserved_0 : 1;
/*
* MAC select. This must match the configuration in
* TILE_PIO_REGION_SETUP.MAC.
*/
uint_reg_t mac : 2;
/* Reserved. */
uint_reg_t __reserved_1 : 32;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_1 : 32;
uint_reg_t mac : 2;
uint_reg_t __reserved_0 : 1;
uint_reg_t type : 1;
uint_reg_t bus : 8;
uint_reg_t dev : 5;
uint_reg_t fn : 3;
uint_reg_t reg_addr : 12;
#endif
};
uint_reg_t word;
} TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t;
#endif /* !defined(__ASSEMBLER__) */
#endif /* !defined(__ARCH_TRIO_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef __ARCH_TRIO_CONSTANTS_H__
#define __ARCH_TRIO_CONSTANTS_H__
#define TRIO_NUM_ASIDS 16
#define TRIO_NUM_TLBS_PER_ASID 16
#define TRIO_NUM_TPIO_REGIONS 8
#define TRIO_LOG2_NUM_TPIO_REGIONS 3
#define TRIO_NUM_MAP_MEM_REGIONS 16
#define TRIO_LOG2_NUM_MAP_MEM_REGIONS 4
#define TRIO_NUM_MAP_SQ_REGIONS 8
#define TRIO_LOG2_NUM_MAP_SQ_REGIONS 3
#define TRIO_LOG2_NUM_SQ_FIFO_ENTRIES 6
#define TRIO_NUM_PUSH_DMA_RINGS 32
#define TRIO_NUM_PULL_DMA_RINGS 32
#endif /* __ARCH_TRIO_CONSTANTS_H__ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_TRIO_DEF_H__
#define __ARCH_TRIO_DEF_H__
#define TRIO_CFG_REGION_ADDR__REG_SHIFT 0
#define TRIO_CFG_REGION_ADDR__INTFC_SHIFT 16
#define TRIO_CFG_REGION_ADDR__INTFC_VAL_TRIO 0x0
#define TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE 0x1
#define TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD 0x2
#define TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED 0x3
#define TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT 18
#define TRIO_CFG_REGION_ADDR__PROT_SHIFT 20
#define TRIO_PIO_REGIONS_ADDR__REGION_SHIFT 32
#define TRIO_MAP_MEM_REG_INT0 0x1000000000
#define TRIO_MAP_MEM_REG_INT1 0x1000000008
#define TRIO_MAP_MEM_REG_INT2 0x1000000010
#define TRIO_MAP_MEM_REG_INT3 0x1000000018
#define TRIO_MAP_MEM_REG_INT4 0x1000000020
#define TRIO_MAP_MEM_REG_INT5 0x1000000028
#define TRIO_MAP_MEM_REG_INT6 0x1000000030
#define TRIO_MAP_MEM_REG_INT7 0x1000000038
#define TRIO_MAP_MEM_LIM__ADDR_SHIFT 12
#define TRIO_MAP_MEM_SETUP__ORDER_MODE_VAL_UNORDERED 0x0
#define TRIO_MAP_MEM_SETUP__ORDER_MODE_VAL_STRICT 0x1
#define TRIO_MAP_MEM_SETUP__ORDER_MODE_VAL_REL_ORD 0x2
#define TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT 30
#endif /* !defined(__ARCH_TRIO_DEF_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_TRIO_PCIE_INTFC_H__
#define __ARCH_TRIO_PCIE_INTFC_H__
#include <arch/abi.h>
#include <arch/trio_pcie_intfc_def.h>
#ifndef __ASSEMBLER__
/*
* Port Configuration.
* Configuration of the PCIe Port
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Provides the state of the strapping pins for this port. */
uint_reg_t strap_state : 3;
/* Reserved. */
uint_reg_t __reserved_0 : 1;
/*
* When 1, the device type will be overridden using OVD_DEV_TYPE_VAL.
* When 0, the device type is determined based on the STRAP_STATE.
*/
uint_reg_t ovd_dev_type : 1;
/* Provides the device type when OVD_DEV_TYPE is 1. */
uint_reg_t ovd_dev_type_val : 4;
/* Determines how link is trained. */
uint_reg_t train_mode : 2;
/* Reserved. */
uint_reg_t __reserved_1 : 1;
/*
* For PCIe, used to flip physical RX lanes that were not properly wired.
* This is not the same as lane reversal which is handled automatically
* during link training. When 0, RX Lane0 must be wired to the link
* partner (either to its Lane0 or it's LaneN). When RX_LANE_FLIP is 1,
* the highest numbered lane for this port becomes Lane0 and Lane0 does
* NOT have to be wired to the link partner.
*/
uint_reg_t rx_lane_flip : 1;
/*
* For PCIe, used to flip physical TX lanes that were not properly wired.
* This is not the same as lane reversal which is handled automatically
* during link training. When 0, TX Lane0 must be wired to the link
* partner (either to its Lane0 or it's LaneN). When TX_LANE_FLIP is 1,
* the highest numbered lane for this port becomes Lane0 and Lane0 does
* NOT have to be wired to the link partner.
*/
uint_reg_t tx_lane_flip : 1;
/*
* For StreamIO port, configures the width of the port when TRAIN_MODE is
* not STRAP.
*/
uint_reg_t stream_width : 2;
/*
* For StreamIO port, configures the rate of the port when TRAIN_MODE is
* not STRAP.
*/
uint_reg_t stream_rate : 2;
/* Reserved. */
uint_reg_t __reserved_2 : 46;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_2 : 46;
uint_reg_t stream_rate : 2;
uint_reg_t stream_width : 2;
uint_reg_t tx_lane_flip : 1;
uint_reg_t rx_lane_flip : 1;
uint_reg_t __reserved_1 : 1;
uint_reg_t train_mode : 2;
uint_reg_t ovd_dev_type_val : 4;
uint_reg_t ovd_dev_type : 1;
uint_reg_t __reserved_0 : 1;
uint_reg_t strap_state : 3;
#endif
};
uint_reg_t word;
} TRIO_PCIE_INTFC_PORT_CONFIG_t;
/*
* Port Status.
* Status of the PCIe Port. This register applies to the StreamIO port when
* StreamIO is enabled.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/*
* Indicates the DL state of the port. When 1, the port is up and ready
* to receive traffic.
*/
uint_reg_t dl_up : 1;
/*
* Indicates the number of times the link has gone down. Clears on read.
*/
uint_reg_t dl_down_cnt : 7;
/* Indicates the SERDES PLL has spun up and is providing a valid clock. */
uint_reg_t clock_ready : 1;
/* Reserved. */
uint_reg_t __reserved_0 : 7;
/* Device revision ID. */
uint_reg_t device_rev : 8;
/* Link state (PCIe). */
uint_reg_t ltssm_state : 6;
/* Link power management state (PCIe). */
uint_reg_t pm_state : 3;
/* Reserved. */
uint_reg_t __reserved_1 : 31;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_1 : 31;
uint_reg_t pm_state : 3;
uint_reg_t ltssm_state : 6;
uint_reg_t device_rev : 8;
uint_reg_t __reserved_0 : 7;
uint_reg_t clock_ready : 1;
uint_reg_t dl_down_cnt : 7;
uint_reg_t dl_up : 1;
#endif
};
uint_reg_t word;
} TRIO_PCIE_INTFC_PORT_STATUS_t;
/*
* Transmit FIFO Control.
* Contains TX FIFO thresholds. These registers are for diagnostics purposes
* only. Changing these values causes undefined behavior.
*/
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/*
* Almost-Empty level for TX0 data. Typically set to at least
* roundup(38.0*M/N) where N=tclk frequency and M=MAC symbol rate in MHz
* for a x4 port (250MHz).
*/
uint_reg_t tx0_data_ae_lvl : 7;
/* Reserved. */
uint_reg_t __reserved_0 : 1;
/* Almost-Empty level for TX1 data. */
uint_reg_t tx1_data_ae_lvl : 7;
/* Reserved. */
uint_reg_t __reserved_1 : 1;
/* Almost-Full level for TX0 data. */
uint_reg_t tx0_data_af_lvl : 7;
/* Reserved. */
uint_reg_t __reserved_2 : 1;
/* Almost-Full level for TX1 data. */
uint_reg_t tx1_data_af_lvl : 7;
/* Reserved. */
uint_reg_t __reserved_3 : 1;
/* Almost-Full level for TX0 info. */
uint_reg_t tx0_info_af_lvl : 5;
/* Reserved. */
uint_reg_t __reserved_4 : 3;
/* Almost-Full level for TX1 info. */
uint_reg_t tx1_info_af_lvl : 5;
/* Reserved. */
uint_reg_t __reserved_5 : 3;
/*
* This register provides performance adjustment for high bandwidth
* flows. The MAC will assert almost-full to TRIO if non-posted credits
* fall below this level. Note that setting this larger than the initial
* PORT_CREDIT.NPH value will cause READS to never be sent. If the
* initial credit value from the link partner is smaller than this value
* when the link comes up, the value will be reset to the initial credit
* value to prevent lockup.
*/
uint_reg_t min_np_credits : 8;
/*
* This register provides performance adjustment for high bandwidth
* flows. The MAC will assert almost-full to TRIO if posted credits fall
* below this level. Note that setting this larger than the initial
* PORT_CREDIT.PH value will cause WRITES to never be sent. If the
* initial credit value from the link partner is smaller than this value
* when the link comes up, the value will be reset to the initial credit
* value to prevent lockup.
*/
uint_reg_t min_p_credits : 8;
#else /* __BIG_ENDIAN__ */
uint_reg_t min_p_credits : 8;
uint_reg_t min_np_credits : 8;
uint_reg_t __reserved_5 : 3;
uint_reg_t tx1_info_af_lvl : 5;
uint_reg_t __reserved_4 : 3;
uint_reg_t tx0_info_af_lvl : 5;
uint_reg_t __reserved_3 : 1;
uint_reg_t tx1_data_af_lvl : 7;
uint_reg_t __reserved_2 : 1;
uint_reg_t tx0_data_af_lvl : 7;
uint_reg_t __reserved_1 : 1;
uint_reg_t tx1_data_ae_lvl : 7;
uint_reg_t __reserved_0 : 1;
uint_reg_t tx0_data_ae_lvl : 7;
#endif
};
uint_reg_t word;
} TRIO_PCIE_INTFC_TX_FIFO_CTL_t;
#endif /* !defined(__ASSEMBLER__) */
#endif /* !defined(__ARCH_TRIO_PCIE_INTFC_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_TRIO_PCIE_INTFC_DEF_H__
#define __ARCH_TRIO_PCIE_INTFC_DEF_H__
#define TRIO_PCIE_INTFC_MAC_INT_STS 0x0000
#define TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK 0xf000
#define TRIO_PCIE_INTFC_PORT_CONFIG 0x0018
#define TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_DISABLED 0x0
#define TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT 0x1
#define TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC 0x2
#define TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1 0x3
#define TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1 0x4
#define TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_XLINK 0x5
#define TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_STREAM_X1 0x6
#define TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_STREAM_X4 0x7
#define TRIO_PCIE_INTFC_PORT_STATUS 0x0020
#define TRIO_PCIE_INTFC_TX_FIFO_CTL 0x0050
#endif /* !defined(__ARCH_TRIO_PCIE_INTFC_DEF_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_TRIO_PCIE_RC_H__
#define __ARCH_TRIO_PCIE_RC_H__
#include <arch/abi.h>
#include <arch/trio_pcie_rc_def.h>
#ifndef __ASSEMBLER__
/* Device Capabilities Register. */
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/*
* Max_Payload_Size Supported, writablethrough the MAC_STANDARD interface
*/
uint_reg_t mps_sup : 3;
/*
* This field is writable through the MAC_STANDARD interface. However,
* Phantom Function is not supported. Therefore, the application must
* not write any value other than 0x0 to this field.
*/
uint_reg_t phantom_function_supported : 2;
/* This bit is writable through the MAC_STANDARD interface. */
uint_reg_t ext_tag_field_supported : 1;
/* Reserved. */
uint_reg_t __reserved_0 : 3;
/* Endpoint L1 Acceptable Latency Must be 0x0 for non-Endpoint devices. */
uint_reg_t l1_lat : 3;
/*
* Undefined since PCI Express 1.1 (Was Attention Button Present for PCI
* Express 1.0a)
*/
uint_reg_t r1 : 1;
/*
* Undefined since PCI Express 1.1 (Was Attention Indicator Present for
* PCI Express 1.0a)
*/
uint_reg_t r2 : 1;
/*
* Undefined since PCI Express 1.1 (Was Power Indicator Present for PCI
* Express 1.0a)
*/
uint_reg_t r3 : 1;
/*
* Role-Based Error Reporting, writable through the MAC_STANDARD
* interface. Required to be set for device compliant to 1.1 spec and
* later.
*/
uint_reg_t rer : 1;
/* Reserved. */
uint_reg_t __reserved_1 : 2;
/* Captured Slot Power Limit Value Upstream port only. */
uint_reg_t slot_pwr_lim : 8;
/* Captured Slot Power Limit Scale Upstream port only. */
uint_reg_t slot_pwr_scale : 2;
/* Reserved. */
uint_reg_t __reserved_2 : 4;
/* Endpoint L0s Acceptable LatencyMust be 0x0 for non-Endpoint devices. */
uint_reg_t l0s_lat : 1;
/* Reserved. */
uint_reg_t __reserved_3 : 31;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved_3 : 31;
uint_reg_t l0s_lat : 1;
uint_reg_t __reserved_2 : 4;
uint_reg_t slot_pwr_scale : 2;
uint_reg_t slot_pwr_lim : 8;
uint_reg_t __reserved_1 : 2;
uint_reg_t rer : 1;
uint_reg_t r3 : 1;
uint_reg_t r2 : 1;
uint_reg_t r1 : 1;
uint_reg_t l1_lat : 3;
uint_reg_t __reserved_0 : 3;
uint_reg_t ext_tag_field_supported : 1;
uint_reg_t phantom_function_supported : 2;
uint_reg_t mps_sup : 3;
#endif
};
uint_reg_t word;
} TRIO_PCIE_RC_DEVICE_CAP_t;
/* Device Control Register. */
__extension__
typedef union
{
struct
{
#ifndef __BIG_ENDIAN__
/* Correctable Error Reporting Enable */
uint_reg_t cor_err_ena : 1;
/* Non-Fatal Error Reporting Enable */
uint_reg_t nf_err_ena : 1;
/* Fatal Error Reporting Enable */
uint_reg_t fatal_err_ena : 1;
/* Unsupported Request Reporting Enable */
uint_reg_t ur_ena : 1;
/* Relaxed orderring enable */
uint_reg_t ro_ena : 1;
/* Max Payload Size */
uint_reg_t max_payload_size : 3;
/* Extended Tag Field Enable */
uint_reg_t ext_tag : 1;
/* Phantom Function Enable */
uint_reg_t ph_fn_ena : 1;
/* AUX Power PM Enable */
uint_reg_t aux_pm_ena : 1;
/* Enable NoSnoop */
uint_reg_t no_snoop : 1;
/* Max read request size */
uint_reg_t max_read_req_sz : 3;
/* Reserved. */
uint_reg_t __reserved : 49;
#else /* __BIG_ENDIAN__ */
uint_reg_t __reserved : 49;
uint_reg_t max_read_req_sz : 3;
uint_reg_t no_snoop : 1;
uint_reg_t aux_pm_ena : 1;
uint_reg_t ph_fn_ena : 1;
uint_reg_t ext_tag : 1;
uint_reg_t max_payload_size : 3;
uint_reg_t ro_ena : 1;
uint_reg_t ur_ena : 1;
uint_reg_t fatal_err_ena : 1;
uint_reg_t nf_err_ena : 1;
uint_reg_t cor_err_ena : 1;
#endif
};
uint_reg_t word;
} TRIO_PCIE_RC_DEVICE_CONTROL_t;
#endif /* !defined(__ASSEMBLER__) */
#endif /* !defined(__ARCH_TRIO_PCIE_RC_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_TRIO_PCIE_RC_DEF_H__
#define __ARCH_TRIO_PCIE_RC_DEF_H__
#define TRIO_PCIE_RC_DEVICE_CAP 0x0074
#define TRIO_PCIE_RC_DEVICE_CONTROL 0x0078
#define TRIO_PCIE_RC_DEVICE_ID_VEN_ID 0x0000
#define TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT 16
#define TRIO_PCIE_RC_REVISION_ID 0x0008
#endif /* !defined(__ARCH_TRIO_PCIE_RC_DEF_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_TRIO_SHM_H__
#define __ARCH_TRIO_SHM_H__
#include <arch/abi.h>
#include <arch/trio_shm_def.h>
#ifndef __ASSEMBLER__
/**
* TRIO DMA Descriptor.
* The TRIO DMA descriptor is written by software and consumed by hardware.
* It is used to specify the location of transaction data in the IO and Tile
* domains.
*/
__extension__
typedef union
{
struct
{
/* Word 0 */
#ifndef __BIG_ENDIAN__
/** Tile side virtual address. */
int_reg_t va : 42;
/**
* Encoded size of buffer used on push DMA when C=1:
* 0 = 128 bytes
* 1 = 256 bytes
* 2 = 512 bytes
* 3 = 1024 bytes
* 4 = 1664 bytes
* 5 = 4096 bytes
* 6 = 10368 bytes
* 7 = 16384 bytes
*/
uint_reg_t bsz : 3;
/**
* Chaining designation. Always zero for pull DMA
* 0 : Unchained buffer pointer
* 1 : Chained buffer pointer. Next buffer descriptor (e.g. VA) stored
* in 1st 8-bytes in buffer. For chained buffers, first 8-bytes of each
* buffer contain the next buffer descriptor formatted exactly like a PDE
* buffer descriptor. This allows a chained PDE buffer to be sent using
* push DMA.
*/
uint_reg_t c : 1;
/**
* Notification interrupt will be delivered when the transaction has
* completed (all data has been read from or written to the Tile-side
* buffer).
*/
uint_reg_t notif : 1;
/**
* When 0, the XSIZE field specifies the total byte count for the
* transaction. When 1, the XSIZE field is encoded as 2^(N+14) for N in
* {0..6}:
* 0 = 16KB
* 1 = 32KB
* 2 = 64KB
* 3 = 128KB
* 4 = 256KB
* 5 = 512KB
* 6 = 1MB
* All other encodings of the XSIZE field are reserved when SMOD=1
*/
uint_reg_t smod : 1;
/**
* Total number of bytes to move for this transaction. When SMOD=1,
* this field is encoded - see SMOD description.
*/
uint_reg_t xsize : 14;
/** Reserved. */
uint_reg_t __reserved_0 : 1;
/**
* Generation number. Used to indicate a valid descriptor in ring. When
* a new descriptor is written into the ring, software must toggle this
* bit. The net effect is that the GEN bit being written into new
* descriptors toggles each time the ring tail pointer wraps.
*/
uint_reg_t gen : 1;
#else /* __BIG_ENDIAN__ */
uint_reg_t gen : 1;
uint_reg_t __reserved_0 : 1;
uint_reg_t xsize : 14;
uint_reg_t smod : 1;
uint_reg_t notif : 1;
uint_reg_t c : 1;
uint_reg_t bsz : 3;
int_reg_t va : 42;
#endif
/* Word 1 */
#ifndef __BIG_ENDIAN__
/** IO-side address */
uint_reg_t io_address : 64;
#else /* __BIG_ENDIAN__ */
uint_reg_t io_address : 64;
#endif
};
/** Word access */
uint_reg_t words[2];
} TRIO_DMA_DESC_t;
#endif /* !defined(__ASSEMBLER__) */
#endif /* !defined(__ARCH_TRIO_SHM_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_TRIO_SHM_DEF_H__
#define __ARCH_TRIO_SHM_DEF_H__
#endif /* !defined(__ARCH_TRIO_SHM_DEF_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_USB_HOST_H__
#define __ARCH_USB_HOST_H__
#include <arch/abi.h>
#include <arch/usb_host_def.h>
#ifndef __ASSEMBLER__
#endif /* !defined(__ASSEMBLER__) */
#endif /* !defined(__ARCH_USB_HOST_H__) */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* Machine-generated file; do not edit. */
#ifndef __ARCH_USB_HOST_DEF_H__
#define __ARCH_USB_HOST_DEF_H__
#endif /* !defined(__ARCH_USB_HOST_DEF_H__) */
......@@ -9,7 +9,6 @@ header-y += hardwall.h
generic-y += bug.h
generic-y += bugs.h
generic-y += cputime.h
generic-y += device.h
generic-y += div64.h
generic-y += emergency-restart.h
generic-y += errno.h
......
......@@ -27,11 +27,17 @@
#define L2_CACHE_ALIGN(x) (((x)+(L2_CACHE_BYTES-1)) & -L2_CACHE_BYTES)
/*
* TILE-Gx is fully coherent so we don't need to define ARCH_DMA_MINALIGN.
* TILEPro I/O is not always coherent (networking typically uses coherent
* I/O, but PCI traffic does not) and setting ARCH_DMA_MINALIGN to the
* L2 cacheline size helps ensure that kernel heap allocations are aligned.
* TILE-Gx I/O is always coherent when used on hash-for-home pages.
*
* However, it's possible at runtime to request not to use hash-for-home
* for the kernel heap, in which case the kernel will use flush-and-inval
* to manage coherence. As a result, we use L2_CACHE_BYTES for the
* DMA minimum alignment to avoid false sharing in the kernel heap.
*/
#ifndef __tilegx__
#define ARCH_DMA_MINALIGN L2_CACHE_BYTES
#endif
/* use the cache line size for the L2, which is where it counts */
#define SMP_CACHE_BYTES_SHIFT L2_CACHE_SHIFT
......
......@@ -21,4 +21,22 @@
__wsum do_csum(const unsigned char *buff, int len);
#define do_csum do_csum
/*
* Return the sum of all the 16-bit subwords in a long.
* This sums two subwords on a 32-bit machine, and four on 64 bits.
* The implementation does two vector adds to capture any overflow.
*/
static inline unsigned int csum_long(unsigned long x)
{
unsigned long ret;
#ifdef __tilegx__
ret = __insn_v2sadu(x, 0);
ret = __insn_v2sadu(ret, 0);
#else
ret = __insn_sadh_u(x, 0);
ret = __insn_sadh_u(ret, 0);
#endif
return ret;
}
#endif /* _ASM_TILE_CHECKSUM_H */
......@@ -10,24 +10,24 @@
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*
* The hypervisor's memory controller profiling infrastructure allows
* the programmer to find out what fraction of the available memory
* bandwidth is being consumed at each memory controller. The
* profiler provides start, stop, and clear operations to allows
* profiling over a specific time window, as well as an interface for
* reading the most recent profile values.
*
* This header declares IOCTL codes necessary to control memprof.
* Arch specific extensions to struct device
*/
#ifndef _ASM_TILE_MEMPROF_H
#define _ASM_TILE_MEMPROF_H
#include <linux/ioctl.h>
#ifndef _ASM_TILE_DEVICE_H
#define _ASM_TILE_DEVICE_H
struct dev_archdata {
/* DMA operations on that device */
struct dma_map_ops *dma_ops;
/* Offset of the DMA address from the PA. */
dma_addr_t dma_offset;
/* Highest DMA address that can be generated by this device. */
dma_addr_t max_direct_dma_addr;
};
#define MEMPROF_IOCTL_TYPE 0xB4
#define MEMPROF_IOCTL_START _IO(MEMPROF_IOCTL_TYPE, 0)
#define MEMPROF_IOCTL_STOP _IO(MEMPROF_IOCTL_TYPE, 1)
#define MEMPROF_IOCTL_CLEAR _IO(MEMPROF_IOCTL_TYPE, 2)
struct pdev_archdata {
};
#endif /* _ASM_TILE_MEMPROF_H */
#endif /* _ASM_TILE_DEVICE_H */
......@@ -20,69 +20,80 @@
#include <linux/cache.h>
#include <linux/io.h>
/*
* Note that on x86 and powerpc, there is a "struct dma_mapping_ops"
* that is used for all the DMA operations. For now, we don't have an
* equivalent on tile, because we only have a single way of doing DMA.
* (Tilera bug 7994 to use dma_mapping_ops.)
*/
extern struct dma_map_ops *tile_dma_map_ops;
extern struct dma_map_ops *gx_pci_dma_map_ops;
extern struct dma_map_ops *gx_legacy_pci_dma_map_ops;
static inline struct dma_map_ops *get_dma_ops(struct device *dev)
{
if (dev && dev->archdata.dma_ops)
return dev->archdata.dma_ops;
else
return tile_dma_map_ops;
}
static inline dma_addr_t get_dma_offset(struct device *dev)
{
return dev->archdata.dma_offset;
}
static inline void set_dma_offset(struct device *dev, dma_addr_t off)
{
dev->archdata.dma_offset = off;
}
static inline dma_addr_t phys_to_dma(struct device *dev, phys_addr_t paddr)
{
return paddr + get_dma_offset(dev);
}
static inline phys_addr_t dma_to_phys(struct device *dev, dma_addr_t daddr)
{
return daddr - get_dma_offset(dev);
}
static inline void dma_mark_clean(void *addr, size_t size) {}
#include <asm-generic/dma-mapping-common.h>
static inline void set_dma_ops(struct device *dev, struct dma_map_ops *ops)
{
dev->archdata.dma_ops = ops;
}
static inline bool dma_capable(struct device *dev, dma_addr_t addr, size_t size)
{
if (!dev->dma_mask)
return 0;
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_coherent(d, s, h, f)
#define dma_free_noncoherent(d, s, v, h) dma_free_coherent(d, s, v, h)
extern dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
enum dma_data_direction);
extern void dma_unmap_single(struct device *dev, dma_addr_t dma_addr,
size_t size, enum dma_data_direction);
extern int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
enum dma_data_direction);
extern void dma_unmap_sg(struct device *dev, struct scatterlist *sg,
int nhwentries, enum dma_data_direction);
extern dma_addr_t dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction);
extern void dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction);
extern void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction);
extern void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
int nelems, enum dma_data_direction);
void *dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag);
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle);
extern void dma_sync_single_for_cpu(struct device *, dma_addr_t, size_t,
enum dma_data_direction);
extern void dma_sync_single_for_device(struct device *, dma_addr_t,
size_t, enum dma_data_direction);
extern void dma_sync_single_range_for_cpu(struct device *, dma_addr_t,
unsigned long offset, size_t,
enum dma_data_direction);
extern void dma_sync_single_range_for_device(struct device *, dma_addr_t,
unsigned long offset, size_t,
enum dma_data_direction);
extern void dma_cache_sync(struct device *dev, void *vaddr, size_t,
enum dma_data_direction);
return addr + size - 1 <= *dev->dma_mask;
}
static inline int
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
return get_dma_ops(dev)->mapping_error(dev, dma_addr);
}
static inline int
dma_supported(struct device *dev, u64 mask)
{
return 1;
return get_dma_ops(dev)->dma_supported(dev, mask);
}
static inline int
dma_set_mask(struct device *dev, u64 mask)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
/* Handle legacy PCI devices with limited memory addressability. */
if ((dma_ops == gx_pci_dma_map_ops) && (mask <= DMA_BIT_MASK(32))) {
set_dma_ops(dev, gx_legacy_pci_dma_map_ops);
set_dma_offset(dev, 0);
if (mask > dev->archdata.max_direct_dma_addr)
mask = dev->archdata.max_direct_dma_addr;
}
if (!dev->dma_mask || !dma_supported(dev, mask))
return -EIO;
......@@ -91,4 +102,43 @@ dma_set_mask(struct device *dev, u64 mask)
return 0;
}
static inline void *dma_alloc_attrs(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t flag,
struct dma_attrs *attrs)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
void *cpu_addr;
cpu_addr = dma_ops->alloc(dev, size, dma_handle, flag, attrs);
debug_dma_alloc_coherent(dev, size, *dma_handle, cpu_addr);
return cpu_addr;
}
static inline void dma_free_attrs(struct device *dev, size_t size,
void *cpu_addr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
debug_dma_free_coherent(dev, size, cpu_addr, dma_handle);
dma_ops->free(dev, size, cpu_addr, dma_handle, attrs);
}
#define dma_alloc_coherent(d, s, h, f) dma_alloc_attrs(d, s, h, f, NULL)
#define dma_alloc_noncoherent(d, s, h, f) dma_alloc_attrs(d, s, h, f, NULL)
#define dma_free_coherent(d, s, v, h) dma_free_attrs(d, s, v, h, NULL)
#define dma_free_noncoherent(d, s, v, h) dma_free_attrs(d, s, v, h, NULL)
/*
* dma_alloc_noncoherent() is #defined to return coherent memory,
* so there's no need to do any flushing here.
*/
static inline void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
{
}
#endif /* _ASM_TILE_DMA_MAPPING_H */
......@@ -45,14 +45,22 @@
*
* TLB entries of such buffers will not be flushed across
* task switches.
*
* We don't bother with a FIX_HOLE since above the fixmaps
* is unmapped memory in any case.
*/
enum fixed_addresses {
#ifdef __tilegx__
/*
* TILEPro has unmapped memory above so the hole isn't needed,
* and in any case the hole pushes us over a single 16MB pmd.
*/
FIX_HOLE,
#endif
#ifdef CONFIG_HIGHMEM
FIX_KMAP_BEGIN, /* reserved pte's for temporary kernel mappings */
FIX_KMAP_END = FIX_KMAP_BEGIN+(KM_TYPE_NR*NR_CPUS)-1,
#endif
#ifdef __tilegx__ /* see homecache.c */
FIX_HOMECACHE_BEGIN,
FIX_HOMECACHE_END = FIX_HOMECACHE_BEGIN+(NR_CPUS)-1,
#endif
__end_of_permanent_fixed_addresses,
......
......@@ -79,10 +79,17 @@ extern void homecache_change_page_home(struct page *, int order, int home);
/*
* Flush a page out of whatever cache(s) it is in.
* This is more than just finv, since it properly handles waiting
* for the data to reach memory on tilepro, but it can be quite
* heavyweight, particularly on hash-for-home memory.
* for the data to reach memory, but it can be quite
* heavyweight, particularly on incoherent or immutable memory.
*/
extern void homecache_flush_cache(struct page *, int order);
extern void homecache_finv_page(struct page *);
/*
* Flush a page out of the specified home cache.
* Note that the specified home need not be the actual home of the page,
* as for example might be the case when coordinating with I/O devices.
*/
extern void homecache_finv_map_page(struct page *, int home);
/*
* Allocate a page with the given GFP flags, home, and optionally
......@@ -104,10 +111,10 @@ extern struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask,
* routines use homecache_change_page_home() to reset the home
* back to the default before returning the page to the allocator.
*/
void __homecache_free_pages(struct page *, unsigned int order);
void homecache_free_pages(unsigned long addr, unsigned int order);
#define homecache_free_page(page) \
homecache_free_pages((page), 0)
#define __homecache_free_page(page) __homecache_free_pages((page), 0)
#define homecache_free_page(page) homecache_free_pages((page), 0)
/*
......
......@@ -62,6 +62,92 @@ extern void iounmap(volatile void __iomem *addr);
#define mm_ptov(addr) ((void *)phys_to_virt(addr))
#define mm_vtop(addr) ((unsigned long)virt_to_phys(addr))
#if CHIP_HAS_MMIO()
/*
* We use inline assembly to guarantee that the compiler does not
* split an access into multiple byte-sized accesses as it might
* sometimes do if a register data structure is marked "packed".
* Obviously on tile we can't tolerate such an access being
* actually unaligned, but we want to avoid the case where the
* compiler conservatively would generate multiple accesses even
* for an aligned read or write.
*/
static inline u8 __raw_readb(const volatile void __iomem *addr)
{
return *(const volatile u8 __force *)addr;
}
static inline u16 __raw_readw(const volatile void __iomem *addr)
{
u16 ret;
asm volatile("ld2u %0, %1" : "=r" (ret) : "r" (addr));
barrier();
return le16_to_cpu(ret);
}
static inline u32 __raw_readl(const volatile void __iomem *addr)
{
u32 ret;
/* Sign-extend to conform to u32 ABI sign-extension convention. */
asm volatile("ld4s %0, %1" : "=r" (ret) : "r" (addr));
barrier();
return le32_to_cpu(ret);
}
static inline u64 __raw_readq(const volatile void __iomem *addr)
{
u64 ret;
asm volatile("ld %0, %1" : "=r" (ret) : "r" (addr));
barrier();
return le64_to_cpu(ret);
}
static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
{
*(volatile u8 __force *)addr = val;
}
static inline void __raw_writew(u16 val, volatile void __iomem *addr)
{
asm volatile("st2 %0, %1" :: "r" (addr), "r" (cpu_to_le16(val)));
}
static inline void __raw_writel(u32 val, volatile void __iomem *addr)
{
asm volatile("st4 %0, %1" :: "r" (addr), "r" (cpu_to_le32(val)));
}
static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
{
asm volatile("st %0, %1" :: "r" (addr), "r" (cpu_to_le64(val)));
}
/*
* The on-chip I/O hardware on tilegx is configured with VA=PA for the
* kernel's PA range. The low-level APIs and field names use "va" and
* "void *" nomenclature, to be consistent with the general notion
* that the addresses in question are virtualizable, but in the kernel
* context we are actually manipulating PA values. (In other contexts,
* e.g. access from user space, we do in fact use real virtual addresses
* in the va fields.) To allow readers of the code to understand what's
* happening, we direct their attention to this comment by using the
* following two functions that just duplicate __va() and __pa().
*/
typedef unsigned long tile_io_addr_t;
static inline tile_io_addr_t va_to_tile_io_addr(void *va)
{
BUILD_BUG_ON(sizeof(phys_addr_t) != sizeof(tile_io_addr_t));
return __pa(va);
}
static inline void *tile_io_addr_to_va(tile_io_addr_t tile_io_addr)
{
return __va(tile_io_addr);
}
#else /* CHIP_HAS_MMIO() */
#ifdef CONFIG_PCI
extern u8 _tile_readb(unsigned long addr);
......@@ -73,10 +159,19 @@ extern void _tile_writew(u16 val, unsigned long addr);
extern void _tile_writel(u32 val, unsigned long addr);
extern void _tile_writeq(u64 val, unsigned long addr);
#else
#define __raw_readb(addr) _tile_readb((unsigned long)addr)
#define __raw_readw(addr) _tile_readw((unsigned long)addr)
#define __raw_readl(addr) _tile_readl((unsigned long)addr)
#define __raw_readq(addr) _tile_readq((unsigned long)addr)
#define __raw_writeb(val, addr) _tile_writeb(val, (unsigned long)addr)
#define __raw_writew(val, addr) _tile_writew(val, (unsigned long)addr)
#define __raw_writel(val, addr) _tile_writel(val, (unsigned long)addr)
#define __raw_writeq(val, addr) _tile_writeq(val, (unsigned long)addr)
#else /* CONFIG_PCI */
/*
* The Tile architecture does not support IOMEM unless PCI is enabled.
* The tilepro architecture does not support IOMEM unless PCI is enabled.
* Unfortunately we can't yet simply not declare these methods,
* since some generic code that compiles into the kernel, but
* we never run, uses them unconditionally.
......@@ -88,65 +183,58 @@ static inline int iomem_panic(void)
return 0;
}
static inline u8 _tile_readb(unsigned long addr)
static inline u8 readb(unsigned long addr)
{
return iomem_panic();
}
static inline u16 _tile_readw(unsigned long addr)
static inline u16 _readw(unsigned long addr)
{
return iomem_panic();
}
static inline u32 _tile_readl(unsigned long addr)
static inline u32 readl(unsigned long addr)
{
return iomem_panic();
}
static inline u64 _tile_readq(unsigned long addr)
static inline u64 readq(unsigned long addr)
{
return iomem_panic();
}
static inline void _tile_writeb(u8 val, unsigned long addr)
static inline void writeb(u8 val, unsigned long addr)
{
iomem_panic();
}
static inline void _tile_writew(u16 val, unsigned long addr)
static inline void writew(u16 val, unsigned long addr)
{
iomem_panic();
}
static inline void _tile_writel(u32 val, unsigned long addr)
static inline void writel(u32 val, unsigned long addr)
{
iomem_panic();
}
static inline void _tile_writeq(u64 val, unsigned long addr)
static inline void writeq(u64 val, unsigned long addr)
{
iomem_panic();
}
#endif
#endif /* CONFIG_PCI */
#endif /* CHIP_HAS_MMIO() */
#define readb(addr) _tile_readb((unsigned long)addr)
#define readw(addr) _tile_readw((unsigned long)addr)
#define readl(addr) _tile_readl((unsigned long)addr)
#define readq(addr) _tile_readq((unsigned long)addr)
#define writeb(val, addr) _tile_writeb(val, (unsigned long)addr)
#define writew(val, addr) _tile_writew(val, (unsigned long)addr)
#define writel(val, addr) _tile_writel(val, (unsigned long)addr)
#define writeq(val, addr) _tile_writeq(val, (unsigned long)addr)
#define __raw_readb readb
#define __raw_readw readw
#define __raw_readl readl
#define __raw_readq readq
#define __raw_writeb writeb
#define __raw_writew writew
#define __raw_writel writel
#define __raw_writeq writeq
#define readb __raw_readb
#define readw __raw_readw
#define readl __raw_readl
#define readq __raw_readq
#define writeb __raw_writeb
#define writew __raw_writew
#define writel __raw_writel
#define writeq __raw_writeq
#define readb_relaxed readb
#define readw_relaxed readw
......
......@@ -174,7 +174,9 @@ static inline __attribute_const__ int get_order(unsigned long size)
#define MEM_LOW_END (HALF_VA_SPACE - 1) /* low half */
#define MEM_HIGH_START (-HALF_VA_SPACE) /* high half */
#define PAGE_OFFSET MEM_HIGH_START
#define _VMALLOC_START _AC(0xfffffff500000000, UL) /* 4 GB */
#define FIXADDR_BASE _AC(0xfffffff400000000, UL) /* 4 GB */
#define FIXADDR_TOP _AC(0xfffffff500000000, UL) /* 4 GB */
#define _VMALLOC_START FIXADDR_TOP
#define HUGE_VMAP_BASE _AC(0xfffffff600000000, UL) /* 4 GB */
#define MEM_SV_START _AC(0xfffffff700000000, UL) /* 256 MB */
#define MEM_SV_INTRPT MEM_SV_START
......@@ -185,9 +187,6 @@ static inline __attribute_const__ int get_order(unsigned long size)
/* Highest DTLB address we will use */
#define KERNEL_HIGH_VADDR MEM_SV_START
/* Since we don't currently provide any fixmaps, we use an impossible VA. */
#define FIXADDR_TOP MEM_HV_START
#else /* !__tilegx__ */
/*
......
......@@ -15,9 +15,13 @@
#ifndef _ASM_TILE_PCI_H
#define _ASM_TILE_PCI_H
#include <linux/dma-mapping.h>
#include <linux/pci.h>
#include <linux/numa.h>
#include <asm-generic/pci_iomap.h>
#ifndef __tilegx__
/*
* Structure of a PCI controller (host bridge)
*/
......@@ -40,6 +44,16 @@ struct pci_controller {
struct resource mem_resources[3];
};
/*
* This flag tells if the platform is TILEmpower that needs
* special configuration for the PLX switch chip.
*/
extern int tile_plx_gen1;
static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
#define TILE_NUM_PCIE 2
/*
* The hypervisor maps the entirety of CPA-space as bus addresses, so
* bus addresses are physical addresses. The networking and block
......@@ -47,15 +61,135 @@ struct pci_controller {
*/
#define PCI_DMA_BUS_IS_PHYS 1
/* generic pci stuff */
#include <asm-generic/pci.h>
#else
#include <asm/page.h>
#include <gxio/trio.h>
/**
* We reserve the hugepage-size address range at the top of the 64-bit address
* space to serve as the PCI window, emulating the BAR0 space of an endpoint
* device. This window is used by the chip-to-chip applications running on
* the RC node. The reason for carving out this window is that Mem-Maps that
* back up this window will not overlap with those that map the real physical
* memory.
*/
#define PCIE_HOST_BAR0_SIZE HPAGE_SIZE
#define PCIE_HOST_BAR0_START HPAGE_MASK
/**
* The first PAGE_SIZE of the above "BAR" window is mapped to the
* gxpci_host_regs structure.
*/
#define PCIE_HOST_REGS_SIZE PAGE_SIZE
/*
* This is the PCI address where the Mem-Map interrupt regions start.
* We use the 2nd to the last huge page of the 64-bit address space.
* The last huge page is used for the rootcomplex "bar", for C2C purpose.
*/
#define MEM_MAP_INTR_REGIONS_BASE (HPAGE_MASK - HPAGE_SIZE)
/*
* Each Mem-Map interrupt region occupies 4KB.
*/
#define MEM_MAP_INTR_REGION_SIZE (1 << TRIO_MAP_MEM_LIM__ADDR_SHIFT)
/*
* Allocate the PCI BAR window right below 4GB.
*/
#define TILE_PCI_BAR_WINDOW_TOP (1ULL << 32)
/*
* Allocate 1GB for the PCI BAR window.
*/
#define TILE_PCI_BAR_WINDOW_SIZE (1 << 30)
/*
* This is the highest bus address targeting the host memory that
* can be generated by legacy PCI devices with 32-bit or less
* DMA capability, dictated by the BAR window size and location.
*/
#define TILE_PCI_MAX_DIRECT_DMA_ADDRESS \
(TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE - 1)
/*
* We shift the PCI bus range for all the physical memory up by the whole PA
* range. The corresponding CPA of an incoming PCI request will be the PCI
* address minus TILE_PCI_MEM_MAP_BASE_OFFSET. This also implies
* that the 64-bit capable devices will be given DMA addresses as
* the CPA plus TILE_PCI_MEM_MAP_BASE_OFFSET. To support 32-bit
* devices, we create a separate map region that handles the low
* 4GB.
*/
#define TILE_PCI_MEM_MAP_BASE_OFFSET (1ULL << CHIP_PA_WIDTH())
/*
* Start of the PCI memory resource, which starts at the end of the
* maximum system physical RAM address.
*/
#define TILE_PCI_MEM_START (1ULL << CHIP_PA_WIDTH())
/*
* Structure of a PCI controller (host bridge) on Gx.
*/
struct pci_controller {
/* Pointer back to the TRIO that this PCIe port is connected to. */
gxio_trio_context_t *trio;
int mac; /* PCIe mac index on the TRIO shim */
int trio_index; /* Index of TRIO shim that contains the MAC. */
int pio_mem_index; /* PIO region index for memory access */
/*
* Mem-Map regions for all the memory controllers so that Linux can
* map all of its physical memory space to the PCI bus.
*/
int mem_maps[MAX_NUMNODES];
int index; /* PCI domain number */
struct pci_bus *root_bus;
/* PCI memory space resource for this controller. */
struct resource mem_space;
char mem_space_name[32];
uint64_t mem_offset; /* cpu->bus memory mapping offset. */
int first_busno;
struct pci_ops *ops;
/* Table that maps the INTx numbers to Linux irq numbers. */
int irq_intx_table[4];
/* Address ranges that are routed to this controller/bridge. */
struct resource mem_resources[3];
};
extern struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
extern gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
extern void pci_iounmap(struct pci_dev *dev, void __iomem *);
/*
* The PCI address space does not equal the physical memory address
* space (we have an IOMMU). The IDE and SCSI device layers use this
* boolean for bounce buffer decisions.
*/
#define PCI_DMA_BUS_IS_PHYS 0
#endif /* __tilegx__ */
int __init tile_pci_init(void);
int __init pcibios_init(void);
static inline void pci_iounmap(struct pci_dev *dev, void __iomem *addr) {}
void __devinit pcibios_fixup_bus(struct pci_bus *bus);
#define TILE_NUM_PCIE 2
#define pci_domain_nr(bus) (((struct pci_controller *)(bus)->sysdata)->index)
/*
......@@ -79,19 +213,10 @@ static inline int pcibios_assign_all_busses(void)
#define PCIBIOS_MIN_MEM 0
#define PCIBIOS_MIN_IO 0
/*
* This flag tells if the platform is TILEmpower that needs
* special configuration for the PLX switch chip.
*/
extern int tile_plx_gen1;
/* Use any cpu for PCI. */
#define cpumask_of_pcibus(bus) cpu_online_mask
/* implement the pci_ DMA API in terms of the generic device dma_ one */
#include <asm-generic/pci-dma-compat.h>
/* generic pci stuff */
#include <asm-generic/pci.h>
#endif /* _ASM_TILE_PCI_H */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _GXIO_COMMON_H_
#define _GXIO_COMMON_H_
/*
* Routines shared between the various GXIO device components.
*/
#include <hv/iorpc.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/io.h>
/* Define the standard gxio MMIO functions using kernel functions. */
#define __gxio_mmio_read8(addr) readb(addr)
#define __gxio_mmio_read16(addr) readw(addr)
#define __gxio_mmio_read32(addr) readl(addr)
#define __gxio_mmio_read64(addr) readq(addr)
#define __gxio_mmio_write8(addr, val) writeb((val), (addr))
#define __gxio_mmio_write16(addr, val) writew((val), (addr))
#define __gxio_mmio_write32(addr, val) writel((val), (addr))
#define __gxio_mmio_write64(addr, val) writeq((val), (addr))
#define __gxio_mmio_read(addr) __gxio_mmio_read64(addr)
#define __gxio_mmio_write(addr, val) __gxio_mmio_write64((addr), (val))
#endif /* !_GXIO_COMMON_H_ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _GXIO_DMA_QUEUE_H_
#define _GXIO_DMA_QUEUE_H_
/*
* DMA queue management APIs shared between TRIO and mPIPE.
*/
#include "common.h"
/* The credit counter lives in the high 32 bits. */
#define DMA_QUEUE_CREDIT_SHIFT 32
/*
* State object that tracks a DMA queue's head and tail indices, as
* well as the number of commands posted and completed. The
* structure is accessed via a thread-safe, lock-free algorithm.
*/
typedef struct {
/*
* Address of a MPIPE_EDMA_POST_REGION_VAL_t,
* TRIO_PUSH_DMA_REGION_VAL_t, or TRIO_PULL_DMA_REGION_VAL_t
* register. These register have identical encodings and provide
* information about how many commands have been processed.
*/
void *post_region_addr;
/*
* A lazily-updated count of how many edescs the hardware has
* completed.
*/
uint64_t hw_complete_count __attribute__ ((aligned(64)));
/*
* High 32 bits are a count of available egress command credits,
* low 24 bits are the next egress "slot".
*/
int64_t credits_and_next_index;
} __gxio_dma_queue_t;
/* Initialize a dma queue. */
extern void __gxio_dma_queue_init(__gxio_dma_queue_t *dma_queue,
void *post_region_addr,
unsigned int num_entries);
/*
* Update the "credits_and_next_index" and "hw_complete_count" fields
* based on pending hardware completions. Note that some other thread
* may have already done this and, importantly, may still be in the
* process of updating "credits_and_next_index".
*/
extern void __gxio_dma_queue_update_credits(__gxio_dma_queue_t *dma_queue);
/* Wait for credits to become available. */
extern int64_t __gxio_dma_queue_wait_for_credits(__gxio_dma_queue_t *dma_queue,
int64_t modifier);
/* Reserve slots in the queue, optionally waiting for slots to become
* available, and optionally returning a "completion_slot" suitable for
* direct comparison to "hw_complete_count".
*/
static inline int64_t __gxio_dma_queue_reserve(__gxio_dma_queue_t *dma_queue,
unsigned int num, bool wait,
bool completion)
{
uint64_t slot;
/*
* Try to reserve 'num' egress command slots. We do this by
* constructing a constant that subtracts N credits and adds N to
* the index, and using fetchaddgez to only apply it if the credits
* count doesn't go negative.
*/
int64_t modifier = (((int64_t)(-num)) << DMA_QUEUE_CREDIT_SHIFT) | num;
int64_t old =
__insn_fetchaddgez(&dma_queue->credits_and_next_index,
modifier);
if (unlikely(old + modifier < 0)) {
/*
* We're out of credits. Try once to get more by checking for
* completed egress commands. If that fails, wait or fail.
*/
__gxio_dma_queue_update_credits(dma_queue);
old = __insn_fetchaddgez(&dma_queue->credits_and_next_index,
modifier);
if (old + modifier < 0) {
if (wait)
old = __gxio_dma_queue_wait_for_credits
(dma_queue, modifier);
else
return GXIO_ERR_DMA_CREDITS;
}
}
/* The bottom 24 bits of old encode the "slot". */
slot = (old & 0xffffff);
if (completion) {
/*
* A "completion_slot" is a "slot" which can be compared to
* "hw_complete_count" at any time in the future. To convert
* "slot" into a "completion_slot", we access "hw_complete_count"
* once (knowing that we have reserved a slot, and thus, it will
* be "basically" accurate), and combine its high 40 bits with
* the 24 bit "slot", and handle "wrapping" by adding "1 << 24"
* if the result is LESS than "hw_complete_count".
*/
uint64_t complete;
complete = ACCESS_ONCE(dma_queue->hw_complete_count);
slot |= (complete & 0xffffffffff000000);
if (slot < complete)
slot += 0x1000000;
}
/*
* If any of our slots mod 256 were equivalent to 0, go ahead and
* collect some egress credits, and update "hw_complete_count", and
* make sure the index doesn't overflow into the credits.
*/
if (unlikely(((old + num) & 0xff) < num)) {
__gxio_dma_queue_update_credits(dma_queue);
/* Make sure the index doesn't overflow into the credits. */
#ifdef __BIG_ENDIAN__
*(((uint8_t *)&dma_queue->credits_and_next_index) + 4) = 0;
#else
*(((uint8_t *)&dma_queue->credits_and_next_index) + 3) = 0;
#endif
}
return slot;
}
/* Non-inlinable "__gxio_dma_queue_reserve(..., true)". */
extern int64_t __gxio_dma_queue_reserve_aux(__gxio_dma_queue_t *dma_queue,
unsigned int num, int wait);
/* Check whether a particular "completion slot" has completed.
*
* Note that this function requires a "completion slot", and thus
* cannot be used with the result of any "reserve_fast" function.
*/
extern int __gxio_dma_queue_is_complete(__gxio_dma_queue_t *dma_queue,
int64_t completion_slot, int update);
#endif /* !_GXIO_DMA_QUEUE_H_ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#ifndef __IORPC_LINUX_RPC_H__
#define __IORPC_LINUX_RPC_H__
#include <hv/iorpc.h>
#include <linux/string.h>
#include <linux/module.h>
#include <asm/pgtable.h>
#define IORPC_OP_ARM_POLLFD IORPC_OPCODE(IORPC_FORMAT_KERNEL_POLLFD, 0x9000)
#define IORPC_OP_CLOSE_POLLFD IORPC_OPCODE(IORPC_FORMAT_KERNEL_POLLFD, 0x9001)
#define IORPC_OP_GET_MMIO_BASE IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8000)
#define IORPC_OP_CHECK_MMIO_OFFSET IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8001)
int __iorpc_arm_pollfd(int fd, int pollfd_cookie);
int __iorpc_close_pollfd(int fd, int pollfd_cookie);
int __iorpc_get_mmio_base(int fd, HV_PTE *base);
int __iorpc_check_mmio_offset(int fd, unsigned long offset, unsigned long size);
#endif /* !__IORPC_LINUX_RPC_H__ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#ifndef __GXIO_MPIPE_LINUX_RPC_H__
#define __GXIO_MPIPE_LINUX_RPC_H__
#include <hv/iorpc.h>
#include <hv/drv_mpipe_intf.h>
#include <asm/page.h>
#include <gxio/kiorpc.h>
#include <gxio/mpipe.h>
#include <linux/string.h>
#include <linux/module.h>
#include <asm/pgtable.h>
#define GXIO_MPIPE_OP_ALLOC_BUFFER_STACKS IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1200)
#define GXIO_MPIPE_OP_INIT_BUFFER_STACK_AUX IORPC_OPCODE(IORPC_FORMAT_KERNEL_MEM, 0x1201)
#define GXIO_MPIPE_OP_ALLOC_NOTIF_RINGS IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1203)
#define GXIO_MPIPE_OP_INIT_NOTIF_RING_AUX IORPC_OPCODE(IORPC_FORMAT_KERNEL_MEM, 0x1204)
#define GXIO_MPIPE_OP_REQUEST_NOTIF_RING_INTERRUPT IORPC_OPCODE(IORPC_FORMAT_KERNEL_INTERRUPT, 0x1205)
#define GXIO_MPIPE_OP_ENABLE_NOTIF_RING_INTERRUPT IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1206)
#define GXIO_MPIPE_OP_ALLOC_NOTIF_GROUPS IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1207)
#define GXIO_MPIPE_OP_INIT_NOTIF_GROUP IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1208)
#define GXIO_MPIPE_OP_ALLOC_BUCKETS IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1209)
#define GXIO_MPIPE_OP_INIT_BUCKET IORPC_OPCODE(IORPC_FORMAT_NONE, 0x120a)
#define GXIO_MPIPE_OP_ALLOC_EDMA_RINGS IORPC_OPCODE(IORPC_FORMAT_NONE, 0x120b)
#define GXIO_MPIPE_OP_INIT_EDMA_RING_AUX IORPC_OPCODE(IORPC_FORMAT_KERNEL_MEM, 0x120c)
#define GXIO_MPIPE_OP_COMMIT_RULES IORPC_OPCODE(IORPC_FORMAT_NONE, 0x120f)
#define GXIO_MPIPE_OP_REGISTER_CLIENT_MEMORY IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x1210)
#define GXIO_MPIPE_OP_LINK_OPEN_AUX IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1211)
#define GXIO_MPIPE_OP_LINK_CLOSE_AUX IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1212)
#define GXIO_MPIPE_OP_GET_TIMESTAMP_AUX IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x121e)
#define GXIO_MPIPE_OP_SET_TIMESTAMP_AUX IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x121f)
#define GXIO_MPIPE_OP_ADJUST_TIMESTAMP_AUX IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x1220)
#define GXIO_MPIPE_OP_ARM_POLLFD IORPC_OPCODE(IORPC_FORMAT_KERNEL_POLLFD, 0x9000)
#define GXIO_MPIPE_OP_CLOSE_POLLFD IORPC_OPCODE(IORPC_FORMAT_KERNEL_POLLFD, 0x9001)
#define GXIO_MPIPE_OP_GET_MMIO_BASE IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8000)
#define GXIO_MPIPE_OP_CHECK_MMIO_OFFSET IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8001)
int gxio_mpipe_alloc_buffer_stacks(gxio_mpipe_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags);
int gxio_mpipe_init_buffer_stack_aux(gxio_mpipe_context_t * context,
void *mem_va, size_t mem_size,
unsigned int mem_flags, unsigned int stack,
unsigned int buffer_size_enum);
int gxio_mpipe_alloc_notif_rings(gxio_mpipe_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags);
int gxio_mpipe_init_notif_ring_aux(gxio_mpipe_context_t * context, void *mem_va,
size_t mem_size, unsigned int mem_flags,
unsigned int ring);
int gxio_mpipe_request_notif_ring_interrupt(gxio_mpipe_context_t * context,
int inter_x, int inter_y,
int inter_ipi, int inter_event,
unsigned int ring);
int gxio_mpipe_enable_notif_ring_interrupt(gxio_mpipe_context_t * context,
unsigned int ring);
int gxio_mpipe_alloc_notif_groups(gxio_mpipe_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags);
int gxio_mpipe_init_notif_group(gxio_mpipe_context_t * context,
unsigned int group,
gxio_mpipe_notif_group_bits_t bits);
int gxio_mpipe_alloc_buckets(gxio_mpipe_context_t * context, unsigned int count,
unsigned int first, unsigned int flags);
int gxio_mpipe_init_bucket(gxio_mpipe_context_t * context, unsigned int bucket,
MPIPE_LBL_INIT_DAT_BSTS_TBL_t bucket_info);
int gxio_mpipe_alloc_edma_rings(gxio_mpipe_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags);
int gxio_mpipe_init_edma_ring_aux(gxio_mpipe_context_t * context, void *mem_va,
size_t mem_size, unsigned int mem_flags,
unsigned int ring, unsigned int channel);
int gxio_mpipe_commit_rules(gxio_mpipe_context_t * context, const void *blob,
size_t blob_size);
int gxio_mpipe_register_client_memory(gxio_mpipe_context_t * context,
unsigned int iotlb, HV_PTE pte,
unsigned int flags);
int gxio_mpipe_link_open_aux(gxio_mpipe_context_t * context,
_gxio_mpipe_link_name_t name, unsigned int flags);
int gxio_mpipe_link_close_aux(gxio_mpipe_context_t * context, int mac);
int gxio_mpipe_get_timestamp_aux(gxio_mpipe_context_t * context, uint64_t * sec,
uint64_t * nsec, uint64_t * cycles);
int gxio_mpipe_set_timestamp_aux(gxio_mpipe_context_t * context, uint64_t sec,
uint64_t nsec, uint64_t cycles);
int gxio_mpipe_adjust_timestamp_aux(gxio_mpipe_context_t * context,
int64_t nsec);
int gxio_mpipe_arm_pollfd(gxio_mpipe_context_t * context, int pollfd_cookie);
int gxio_mpipe_close_pollfd(gxio_mpipe_context_t * context, int pollfd_cookie);
int gxio_mpipe_get_mmio_base(gxio_mpipe_context_t * context, HV_PTE *base);
int gxio_mpipe_check_mmio_offset(gxio_mpipe_context_t * context,
unsigned long offset, unsigned long size);
#endif /* !__GXIO_MPIPE_LINUX_RPC_H__ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#ifndef __GXIO_MPIPE_INFO_LINUX_RPC_H__
#define __GXIO_MPIPE_INFO_LINUX_RPC_H__
#include <hv/iorpc.h>
#include <hv/drv_mpipe_intf.h>
#include <asm/page.h>
#include <gxio/kiorpc.h>
#include <gxio/mpipe.h>
#include <linux/string.h>
#include <linux/module.h>
#include <asm/pgtable.h>
#define GXIO_MPIPE_INFO_OP_ENUMERATE_AUX IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1251)
#define GXIO_MPIPE_INFO_OP_GET_MMIO_BASE IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8000)
#define GXIO_MPIPE_INFO_OP_CHECK_MMIO_OFFSET IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8001)
int gxio_mpipe_info_enumerate_aux(gxio_mpipe_info_context_t * context,
unsigned int idx,
_gxio_mpipe_link_name_t * name,
_gxio_mpipe_link_mac_t * mac);
int gxio_mpipe_info_get_mmio_base(gxio_mpipe_info_context_t * context,
HV_PTE *base);
int gxio_mpipe_info_check_mmio_offset(gxio_mpipe_info_context_t * context,
unsigned long offset, unsigned long size);
#endif /* !__GXIO_MPIPE_INFO_LINUX_RPC_H__ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#ifndef __GXIO_TRIO_LINUX_RPC_H__
#define __GXIO_TRIO_LINUX_RPC_H__
#include <hv/iorpc.h>
#include <hv/drv_trio_intf.h>
#include <gxio/trio.h>
#include <gxio/kiorpc.h>
#include <linux/string.h>
#include <linux/module.h>
#include <asm/pgtable.h>
#define GXIO_TRIO_OP_ALLOC_ASIDS IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1400)
#define GXIO_TRIO_OP_ALLOC_MEMORY_MAPS IORPC_OPCODE(IORPC_FORMAT_NONE, 0x1402)
#define GXIO_TRIO_OP_ALLOC_PIO_REGIONS IORPC_OPCODE(IORPC_FORMAT_NONE, 0x140e)
#define GXIO_TRIO_OP_INIT_PIO_REGION_AUX IORPC_OPCODE(IORPC_FORMAT_NONE, 0x140f)
#define GXIO_TRIO_OP_INIT_MEMORY_MAP_MMU_AUX IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x1417)
#define GXIO_TRIO_OP_GET_PORT_PROPERTY IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x1418)
#define GXIO_TRIO_OP_CONFIG_LEGACY_INTR IORPC_OPCODE(IORPC_FORMAT_KERNEL_INTERRUPT, 0x1419)
#define GXIO_TRIO_OP_CONFIG_MSI_INTR IORPC_OPCODE(IORPC_FORMAT_KERNEL_INTERRUPT, 0x141a)
#define GXIO_TRIO_OP_SET_MPS_MRS IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x141c)
#define GXIO_TRIO_OP_FORCE_RC_LINK_UP IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x141d)
#define GXIO_TRIO_OP_FORCE_EP_LINK_UP IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x141e)
#define GXIO_TRIO_OP_GET_MMIO_BASE IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8000)
#define GXIO_TRIO_OP_CHECK_MMIO_OFFSET IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8001)
int gxio_trio_alloc_asids(gxio_trio_context_t * context, unsigned int count,
unsigned int first, unsigned int flags);
int gxio_trio_alloc_memory_maps(gxio_trio_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags);
int gxio_trio_alloc_pio_regions(gxio_trio_context_t * context,
unsigned int count, unsigned int first,
unsigned int flags);
int gxio_trio_init_pio_region_aux(gxio_trio_context_t * context,
unsigned int pio_region, unsigned int mac,
uint32_t bus_address_hi, unsigned int flags);
int gxio_trio_init_memory_map_mmu_aux(gxio_trio_context_t * context,
unsigned int map, unsigned long va,
uint64_t size, unsigned int asid,
unsigned int mac, uint64_t bus_address,
unsigned int node,
unsigned int order_mode);
int gxio_trio_get_port_property(gxio_trio_context_t * context,
struct pcie_trio_ports_property *trio_ports);
int gxio_trio_config_legacy_intr(gxio_trio_context_t * context, int inter_x,
int inter_y, int inter_ipi, int inter_event,
unsigned int mac, unsigned int intx);
int gxio_trio_config_msi_intr(gxio_trio_context_t * context, int inter_x,
int inter_y, int inter_ipi, int inter_event,
unsigned int mac, unsigned int mem_map,
uint64_t mem_map_base, uint64_t mem_map_limit,
unsigned int asid);
int gxio_trio_set_mps_mrs(gxio_trio_context_t * context, uint16_t mps,
uint16_t mrs, unsigned int mac);
int gxio_trio_force_rc_link_up(gxio_trio_context_t * context, unsigned int mac);
int gxio_trio_force_ep_link_up(gxio_trio_context_t * context, unsigned int mac);
int gxio_trio_get_mmio_base(gxio_trio_context_t * context, HV_PTE *base);
int gxio_trio_check_mmio_offset(gxio_trio_context_t * context,
unsigned long offset, unsigned long size);
#endif /* !__GXIO_TRIO_LINUX_RPC_H__ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/* This file is machine-generated; DO NOT EDIT! */
#ifndef __GXIO_USB_HOST_LINUX_RPC_H__
#define __GXIO_USB_HOST_LINUX_RPC_H__
#include <hv/iorpc.h>
#include <hv/drv_usb_host_intf.h>
#include <asm/page.h>
#include <gxio/kiorpc.h>
#include <gxio/usb_host.h>
#include <linux/string.h>
#include <linux/module.h>
#include <asm/pgtable.h>
#define GXIO_USB_HOST_OP_CFG_INTERRUPT IORPC_OPCODE(IORPC_FORMAT_KERNEL_INTERRUPT, 0x1800)
#define GXIO_USB_HOST_OP_REGISTER_CLIENT_MEMORY IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x1801)
#define GXIO_USB_HOST_OP_GET_MMIO_BASE IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8000)
#define GXIO_USB_HOST_OP_CHECK_MMIO_OFFSET IORPC_OPCODE(IORPC_FORMAT_NONE_NOUSER, 0x8001)
int gxio_usb_host_cfg_interrupt(gxio_usb_host_context_t * context, int inter_x,
int inter_y, int inter_ipi, int inter_event);
int gxio_usb_host_register_client_memory(gxio_usb_host_context_t * context,
HV_PTE pte, unsigned int flags);
int gxio_usb_host_get_mmio_base(gxio_usb_host_context_t * context,
HV_PTE *base);
int gxio_usb_host_check_mmio_offset(gxio_usb_host_context_t * context,
unsigned long offset, unsigned long size);
#endif /* !__GXIO_USB_HOST_LINUX_RPC_H__ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*
* Support routines for kernel IORPC drivers.
*/
#ifndef _GXIO_KIORPC_H
#define _GXIO_KIORPC_H
#include <linux/types.h>
#include <asm/page.h>
#include <arch/chip.h>
#if CHIP_HAS_MMIO()
void __iomem *iorpc_ioremap(int hv_fd, resource_size_t offset,
unsigned long size);
#endif
#endif /* _GXIO_KIORPC_H */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _GXIO_MPIPE_H_
#define _GXIO_MPIPE_H_
/*
*
* An API for allocating, configuring, and manipulating mPIPE hardware
* resources.
*/
#include "common.h"
#include "dma_queue.h"
#include <linux/time.h>
#include <arch/mpipe_def.h>
#include <arch/mpipe_shm.h>
#include <hv/drv_mpipe_intf.h>
#include <hv/iorpc.h>
/*
*
* The TILE-Gx mPIPE&tm; shim provides Ethernet connectivity, packet
* classification, and packet load balancing services. The
* gxio_mpipe_ API, declared in <gxio/mpipe.h>, allows applications to
* allocate mPIPE IO channels, configure packet distribution
* parameters, and send and receive Ethernet packets. The API is
* designed to be a minimal wrapper around the mPIPE hardware, making
* system calls only where necessary to preserve inter-process
* protection guarantees.
*
* The APIs described below allow the programmer to allocate and
* configure mPIPE resources. As described below, the mPIPE is a
* single shared hardware device that provides partitionable resources
* that are shared between all applications in the system. The
* gxio_mpipe_ API allows userspace code to make resource request
* calls to the hypervisor, which in turns keeps track of the
* resources in use by all applications, maintains protection
* guarantees, and resets resources upon application shutdown.
*
* We strongly recommend reading the mPIPE section of the IO Device
* Guide (UG404) before working with this API. Most functions in the
* gxio_mpipe_ API are directly analogous to hardware interfaces and
* the documentation assumes that the reader understands those
* hardware interfaces.
*
* @section mpipe__ingress mPIPE Ingress Hardware Resources
*
* The mPIPE ingress hardware provides extensive hardware offload for
* tasks like packet header parsing, load balancing, and memory
* management. This section provides a brief introduction to the
* hardware components and the gxio_mpipe_ calls used to manage them;
* see the IO Device Guide for a much more detailed description of the
* mPIPE's capabilities.
*
* When a packet arrives at one of the mPIPE's Ethernet MACs, it is
* assigned a channel number indicating which MAC received it. It
* then proceeds through the following hardware pipeline:
*
* @subsection mpipe__classification Classification
*
* A set of classification processors run header parsing code on each
* incoming packet, extracting information including the destination
* MAC address, VLAN, Ethernet type, and five-tuple hash. Some of
* this information is then used to choose which buffer stack will be
* used to hold the packet, and which bucket will be used by the load
* balancer to determine which application will receive the packet.
*
* The rules by which the buffer stack and bucket are chosen can be
* configured via the @ref gxio_mpipe_classifier API. A given app can
* specify multiple rules, each one specifying a bucket range, and a
* set of buffer stacks, to be used for packets matching the rule.
* Each rule can optionally specify a restricted set of channels,
* VLANs, and/or dMACs, in which it is interested. By default, a
* given rule starts out matching all channels associated with the
* mPIPE context's set of open links; all VLANs; and all dMACs.
* Subsequent restrictions can then be added.
*
* @subsection mpipe__load_balancing Load Balancing
*
* The mPIPE load balancer is responsible for choosing the NotifRing
* to which the packet will be delivered. This decision is based on
* the bucket number indicated by the classification program. In
* general, the bucket number is based on some number of low bits of
* the packet's flow hash (applications that aren't interested in flow
* hashing use a single bucket). Each load balancer bucket keeps a
* record of the NotifRing to which packets directed to that bucket
* are currently being delivered. Based on the bucket's load
* balancing mode (@ref gxio_mpipe_bucket_mode_t), the load balancer
* either forwards the packet to the previously assigned NotifRing or
* decides to choose a new NotifRing. If a new NotifRing is required,
* the load balancer chooses the least loaded ring in the NotifGroup
* associated with the bucket.
*
* The load balancer is a shared resource. Each application needs to
* explicitly allocate NotifRings, NotifGroups, and buckets, using
* gxio_mpipe_alloc_notif_rings(), gxio_mpipe_alloc_notif_groups(),
* and gxio_mpipe_alloc_buckets(). Then the application needs to
* configure them using gxio_mpipe_init_notif_ring() and
* gxio_mpipe_init_notif_group_and_buckets().
*
* @subsection mpipe__buffers Buffer Selection and Packet Delivery
*
* Once the load balancer has chosen the destination NotifRing, the
* mPIPE DMA engine pops at least one buffer off of the 'buffer stack'
* chosen by the classification program and DMAs the packet data into
* that buffer. Each buffer stack provides a hardware-accelerated
* stack of data buffers with the same size. If the packet data is
* larger than the buffers provided by the chosen buffer stack, the
* mPIPE hardware pops off multiple buffers and chains the packet data
* through a multi-buffer linked list. Once the packet data is
* delivered to the buffer(s), the mPIPE hardware writes the
* ::gxio_mpipe_idesc_t metadata object (calculated by the classifier)
* into the NotifRing and increments the number of packets delivered
* to that ring.
*
* Applications can push buffers onto a buffer stack by calling
* gxio_mpipe_push_buffer() or by egressing a packet with the
* ::gxio_mpipe_edesc_t::hwb bit set, indicating that the egressed
* buffers should be returned to the stack.
*
* Applications can allocate and initialize buffer stacks with the
* gxio_mpipe_alloc_buffer_stacks() and gxio_mpipe_init_buffer_stack()
* APIs.
*
* The application must also register the memory pages that will hold
* packets. This requires calling gxio_mpipe_register_page() for each
* memory page that will hold packets allocated by the application for
* a given buffer stack. Since each buffer stack is limited to 16
* registered pages, it may be necessary to use huge pages, or even
* extremely huge pages, to hold all the buffers.
*
* @subsection mpipe__iqueue NotifRings
*
* Each NotifRing is a region of shared memory, allocated by the
* application, to which the mPIPE delivers packet descriptors
* (::gxio_mpipe_idesc_t). The application can allocate them via
* gxio_mpipe_alloc_notif_rings(). The application can then either
* explicitly initialize them with gxio_mpipe_init_notif_ring() and
* then read from them manually, or can make use of the convenience
* wrappers provided by @ref gxio_mpipe_wrappers.
*
* @section mpipe__egress mPIPE Egress Hardware
*
* Applications use eDMA rings to queue packets for egress. The
* application can allocate them via gxio_mpipe_alloc_edma_rings().
* The application can then either explicitly initialize them with
* gxio_mpipe_init_edma_ring() and then write to them manually, or
* can make use of the convenience wrappers provided by
* @ref gxio_mpipe_wrappers.
*
* @section gxio__shortcomings Plans for Future API Revisions
*
* The API defined here is only an initial version of the mPIPE API.
* Future plans include:
*
* - Higher level wrapper functions to provide common initialization
* patterns. This should help users start writing mPIPE programs
* without having to learn the details of the hardware.
*
* - Support for reset and deallocation of resources, including
* cleanup upon application shutdown.
*
* - Support for calling these APIs in the BME.
*
* - Support for IO interrupts.
*
* - Clearer definitions of thread safety guarantees.
*
* @section gxio__mpipe_examples Examples
*
* See the following mPIPE example programs for more information about
* allocating mPIPE resources and using them in real applications:
*
* - @ref mpipe/ingress/app.c : Receiving packets.
*
* - @ref mpipe/forward/app.c : Forwarding packets.
*
* Note that there are several more examples.
*/
/* Flags that can be passed to resource allocation functions. */
enum gxio_mpipe_alloc_flags_e {
/* Require an allocation to start at a specified resource index. */
GXIO_MPIPE_ALLOC_FIXED = HV_MPIPE_ALLOC_FIXED,
};
/* Flags that can be passed to memory registration functions. */
enum gxio_mpipe_mem_flags_e {
/* Do not fill L3 when writing, and invalidate lines upon egress. */
GXIO_MPIPE_MEM_FLAG_NT_HINT = IORPC_MEM_BUFFER_FLAG_NT_HINT,
/* L3 cache fills should only populate IO cache ways. */
GXIO_MPIPE_MEM_FLAG_IO_PIN = IORPC_MEM_BUFFER_FLAG_IO_PIN,
};
/* An ingress packet descriptor. When a packet arrives, the mPIPE
* hardware generates this structure and writes it into a NotifRing.
*/
typedef MPIPE_PDESC_t gxio_mpipe_idesc_t;
/* An egress command descriptor. Applications write this structure
* into eDMA rings and the hardware performs the indicated operation
* (normally involving egressing some bytes). Note that egressing a
* single packet may involve multiple egress command descriptors.
*/
typedef MPIPE_EDMA_DESC_t gxio_mpipe_edesc_t;
/* Get the "va" field from an "idesc".
*
* This is the address at which the ingress hardware copied the first
* byte of the packet.
*
* If the classifier detected a custom header, then this will point to
* the custom header, and gxio_mpipe_idesc_get_l2_start() will point
* to the actual L2 header.
*
* Note that this value may be misleading if "idesc->be" is set.
*
* @param idesc An ingress packet descriptor.
*/
static inline unsigned char *gxio_mpipe_idesc_get_va(gxio_mpipe_idesc_t *idesc)
{
return (unsigned char *)(long)idesc->va;
}
/* Get the "xfer_size" from an "idesc".
*
* This is the actual number of packet bytes transferred into memory
* by the hardware.
*
* Note that this value may be misleading if "idesc->be" is set.
*
* @param idesc An ingress packet descriptor.
*
* ISSUE: Is this the best name for this?
* FIXME: Add more docs about chaining, clipping, etc.
*/
static inline unsigned int gxio_mpipe_idesc_get_xfer_size(gxio_mpipe_idesc_t
*idesc)
{
return idesc->l2_size;
}
/* Get the "l2_offset" from an "idesc".
*
* Extremely customized classifiers might not support this function.
*
* This is the number of bytes between the "va" and the L2 header.
*
* The L2 header consists of a destination mac address, a source mac
* address, and an initial ethertype. Various initial ethertypes
* allow encoding extra information in the L2 header, often including
* a vlan, and/or a new ethertype.
*
* Note that the "l2_offset" will be non-zero if (and only if) the
* classifier processed a custom header for the packet.
*
* @param idesc An ingress packet descriptor.
*/
static inline uint8_t gxio_mpipe_idesc_get_l2_offset(gxio_mpipe_idesc_t *idesc)
{
return (idesc->custom1 >> 32) & 0xFF;
}
/* Get the "l2_start" from an "idesc".
*
* This is simply gxio_mpipe_idesc_get_va() plus
* gxio_mpipe_idesc_get_l2_offset().
*
* @param idesc An ingress packet descriptor.
*/
static inline unsigned char *gxio_mpipe_idesc_get_l2_start(gxio_mpipe_idesc_t
*idesc)
{
unsigned char *va = gxio_mpipe_idesc_get_va(idesc);
return va + gxio_mpipe_idesc_get_l2_offset(idesc);
}
/* Get the "l2_length" from an "idesc".
*
* This is simply gxio_mpipe_idesc_get_xfer_size() minus
* gxio_mpipe_idesc_get_l2_offset().
*
* @param idesc An ingress packet descriptor.
*/
static inline unsigned int gxio_mpipe_idesc_get_l2_length(gxio_mpipe_idesc_t
*idesc)
{
unsigned int xfer_size = idesc->l2_size;
return xfer_size - gxio_mpipe_idesc_get_l2_offset(idesc);
}
/* A context object used to manage mPIPE hardware resources. */
typedef struct {
/* File descriptor for calling up to Linux (and thus the HV). */
int fd;
/* The VA at which configuration registers are mapped. */
char *mmio_cfg_base;
/* The VA at which IDMA, EDMA, and buffer manager are mapped. */
char *mmio_fast_base;
/* The "initialized" buffer stacks. */
gxio_mpipe_rules_stacks_t __stacks;
} gxio_mpipe_context_t;
/* This is only used internally, but it's most easily made visible here. */
typedef gxio_mpipe_context_t gxio_mpipe_info_context_t;
/* Initialize an mPIPE context.
*
* This function allocates an mPIPE "service domain" and maps the MMIO
* registers into the caller's VA space.
*
* @param context Context object to be initialized.
* @param mpipe_instance Instance number of mPIPE shim to be controlled via
* context.
*/
extern int gxio_mpipe_init(gxio_mpipe_context_t *context,
unsigned int mpipe_instance);
/* Destroy an mPIPE context.
*
* This function frees the mPIPE "service domain" and unmaps the MMIO
* registers from the caller's VA space.
*
* If a user process exits without calling this routine, the kernel
* will destroy the mPIPE context as part of process teardown.
*
* @param context Context object to be destroyed.
*/
extern int gxio_mpipe_destroy(gxio_mpipe_context_t *context);
/*****************************************************************
* Buffer Stacks *
******************************************************************/
/* Allocate a set of buffer stacks.
*
* The return value is NOT interesting if count is zero.
*
* @param context An initialized mPIPE context.
* @param count Number of stacks required.
* @param first Index of first stack if ::GXIO_MPIPE_ALLOC_FIXED flag is set,
* otherwise ignored.
* @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
* @return Index of first allocated buffer stack, or
* ::GXIO_MPIPE_ERR_NO_BUFFER_STACK if allocation failed.
*/
extern int gxio_mpipe_alloc_buffer_stacks(gxio_mpipe_context_t *context,
unsigned int count,
unsigned int first,
unsigned int flags);
/* Enum codes for buffer sizes supported by mPIPE. */
typedef enum {
/* 128 byte packet data buffer. */
GXIO_MPIPE_BUFFER_SIZE_128 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_128,
/* 256 byte packet data buffer. */
GXIO_MPIPE_BUFFER_SIZE_256 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_256,
/* 512 byte packet data buffer. */
GXIO_MPIPE_BUFFER_SIZE_512 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_512,
/* 1024 byte packet data buffer. */
GXIO_MPIPE_BUFFER_SIZE_1024 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1024,
/* 1664 byte packet data buffer. */
GXIO_MPIPE_BUFFER_SIZE_1664 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_1664,
/* 4096 byte packet data buffer. */
GXIO_MPIPE_BUFFER_SIZE_4096 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_4096,
/* 10368 byte packet data buffer. */
GXIO_MPIPE_BUFFER_SIZE_10368 =
MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_10368,
/* 16384 byte packet data buffer. */
GXIO_MPIPE_BUFFER_SIZE_16384 = MPIPE_BSM_INIT_DAT_1__SIZE_VAL_BSZ_16384
} gxio_mpipe_buffer_size_enum_t;
/* Convert a buffer size in bytes into a buffer size enum. */
extern gxio_mpipe_buffer_size_enum_t
gxio_mpipe_buffer_size_to_buffer_size_enum(size_t size);
/* Convert a buffer size enum into a buffer size in bytes. */
extern size_t
gxio_mpipe_buffer_size_enum_to_buffer_size(gxio_mpipe_buffer_size_enum_t
buffer_size_enum);
/* Calculate the number of bytes required to store a given number of
* buffers in the memory registered with a buffer stack via
* gxio_mpipe_init_buffer_stack().
*/
extern size_t gxio_mpipe_calc_buffer_stack_bytes(unsigned long buffers);
/* Initialize a buffer stack. This function binds a region of memory
* to be used by the hardware for storing buffer addresses pushed via
* gxio_mpipe_push_buffer() or as the result of sending a buffer out
* the egress with the 'push to stack when done' bit set. Once this
* function returns, the memory region's contents may be arbitrarily
* modified by the hardware at any time and software should not access
* the memory region again.
*
* @param context An initialized mPIPE context.
* @param stack The buffer stack index.
* @param buffer_size_enum The size of each buffer in the buffer stack,
* as an enum.
* @param mem The address of the buffer stack. This memory must be
* physically contiguous and aligned to a 64kB boundary.
* @param mem_size The size of the buffer stack, in bytes.
* @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
* @return Zero on success, ::GXIO_MPIPE_ERR_INVAL_BUFFER_SIZE if
* buffer_size_enum is invalid, ::GXIO_MPIPE_ERR_BAD_BUFFER_STACK if
* stack has not been allocated.
*/
extern int gxio_mpipe_init_buffer_stack(gxio_mpipe_context_t *context,
unsigned int stack,
gxio_mpipe_buffer_size_enum_t
buffer_size_enum, void *mem,
size_t mem_size,
unsigned int mem_flags);
/* Push a buffer onto a previously initialized buffer stack.
*
* The size of the buffer being pushed must match the size that was
* registered with gxio_mpipe_init_buffer_stack(). All packet buffer
* addresses are 128-byte aligned; the low 7 bits of the specified
* buffer address will be ignored.
*
* @param context An initialized mPIPE context.
* @param stack The buffer stack index.
* @param buffer The buffer (the low seven bits are ignored).
*/
static inline void gxio_mpipe_push_buffer(gxio_mpipe_context_t *context,
unsigned int stack, void *buffer)
{
MPIPE_BSM_REGION_ADDR_t offset = { {0} };
MPIPE_BSM_REGION_VAL_t val = { {0} };
/*
* The mmio_fast_base region starts at the IDMA region, so subtract
* off that initial offset.
*/
offset.region =
MPIPE_MMIO_ADDR__REGION_VAL_BSM -
MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
offset.stack = stack;
#if __SIZEOF_POINTER__ == 4
val.va = ((ulong) buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT;
#else
val.va = ((long)buffer) >> MPIPE_BSM_REGION_VAL__VA_SHIFT;
#endif
__gxio_mmio_write(context->mmio_fast_base + offset.word, val.word);
}
/* Pop a buffer off of a previously initialized buffer stack.
*
* @param context An initialized mPIPE context.
* @param stack The buffer stack index.
* @return The buffer, or NULL if the stack is empty.
*/
static inline void *gxio_mpipe_pop_buffer(gxio_mpipe_context_t *context,
unsigned int stack)
{
MPIPE_BSM_REGION_ADDR_t offset = { {0} };
/*
* The mmio_fast_base region starts at the IDMA region, so subtract
* off that initial offset.
*/
offset.region =
MPIPE_MMIO_ADDR__REGION_VAL_BSM -
MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
offset.stack = stack;
while (1) {
/*
* Case 1: val.c == ..._UNCHAINED, va is non-zero.
* Case 2: val.c == ..._INVALID, va is zero.
* Case 3: val.c == ..._NOT_RDY, va is zero.
*/
MPIPE_BSM_REGION_VAL_t val;
val.word =
__gxio_mmio_read(context->mmio_fast_base +
offset.word);
/*
* Handle case 1 and 2 by returning the buffer (or NULL).
* Handle case 3 by waiting for the prefetch buffer to refill.
*/
if (val.c != MPIPE_EDMA_DESC_WORD1__C_VAL_NOT_RDY)
return (void *)((unsigned long)val.
va << MPIPE_BSM_REGION_VAL__VA_SHIFT);
}
}
/*****************************************************************
* NotifRings *
******************************************************************/
/* Allocate a set of NotifRings.
*
* The return value is NOT interesting if count is zero.
*
* Note that NotifRings are allocated in chunks, so allocating one at
* a time is much less efficient than allocating several at once.
*
* @param context An initialized mPIPE context.
* @param count Number of NotifRings required.
* @param first Index of first NotifRing if ::GXIO_MPIPE_ALLOC_FIXED flag
* is set, otherwise ignored.
* @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
* @return Index of first allocated buffer NotifRing, or
* ::GXIO_MPIPE_ERR_NO_NOTIF_RING if allocation failed.
*/
extern int gxio_mpipe_alloc_notif_rings(gxio_mpipe_context_t *context,
unsigned int count, unsigned int first,
unsigned int flags);
/* Initialize a NotifRing, using the given memory and size.
*
* @param context An initialized mPIPE context.
* @param ring The NotifRing index.
* @param mem A physically contiguous region of memory to be filled
* with a ring of ::gxio_mpipe_idesc_t structures.
* @param mem_size Number of bytes in the ring. Must be 128, 512,
* 2048, or 65536 * sizeof(gxio_mpipe_idesc_t).
* @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
*
* @return 0 on success, ::GXIO_MPIPE_ERR_BAD_NOTIF_RING or
* ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
*/
extern int gxio_mpipe_init_notif_ring(gxio_mpipe_context_t *context,
unsigned int ring,
void *mem, size_t mem_size,
unsigned int mem_flags);
/* Configure an interrupt to be sent to a tile on incoming NotifRing
* traffic. Once an interrupt is sent for a particular ring, no more
* will be sent until gxio_mica_enable_notif_ring_interrupt() is called.
*
* @param context An initialized mPIPE context.
* @param x X coordinate of interrupt target tile.
* @param y Y coordinate of interrupt target tile.
* @param i Index of the IPI register which will receive the interrupt.
* @param e Specific event which will be set in the target IPI register when
* the interrupt occurs.
* @param ring The NotifRing index.
* @return Zero on success, GXIO_ERR_INVAL if params are out of range.
*/
extern int gxio_mpipe_request_notif_ring_interrupt(gxio_mpipe_context_t
*context, int x, int y,
int i, int e,
unsigned int ring);
/* Enable an interrupt on incoming NotifRing traffic.
*
* @param context An initialized mPIPE context.
* @param ring The NotifRing index.
* @return Zero on success, GXIO_ERR_INVAL if params are out of range.
*/
extern int gxio_mpipe_enable_notif_ring_interrupt(gxio_mpipe_context_t
*context, unsigned int ring);
/* Map all of a client's memory via the given IOTLB.
* @param context An initialized mPIPE context.
* @param iotlb IOTLB index.
* @param pte Page table entry.
* @param flags Flags.
* @return Zero on success, or a negative error code.
*/
extern int gxio_mpipe_register_client_memory(gxio_mpipe_context_t *context,
unsigned int iotlb, HV_PTE pte,
unsigned int flags);
/*****************************************************************
* Notif Groups *
******************************************************************/
/* Allocate a set of NotifGroups.
*
* The return value is NOT interesting if count is zero.
*
* @param context An initialized mPIPE context.
* @param count Number of NotifGroups required.
* @param first Index of first NotifGroup if ::GXIO_MPIPE_ALLOC_FIXED flag
* is set, otherwise ignored.
* @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
* @return Index of first allocated buffer NotifGroup, or
* ::GXIO_MPIPE_ERR_NO_NOTIF_GROUP if allocation failed.
*/
extern int gxio_mpipe_alloc_notif_groups(gxio_mpipe_context_t *context,
unsigned int count,
unsigned int first,
unsigned int flags);
/* Add a NotifRing to a NotifGroup. This only sets a bit in the
* application's 'group' object; the hardware NotifGroup can be
* initialized by passing 'group' to gxio_mpipe_init_notif_group() or
* gxio_mpipe_init_notif_group_and_buckets().
*/
static inline void
gxio_mpipe_notif_group_add_ring(gxio_mpipe_notif_group_bits_t *bits, int ring)
{
bits->ring_mask[ring / 64] |= (1ull << (ring % 64));
}
/* Set a particular NotifGroup bitmask. Since the load balancer
* makes decisions based on both bucket and NotifGroup state, most
* applications should use gxio_mpipe_init_notif_group_and_buckets()
* rather than using this function to configure just a NotifGroup.
*/
extern int gxio_mpipe_init_notif_group(gxio_mpipe_context_t *context,
unsigned int group,
gxio_mpipe_notif_group_bits_t bits);
/*****************************************************************
* Load Balancer *
******************************************************************/
/* Allocate a set of load balancer buckets.
*
* The return value is NOT interesting if count is zero.
*
* Note that buckets are allocated in chunks, so allocating one at
* a time is much less efficient than allocating several at once.
*
* Note that the buckets are actually divided into two sub-ranges, of
* different sizes, and different chunk sizes, and the range you get
* by default is determined by the size of the request. Allocations
* cannot span the two sub-ranges.
*
* @param context An initialized mPIPE context.
* @param count Number of buckets required.
* @param first Index of first bucket if ::GXIO_MPIPE_ALLOC_FIXED flag is set,
* otherwise ignored.
* @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
* @return Index of first allocated buffer bucket, or
* ::GXIO_MPIPE_ERR_NO_BUCKET if allocation failed.
*/
extern int gxio_mpipe_alloc_buckets(gxio_mpipe_context_t *context,
unsigned int count, unsigned int first,
unsigned int flags);
/* The legal modes for gxio_mpipe_bucket_info_t and
* gxio_mpipe_init_notif_group_and_buckets().
*
* All modes except ::GXIO_MPIPE_BUCKET_ROUND_ROBIN expect that the user
* will allocate a power-of-two number of buckets and initialize them
* to the same mode. The classifier program then uses the appropriate
* number of low bits from the incoming packet's flow hash to choose a
* load balancer bucket. Based on that bucket's load balancing mode,
* reference count, and currently active NotifRing, the load balancer
* chooses the NotifRing to which the packet will be delivered.
*/
typedef enum {
/* All packets for a bucket go to the same NotifRing unless the
* NotifRing gets full, in which case packets will be dropped. If
* the bucket reference count ever reaches zero, a new NotifRing may
* be chosen.
*/
GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY =
MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_DFA,
/* All packets for a bucket always go to the same NotifRing.
*/
GXIO_MPIPE_BUCKET_STATIC_FLOW_AFFINITY =
MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_FIXED,
/* All packets for a bucket go to the least full NotifRing in the
* group, providing load balancing round robin behavior.
*/
GXIO_MPIPE_BUCKET_ROUND_ROBIN =
MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_ALWAYS_PICK,
/* All packets for a bucket go to the same NotifRing unless the
* NotifRing gets full, at which point the bucket starts using the
* least full NotifRing in the group. If all NotifRings in the
* group are full, packets will be dropped.
*/
GXIO_MPIPE_BUCKET_STICKY_FLOW_LOCALITY =
MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY,
/* All packets for a bucket go to the same NotifRing unless the
* NotifRing gets full, or a random timer fires, at which point the
* bucket starts using the least full NotifRing in the group. If
* all NotifRings in the group are full, packets will be dropped.
* WARNING: This mode is BROKEN on chips with fewer than 64 tiles.
*/
GXIO_MPIPE_BUCKET_PREFER_FLOW_LOCALITY =
MPIPE_LBL_INIT_DAT_BSTS_TBL__MODE_VAL_STICKY_RAND,
} gxio_mpipe_bucket_mode_t;
/* Copy a set of bucket initialization values into the mPIPE
* hardware. Since the load balancer makes decisions based on both
* bucket and NotifGroup state, most applications should use
* gxio_mpipe_init_notif_group_and_buckets() rather than using this
* function to configure a single bucket.
*
* @param context An initialized mPIPE context.
* @param bucket Bucket index to be initialized.
* @param bucket_info Initial reference count, NotifRing index, and mode.
* @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET on failure.
*/
extern int gxio_mpipe_init_bucket(gxio_mpipe_context_t *context,
unsigned int bucket,
gxio_mpipe_bucket_info_t bucket_info);
/* Initializes a group and range of buckets and range of rings such
* that the load balancer runs a particular load balancing function.
*
* First, the group is initialized with the given rings.
*
* Second, each bucket is initialized with the mode and group, and a
* ring chosen round-robin from the given rings.
*
* Normally, the classifier picks a bucket, and then the load balancer
* picks a ring, based on the bucket's mode, group, and current ring,
* possibly updating the bucket's ring.
*
* @param context An initialized mPIPE context.
* @param group The group.
* @param ring The first ring.
* @param num_rings The number of rings.
* @param bucket The first bucket.
* @param num_buckets The number of buckets.
* @param mode The load balancing mode.
*
* @return 0 on success, ::GXIO_MPIPE_ERR_BAD_BUCKET,
* ::GXIO_MPIPE_ERR_BAD_NOTIF_GROUP, or
* ::GXIO_MPIPE_ERR_BAD_NOTIF_RING on failure.
*/
extern int gxio_mpipe_init_notif_group_and_buckets(gxio_mpipe_context_t
*context,
unsigned int group,
unsigned int ring,
unsigned int num_rings,
unsigned int bucket,
unsigned int num_buckets,
gxio_mpipe_bucket_mode_t
mode);
/* Return credits to a NotifRing and/or bucket.
*
* @param context An initialized mPIPE context.
* @param ring The NotifRing index, or -1.
* @param bucket The bucket, or -1.
* @param count The number of credits to return.
*/
static inline void gxio_mpipe_credit(gxio_mpipe_context_t *context,
int ring, int bucket, unsigned int count)
{
/* NOTE: Fancy struct initialization would break "C89" header test. */
MPIPE_IDMA_RELEASE_REGION_ADDR_t offset = { {0} };
MPIPE_IDMA_RELEASE_REGION_VAL_t val = { {0} };
/*
* The mmio_fast_base region starts at the IDMA region, so subtract
* off that initial offset.
*/
offset.region =
MPIPE_MMIO_ADDR__REGION_VAL_IDMA -
MPIPE_MMIO_ADDR__REGION_VAL_IDMA;
offset.ring = ring;
offset.bucket = bucket;
offset.ring_enable = (ring >= 0);
offset.bucket_enable = (bucket >= 0);
val.count = count;
__gxio_mmio_write(context->mmio_fast_base + offset.word, val.word);
}
/*****************************************************************
* Egress Rings *
******************************************************************/
/* Allocate a set of eDMA rings.
*
* The return value is NOT interesting if count is zero.
*
* @param context An initialized mPIPE context.
* @param count Number of eDMA rings required.
* @param first Index of first eDMA ring if ::GXIO_MPIPE_ALLOC_FIXED flag
* is set, otherwise ignored.
* @param flags Flag bits from ::gxio_mpipe_alloc_flags_e.
* @return Index of first allocated buffer eDMA ring, or
* ::GXIO_MPIPE_ERR_NO_EDMA_RING if allocation failed.
*/
extern int gxio_mpipe_alloc_edma_rings(gxio_mpipe_context_t *context,
unsigned int count, unsigned int first,
unsigned int flags);
/* Initialize an eDMA ring, using the given memory and size.
*
* @param context An initialized mPIPE context.
* @param ring The eDMA ring index.
* @param channel The channel to use. This must be one of the channels
* associated with the context's set of open links.
* @param mem A physically contiguous region of memory to be filled
* with a ring of ::gxio_mpipe_edesc_t structures.
* @param mem_size Number of bytes in the ring. Must be 512, 2048,
* 8192 or 65536, times 16 (i.e. sizeof(gxio_mpipe_edesc_t)).
* @param mem_flags ::gxio_mpipe_mem_flags_e memory flags.
*
* @return 0 on success, ::GXIO_MPIPE_ERR_BAD_EDMA_RING or
* ::GXIO_ERR_INVAL_MEMORY_SIZE on failure.
*/
extern int gxio_mpipe_init_edma_ring(gxio_mpipe_context_t *context,
unsigned int ring, unsigned int channel,
void *mem, size_t mem_size,
unsigned int mem_flags);
/*****************************************************************
* Classifier Program *
******************************************************************/
/*
*
* Functions for loading or configuring the mPIPE classifier program.
*
* The mPIPE classification processors all run a special "classifier"
* program which, for each incoming packet, parses the packet headers,
* encodes some packet metadata in the "idesc", and either drops the
* packet, or picks a notif ring to handle the packet, and a buffer
* stack to contain the packet, usually based on the channel, VLAN,
* dMAC, flow hash, and packet size, under the guidance of the "rules"
* API described below.
*
* @section gxio_mpipe_classifier_default Default Classifier
*
* The MDE provides a simple "default" classifier program. It is
* shipped as source in "$TILERA_ROOT/src/sys/mpipe/classifier.c",
* which serves as its official documentation. It is shipped as a
* binary program in "$TILERA_ROOT/tile/boot/classifier", which is
* automatically included in bootroms created by "tile-monitor", and
* is automatically loaded by the hypervisor at boot time.
*
* The L2 analysis handles LLC packets, SNAP packets, and "VLAN
* wrappers" (keeping the outer VLAN).
*
* The L3 analysis handles IPv4 and IPv6, dropping packets with bad
* IPv4 header checksums, requesting computation of a TCP/UDP checksum
* if appropriate, and hashing the dest and src IP addresses, plus the
* ports for TCP/UDP packets, into the flow hash. No special analysis
* is done for "fragmented" packets or "tunneling" protocols. Thus,
* the first fragment of a fragmented TCP/UDP packet is hashed using
* src/dest IP address and ports and all subsequent fragments are only
* hashed according to src/dest IP address.
*
* The L3 analysis handles other packets too, hashing the dMAC
* smac into a flow hash.
*
* The channel, VLAN, and dMAC used to pick a "rule" (see the
* "rules" APIs below), which in turn is used to pick a buffer stack
* (based on the packet size) and a bucket (based on the flow hash).
*
* To receive traffic matching a particular (channel/VLAN/dMAC
* pattern, an application should allocate its own buffer stacks and
* load balancer buckets, and map traffic to those stacks and buckets,
* as decribed by the "rules" API below.
*
* Various packet metadata is encoded in the idesc. The flow hash is
* four bytes at 0x0C. The VLAN is two bytes at 0x10. The ethtype is
* two bytes at 0x12. The l3 start is one byte at 0x14. The l4 start
* is one byte at 0x15 for IPv4 and IPv6 packets, and otherwise zero.
* The protocol is one byte at 0x16 for IPv4 and IPv6 packets, and
* otherwise zero.
*
* @section gxio_mpipe_classifier_custom Custom Classifiers.
*
* A custom classifier may be created using "tile-mpipe-cc" with a
* customized version of the default classifier sources.
*
* The custom classifier may be included in bootroms using the
* "--classifier" option to "tile-monitor", or loaded dynamically
* using gxio_mpipe_classifier_load_from_file().
*
* Be aware that "extreme" customizations may break the assumptions of
* the "rules" APIs described below, but simple customizations, such
* as adding new packet metadata, should be fine.
*/
/* A set of classifier rules, plus a context. */
typedef struct {
/* The context. */
gxio_mpipe_context_t *context;
/* The actual rules. */
gxio_mpipe_rules_list_t list;
} gxio_mpipe_rules_t;
/* Initialize a classifier program rules list.
*
* This function can be called on a previously initialized rules list
* to discard any previously added rules.
*
* @param rules Rules list to initialize.
* @param context An initialized mPIPE context.
*/
extern void gxio_mpipe_rules_init(gxio_mpipe_rules_t *rules,
gxio_mpipe_context_t *context);
/* Begin a new rule on the indicated rules list.
*
* Note that an empty rule matches all packets, but an empty rule list
* matches no packets.
*
* @param rules Rules list to which new rule is appended.
* @param bucket First load balancer bucket to which packets will be
* delivered.
* @param num_buckets Number of buckets (must be a power of two) across
* which packets will be distributed based on the "flow hash".
* @param stacks Either NULL, to assign each packet to the smallest
* initialized buffer stack which does not induce chaining (and to
* drop packets which exceed the largest initialized buffer stack
* buffer size), or an array, with each entry indicating which buffer
* stack should be used for packets up to that size (with 255
* indicating that those packets should be dropped).
* @return 0 on success, or a negative error code on failure.
*/
extern int gxio_mpipe_rules_begin(gxio_mpipe_rules_t *rules,
unsigned int bucket,
unsigned int num_buckets,
gxio_mpipe_rules_stacks_t *stacks);
/* Set the headroom of the current rule.
*
* @param rules Rules list whose current rule will be modified.
* @param headroom The headroom.
* @return 0 on success, or a negative error code on failure.
*/
extern int gxio_mpipe_rules_set_headroom(gxio_mpipe_rules_t *rules,
uint8_t headroom);
/* Indicate that packets from a particular channel can be delivered
* to the buckets and buffer stacks associated with the current rule.
*
* Channels added must be associated with links opened by the mPIPE context
* used in gxio_mpipe_rules_init(). A rule with no channels is equivalent
* to a rule naming all such associated channels.
*
* @param rules Rules list whose current rule will be modified.
* @param channel The channel to add.
* @return 0 on success, or a negative error code on failure.
*/
extern int gxio_mpipe_rules_add_channel(gxio_mpipe_rules_t *rules,
unsigned int channel);
/* Commit rules.
*
* The rules are sent to the hypervisor, where they are combined with
* the rules from other apps, and used to program the hardware classifier.
*
* Note that if this function returns an error, then the rules will NOT
* have been committed, even if the error is due to interactions with
* rules from another app.
*
* @param rules Rules list to commit.
* @return 0 on success, or a negative error code on failure.
*/
extern int gxio_mpipe_rules_commit(gxio_mpipe_rules_t *rules);
/*****************************************************************
* Ingress Queue Wrapper *
******************************************************************/
/*
*
* Convenience functions for receiving packets from a NotifRing and
* sending packets via an eDMA ring.
*
* The mpipe ingress and egress hardware uses shared memory packet
* descriptors to describe packets that have arrived on ingress or
* are destined for egress. These descriptors are stored in shared
* memory ring buffers and written or read by hardware as necessary.
* The gxio library provides wrapper functions that manage the head and
* tail pointers for these rings, allowing the user to easily read or
* write packet descriptors.
*
* The initialization interface for ingress and egress rings is quite
* similar. For example, to create an ingress queue, the user passes
* a ::gxio_mpipe_iqueue_t state object, a ring number from
* gxio_mpipe_alloc_notif_rings(), and the address of memory to hold a
* ring buffer to the gxio_mpipe_iqueue_init() function. The function
* returns success when the state object has been initialized and the
* hardware configured to deliver packets to the specified ring
* buffer. Similarly, gxio_mpipe_equeue_init() takes a
* ::gxio_mpipe_equeue_t state object, a ring number from
* gxio_mpipe_alloc_edma_rings(), and a shared memory buffer.
*
* @section gxio_mpipe_iqueue Working with Ingress Queues
*
* Once initialized, the gxio_mpipe_iqueue_t API provides two flows
* for getting the ::gxio_mpipe_idesc_t packet descriptor associated
* with incoming packets. The simplest is to call
* gxio_mpipe_iqueue_get() or gxio_mpipe_iqueue_try_get(). These
* functions copy the oldest packet descriptor out of the NotifRing and
* into a descriptor provided by the caller. They also immediately
* inform the hardware that a descriptor has been processed.
*
* For applications with stringent performance requirements, higher
* efficiency can be achieved by avoiding the packet descriptor copy
* and processing multiple descriptors at once. The
* gxio_mpipe_iqueue_peek() and gxio_mpipe_iqueue_try_peek() functions
* allow such optimizations. These functions provide a pointer to the
* next valid ingress descriptor in the NotifRing's shared memory ring
* buffer, and a count of how many contiguous descriptors are ready to
* be processed. The application can then process any number of those
* descriptors in place, calling gxio_mpipe_iqueue_consume() to inform
* the hardware after each one has been processed.
*
* @section gxio_mpipe_equeue Working with Egress Queues
*
* Similarly, the egress queue API provides a high-performance
* interface plus a simple wrapper for use in posting
* ::gxio_mpipe_edesc_t egress packet descriptors. The simple
* version, gxio_mpipe_equeue_put(), allows the programmer to wait for
* an eDMA ring slot to become available and write a single descriptor
* into the ring.
*
* Alternatively, you can reserve slots in the eDMA ring using
* gxio_mpipe_equeue_reserve() or gxio_mpipe_equeue_try_reserve(), and
* then fill in each slot using gxio_mpipe_equeue_put_at(). This
* capability can be used to amortize the cost of reserving slots
* across several packets. It also allows gather operations to be
* performed on a shared equeue, by ensuring that the edescs for all
* the fragments are all contiguous in the eDMA ring.
*
* The gxio_mpipe_equeue_reserve() and gxio_mpipe_equeue_try_reserve()
* functions return a 63-bit "completion slot", which is actually a
* sequence number, the low bits of which indicate the ring buffer
* index and the high bits the number of times the application has
* gone around the egress ring buffer. The extra bits allow an
* application to check for egress completion by calling
* gxio_mpipe_equeue_is_complete() to see whether a particular 'slot'
* number has finished. Given the maximum packet rates of the Gx
* processor, the 63-bit slot number will never wrap.
*
* In practice, most applications use the ::gxio_mpipe_edesc_t::hwb
* bit to indicate that the buffers containing egress packet data
* should be pushed onto a buffer stack when egress is complete. Such
* applications generally do not need to know when an egress operation
* completes (since there is no need to free a buffer post-egress),
* and thus can use the optimized gxio_mpipe_equeue_reserve_fast() or
* gxio_mpipe_equeue_try_reserve_fast() functions, which return a 24
* bit "slot", instead of a 63-bit "completion slot".
*
* Once a slot has been "reserved", it MUST be filled. If the
* application reserves a slot and then decides that it does not
* actually need it, it can set the ::gxio_mpipe_edesc_t::ns (no send)
* bit on the descriptor passed to gxio_mpipe_equeue_put_at() to
* indicate that no data should be sent. This technique can also be
* used to drop an incoming packet, instead of forwarding it, since
* any buffer will still be pushed onto the buffer stack when the
* egress descriptor is processed.
*/
/* A convenient interface to a NotifRing, for use by a single thread.
*/
typedef struct {
/* The context. */
gxio_mpipe_context_t *context;
/* The actual NotifRing. */
gxio_mpipe_idesc_t *idescs;
/* The number of entries. */
unsigned long num_entries;
/* The number of entries minus one. */
unsigned long mask_num_entries;
/* The log2() of the number of entries. */
unsigned long log2_num_entries;
/* The next entry. */
unsigned int head;
/* The NotifRing id. */
unsigned int ring;
#ifdef __BIG_ENDIAN__
/* The number of byteswapped entries. */
unsigned int swapped;
#endif
} gxio_mpipe_iqueue_t;
/* Initialize an "iqueue".
*
* Takes the iqueue plus the same args as gxio_mpipe_init_notif_ring().
*/
extern int gxio_mpipe_iqueue_init(gxio_mpipe_iqueue_t *iqueue,
gxio_mpipe_context_t *context,
unsigned int ring,
void *mem, size_t mem_size,
unsigned int mem_flags);
/* Advance over some old entries in an iqueue.
*
* Please see the documentation for gxio_mpipe_iqueue_consume().
*
* @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
* @param count The number of entries to advance over.
*/
static inline void gxio_mpipe_iqueue_advance(gxio_mpipe_iqueue_t *iqueue,
int count)
{
/* Advance with proper wrap. */
int head = iqueue->head + count;
iqueue->head =
(head & iqueue->mask_num_entries) +
(head >> iqueue->log2_num_entries);
#ifdef __BIG_ENDIAN__
/* HACK: Track swapped entries. */
iqueue->swapped -= count;
#endif
}
/* Release the ring and bucket for an old entry in an iqueue.
*
* Releasing the ring allows more packets to be delivered to the ring.
*
* Releasing the bucket allows flows using the bucket to be moved to a
* new ring when using GXIO_MPIPE_BUCKET_DYNAMIC_FLOW_AFFINITY.
*
* This function is shorthand for "gxio_mpipe_credit(iqueue->context,
* iqueue->ring, idesc->bucket_id, 1)", and it may be more convenient
* to make that underlying call, using those values, instead of
* tracking the entire "idesc".
*
* If packet processing is deferred, optimal performance requires that
* the releasing be deferred as well.
*
* Please see the documentation for gxio_mpipe_iqueue_consume().
*
* @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
* @param idesc The descriptor which was processed.
*/
static inline void gxio_mpipe_iqueue_release(gxio_mpipe_iqueue_t *iqueue,
gxio_mpipe_idesc_t *idesc)
{
gxio_mpipe_credit(iqueue->context, iqueue->ring, idesc->bucket_id, 1);
}
/* Consume a packet from an "iqueue".
*
* After processing packets peeked at via gxio_mpipe_iqueue_peek()
* or gxio_mpipe_iqueue_try_peek(), you must call this function, or
* gxio_mpipe_iqueue_advance() plus gxio_mpipe_iqueue_release(), to
* advance over those entries, and release their rings and buckets.
*
* You may call this function as each packet is processed, or you can
* wait until several packets have been processed.
*
* Note that if you are using a single bucket, and you are handling
* batches of N packets, then you can replace several calls to this
* function with calls to "gxio_mpipe_iqueue_advance(iqueue, N)" and
* "gxio_mpipe_credit(iqueue->context, iqueue->ring, bucket, N)".
*
* Note that if your classifier sets "idesc->nr", then you should
* explicitly call "gxio_mpipe_iqueue_advance(iqueue, idesc)" plus
* "gxio_mpipe_credit(iqueue->context, iqueue->ring, -1, 1)", to
* avoid incorrectly crediting the (unused) bucket.
*
* @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
* @param idesc The descriptor which was processed.
*/
static inline void gxio_mpipe_iqueue_consume(gxio_mpipe_iqueue_t *iqueue,
gxio_mpipe_idesc_t *idesc)
{
gxio_mpipe_iqueue_advance(iqueue, 1);
gxio_mpipe_iqueue_release(iqueue, idesc);
}
/* Peek at the next packet(s) in an "iqueue", without waiting.
*
* If no packets are available, fills idesc_ref with NULL, and then
* returns ::GXIO_MPIPE_ERR_IQUEUE_EMPTY. Otherwise, fills idesc_ref
* with the address of the next valid packet descriptor, and returns
* the maximum number of valid descriptors which can be processed.
* You may process fewer descriptors if desired.
*
* Call gxio_mpipe_iqueue_consume() on each packet once it has been
* processed (or dropped), to allow more packets to be delivered.
*
* @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
* @param idesc_ref A pointer to a packet descriptor pointer.
* @return The (positive) number of packets which can be processed,
* or ::GXIO_MPIPE_ERR_IQUEUE_EMPTY if no packets are available.
*/
static inline int gxio_mpipe_iqueue_try_peek(gxio_mpipe_iqueue_t *iqueue,
gxio_mpipe_idesc_t **idesc_ref)
{
gxio_mpipe_idesc_t *next;
uint64_t head = iqueue->head;
uint64_t tail = __gxio_mmio_read(iqueue->idescs);
/* Available entries. */
uint64_t avail =
(tail >= head) ? (tail - head) : (iqueue->num_entries - head);
if (avail == 0) {
*idesc_ref = NULL;
return GXIO_MPIPE_ERR_IQUEUE_EMPTY;
}
next = &iqueue->idescs[head];
/* ISSUE: Is this helpful? */
__insn_prefetch(next);
#ifdef __BIG_ENDIAN__
/* HACK: Swap new entries directly in memory. */
{
int i, j;
for (i = iqueue->swapped; i < avail; i++) {
for (j = 0; j < 8; j++)
next[i].words[j] =
__builtin_bswap64(next[i].words[j]);
}
iqueue->swapped = avail;
}
#endif
*idesc_ref = next;
return avail;
}
/* Drop a packet by pushing its buffer (if appropriate).
*
* NOTE: The caller must still call gxio_mpipe_iqueue_consume() if idesc
* came from gxio_mpipe_iqueue_try_peek() or gxio_mpipe_iqueue_peek().
*
* @param iqueue An ingress queue initialized via gxio_mpipe_iqueue_init().
* @param idesc A packet descriptor.
*/
static inline void gxio_mpipe_iqueue_drop(gxio_mpipe_iqueue_t *iqueue,
gxio_mpipe_idesc_t *idesc)
{
/* FIXME: Handle "chaining" properly. */
if (!idesc->be) {
unsigned char *va = gxio_mpipe_idesc_get_va(idesc);
gxio_mpipe_push_buffer(iqueue->context, idesc->stack_idx, va);
}
}
/*****************************************************************
* Egress Queue Wrapper *
******************************************************************/
/* A convenient, thread-safe interface to an eDMA ring. */
typedef struct {
/* State object for tracking head and tail pointers. */
__gxio_dma_queue_t dma_queue;
/* The ring entries. */
gxio_mpipe_edesc_t *edescs;
/* The number of entries minus one. */
unsigned long mask_num_entries;
/* The log2() of the number of entries. */
unsigned long log2_num_entries;
} gxio_mpipe_equeue_t;
/* Initialize an "equeue".
*
* Takes the equeue plus the same args as gxio_mpipe_init_edma_ring().
*/
extern int gxio_mpipe_equeue_init(gxio_mpipe_equeue_t *equeue,
gxio_mpipe_context_t *context,
unsigned int edma_ring_id,
unsigned int channel,
void *mem, unsigned int mem_size,
unsigned int mem_flags);
/* Reserve completion slots for edescs.
*
* Use gxio_mpipe_equeue_put_at() to actually populate the slots.
*
* This function is slower than gxio_mpipe_equeue_reserve_fast(), but
* returns a full 64 bit completion slot, which can be used with
* gxio_mpipe_equeue_is_complete().
*
* @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
* @param num Number of slots to reserve (must be non-zero).
* @return The first reserved completion slot, or a negative error code.
*/
static inline int64_t gxio_mpipe_equeue_reserve(gxio_mpipe_equeue_t *equeue,
unsigned int num)
{
return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, true);
}
/* Reserve completion slots for edescs, if possible.
*
* Use gxio_mpipe_equeue_put_at() to actually populate the slots.
*
* This function is slower than gxio_mpipe_equeue_try_reserve_fast(),
* but returns a full 64 bit completion slot, which can be used with
* gxio_mpipe_equeue_is_complete().
*
* @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
* @param num Number of slots to reserve (must be non-zero).
* @return The first reserved completion slot, or a negative error code.
*/
static inline int64_t gxio_mpipe_equeue_try_reserve(gxio_mpipe_equeue_t
*equeue, unsigned int num)
{
return __gxio_dma_queue_reserve_aux(&equeue->dma_queue, num, false);
}
/* Reserve slots for edescs.
*
* Use gxio_mpipe_equeue_put_at() to actually populate the slots.
*
* This function is faster than gxio_mpipe_equeue_reserve(), but
* returns a 24 bit slot (instead of a 64 bit completion slot), which
* thus cannot be used with gxio_mpipe_equeue_is_complete().
*
* @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
* @param num Number of slots to reserve (should be non-zero).
* @return The first reserved slot, or a negative error code.
*/
static inline int64_t gxio_mpipe_equeue_reserve_fast(gxio_mpipe_equeue_t
*equeue, unsigned int num)
{
return __gxio_dma_queue_reserve(&equeue->dma_queue, num, true, false);
}
/* Reserve slots for edescs, if possible.
*
* Use gxio_mpipe_equeue_put_at() to actually populate the slots.
*
* This function is faster than gxio_mpipe_equeue_try_reserve(), but
* returns a 24 bit slot (instead of a 64 bit completion slot), which
* thus cannot be used with gxio_mpipe_equeue_is_complete().
*
* @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
* @param num Number of slots to reserve (should be non-zero).
* @return The first reserved slot, or a negative error code.
*/
static inline int64_t gxio_mpipe_equeue_try_reserve_fast(gxio_mpipe_equeue_t
*equeue,
unsigned int num)
{
return __gxio_dma_queue_reserve(&equeue->dma_queue, num, false, false);
}
/*
* HACK: This helper function tricks gcc 4.6 into avoiding saving
* a copy of "edesc->words[0]" on the stack for no obvious reason.
*/
static inline void gxio_mpipe_equeue_put_at_aux(gxio_mpipe_equeue_t *equeue,
uint_reg_t ew[2],
unsigned long slot)
{
unsigned long edma_slot = slot & equeue->mask_num_entries;
gxio_mpipe_edesc_t *edesc_p = &equeue->edescs[edma_slot];
/*
* ISSUE: Could set eDMA ring to be on generation 1 at start, which
* would avoid the negation here, perhaps allowing "__insn_bfins()".
*/
ew[0] |= !((slot >> equeue->log2_num_entries) & 1);
/*
* NOTE: We use "__gxio_mpipe_write()", plus the fact that the eDMA
* queue alignment restrictions ensure that these two words are on
* the same cacheline, to force proper ordering between the stores.
*/
__gxio_mmio_write64(&edesc_p->words[1], ew[1]);
__gxio_mmio_write64(&edesc_p->words[0], ew[0]);
}
/* Post an edesc to a given slot in an equeue.
*
* This function copies the supplied edesc into entry "slot mod N" in
* the underlying ring, setting the "gen" bit to the appropriate value
* based on "(slot mod N*2)", where "N" is the size of the ring. Note
* that the higher bits of slot are unused, and thus, this function
* can handle "slots" as well as "completion slots".
*
* Normally this function is used to fill in slots reserved by
* gxio_mpipe_equeue_try_reserve(), gxio_mpipe_equeue_reserve(),
* gxio_mpipe_equeue_try_reserve_fast(), or
* gxio_mpipe_equeue_reserve_fast(),
*
* This function can also be used without "reserving" slots, if the
* application KNOWS that the ring can never overflow, for example, by
* pushing fewer buffers into the buffer stacks than there are total
* slots in the equeue, but this is NOT recommended.
*
* @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
* @param edesc The egress descriptor to be posted.
* @param slot An egress slot (only the low bits are actually used).
*/
static inline void gxio_mpipe_equeue_put_at(gxio_mpipe_equeue_t *equeue,
gxio_mpipe_edesc_t edesc,
unsigned long slot)
{
gxio_mpipe_equeue_put_at_aux(equeue, edesc.words, slot);
}
/* Post an edesc to the next slot in an equeue.
*
* This is a convenience wrapper around
* gxio_mpipe_equeue_reserve_fast() and gxio_mpipe_equeue_put_at().
*
* @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
* @param edesc The egress descriptor to be posted.
* @return 0 on success.
*/
static inline int gxio_mpipe_equeue_put(gxio_mpipe_equeue_t *equeue,
gxio_mpipe_edesc_t edesc)
{
int64_t slot = gxio_mpipe_equeue_reserve_fast(equeue, 1);
if (slot < 0)
return (int)slot;
gxio_mpipe_equeue_put_at(equeue, edesc, slot);
return 0;
}
/* Ask the mPIPE hardware to egress outstanding packets immediately.
*
* This call is not necessary, but may slightly reduce overall latency.
*
* Technically, you should flush all gxio_mpipe_equeue_put_at() writes
* to memory before calling this function, to ensure the descriptors
* are visible in memory before the mPIPE hardware actually looks for
* them. But this should be very rare, and the only side effect would
* be increased latency, so it is up to the caller to decide whether
* or not to flush memory.
*
* @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
*/
static inline void gxio_mpipe_equeue_flush(gxio_mpipe_equeue_t *equeue)
{
/* Use "ring_idx = 0" and "count = 0" to "wake up" the eDMA ring. */
MPIPE_EDMA_POST_REGION_VAL_t val = { {0} };
/* Flush the write buffers. */
__insn_flushwb();
__gxio_mmio_write(equeue->dma_queue.post_region_addr, val.word);
}
/* Determine if a given edesc has been completed.
*
* Note that this function requires a "completion slot", and thus may
* NOT be used with a "slot" from gxio_mpipe_equeue_reserve_fast() or
* gxio_mpipe_equeue_try_reserve_fast().
*
* @param equeue An egress queue initialized via gxio_mpipe_equeue_init().
* @param completion_slot The completion slot used by the edesc.
* @param update If true, and the desc does not appear to have completed
* yet, then update any software cache of the hardware completion counter,
* and check again. This should normally be true.
* @return True iff the given edesc has been completed.
*/
static inline int gxio_mpipe_equeue_is_complete(gxio_mpipe_equeue_t *equeue,
int64_t completion_slot,
int update)
{
return __gxio_dma_queue_is_complete(&equeue->dma_queue,
completion_slot, update);
}
/*****************************************************************
* Link Management *
******************************************************************/
/*
*
* Functions for manipulating and sensing the state and configuration
* of physical network links.
*
* @section gxio_mpipe_link_perm Link Permissions
*
* Opening a link (with gxio_mpipe_link_open()) requests a set of link
* permissions, which control what may be done with the link, and potentially
* what permissions may be granted to other processes.
*
* Data permission allows the process to receive packets from the link by
* specifying the link's channel number in mPIPE packet distribution rules,
* and to send packets to the link by using the link's channel number as
* the target for an eDMA ring.
*
* Stats permission allows the process to retrieve link attributes (such as
* the speeds it is capable of running at, or whether it is currently up), and
* to read and write certain statistics-related registers in the link's MAC.
*
* Control permission allows the process to retrieve and modify link attributes
* (so that it may, for example, bring the link up and take it down), and
* read and write many registers in the link's MAC and PHY.
*
* Any permission may be requested as shared, which allows other processes
* to also request shared permission, or exclusive, which prevents other
* processes from requesting it. In keeping with GXIO's typical usage in
* an embedded environment, the defaults for all permissions are shared.
*
* Permissions are granted on a first-come, first-served basis, so if two
* applications request an exclusive permission on the same link, the one
* to run first will win. Note, however, that some system components, like
* the kernel Ethernet driver, may get an opportunity to open links before
* any applications run.
*
* @section gxio_mpipe_link_names Link Names
*
* Link names are of the form gbe<em>number</em> (for Gigabit Ethernet),
* xgbe<em>number</em> (for 10 Gigabit Ethernet), loop<em>number</em> (for
* internal mPIPE loopback), or ilk<em>number</em>/<em>channel</em>
* (for Interlaken links); for instance, gbe0, xgbe1, loop3, and
* ilk0/12 are all possible link names. The correspondence between
* the link name and an mPIPE instance number or mPIPE channel number is
* system-dependent; all links will not exist on all systems, and the set
* of numbers used for a particular link type may not start at zero and may
* not be contiguous. Use gxio_mpipe_link_enumerate() to retrieve the set of
* links which exist on a system, and always use gxio_mpipe_link_instance()
* to determine which mPIPE controls a particular link.
*
* Note that in some cases, links may share hardware, such as PHYs, or
* internal mPIPE buffers; in these cases, only one of the links may be
* opened at a time. This is especially common with xgbe and gbe ports,
* since each xgbe port uses 4 SERDES lanes, each of which may also be
* configured as one gbe port.
*
* @section gxio_mpipe_link_states Link States
*
* The mPIPE link management model revolves around three different states,
* which are maintained for each link:
*
* 1. The <em>current</em> link state: is the link up now, and if so, at
* what speed?
*
* 2. The <em>desired</em> link state: what do we want the link state to be?
* The system is always working to make this state the current state;
* thus, if the desired state is up, and the link is down, we'll be
* constantly trying to bring it up, automatically.
*
* 3. The <em>possible</em> link state: what speeds are valid for this
* particular link? Or, in other words, what are the capabilities of
* the link hardware?
*
* These link states are not, strictly speaking, related to application
* state; they may be manipulated at any time, whether or not the link
* is currently being used for data transfer. However, for convenience,
* gxio_mpipe_link_open() and gxio_mpipe_link_close() (or application exit)
* can affect the link state. These implicit link management operations
* may be modified or disabled by the use of link open flags.
*
* From an application, you can use gxio_mpipe_link_get_attr()
* and gxio_mpipe_link_set_attr() to manipulate the link states.
* gxio_mpipe_link_get_attr() with ::GXIO_MPIPE_LINK_POSSIBLE_STATE
* gets you the possible link state. gxio_mpipe_link_get_attr() with
* ::GXIO_MPIPE_LINK_CURRENT_STATE gets you the current link state.
* Finally, gxio_mpipe_link_set_attr() and gxio_mpipe_link_get_attr()
* with ::GXIO_MPIPE_LINK_DESIRED_STATE allow you to modify or retrieve
* the desired link state.
*
* If you want to manage a link from a part of your application which isn't
* involved in packet processing, you can use the ::GXIO_MPIPE_LINK_NO_DATA
* flags on a gxio_mpipe_link_open() call. This opens the link, but does
* not request data permission, so it does not conflict with any exclusive
* permissions which may be held by other processes. You can then can use
* gxio_mpipe_link_get_attr() and gxio_mpipe_link_set_attr() on this link
* object to bring up or take down the link.
*
* Some links support link state bits which support various loopback
* modes. ::GXIO_MPIPE_LINK_LOOP_MAC tests datapaths within the Tile
* Processor itself; ::GXIO_MPIPE_LINK_LOOP_PHY tests the datapath between
* the Tile Processor and the external physical layer interface chip; and
* ::GXIO_MPIPE_LINK_LOOP_EXT tests the entire network datapath with the
* aid of an external loopback connector. In addition to enabling hardware
* testing, such configuration can be useful for software testing, as well.
*
* When LOOP_MAC or LOOP_PHY is enabled, packets transmitted on a channel
* will be received by that channel, instead of being emitted on the
* physical link, and packets received on the physical link will be ignored.
* Other than that, all standard GXIO operations work as you might expect.
* Note that loopback operation requires that the link be brought up using
* one or more of the GXIO_MPIPE_LINK_SPEED_xxx link state bits.
*
* Those familiar with previous versions of the MDE on TILEPro hardware
* will notice significant similarities between the NetIO link management
* model and the mPIPE link management model. However, the NetIO model
* was developed in stages, and some of its features -- for instance,
* the default setting of certain flags -- were shaped by the need to be
* compatible with previous versions of NetIO. Since the features provided
* by the mPIPE hardware and the mPIPE GXIO library are significantly
* different than those provided by NetIO, in some cases, we have made
* different choices in the mPIPE link management API. Thus, please read
* this documentation carefully before assuming that mPIPE link management
* operations are exactly equivalent to their NetIO counterparts.
*/
/* An object used to manage mPIPE link state and resources. */
typedef struct {
/* The overall mPIPE context. */
gxio_mpipe_context_t *context;
/* The channel number used by this link. */
uint8_t channel;
/* The MAC index used by this link. */
uint8_t mac;
} gxio_mpipe_link_t;
/* Retrieve one of this system's legal link names, and its MAC address.
*
* @param index Link name index. If a system supports N legal link names,
* then indices between 0 and N - 1, inclusive, each correspond to one of
* those names. Thus, to retrieve all of a system's legal link names,
* call this function in a loop, starting with an index of zero, and
* incrementing it once per iteration until -1 is returned.
* @param link_name Pointer to the buffer which will receive the retrieved
* link name. The buffer should contain space for at least
* ::GXIO_MPIPE_LINK_NAME_LEN bytes; the returned name, including the
* terminating null byte, will be no longer than that.
* @param link_name Pointer to the buffer which will receive the retrieved
* MAC address. The buffer should contain space for at least 6 bytes.
* @return Zero if a link name was successfully retrieved; -1 if one was
* not.
*/
extern int gxio_mpipe_link_enumerate_mac(int index, char *link_name,
uint8_t *mac_addr);
/* Open an mPIPE link.
*
* A link must be opened before it may be used to send or receive packets,
* and before its state may be examined or changed. Depending up on the
* link's intended use, one or more link permissions may be requested via
* the flags parameter; see @ref gxio_mpipe_link_perm. In addition, flags
* may request that the link's state be modified at open time. See @ref
* gxio_mpipe_link_states and @ref gxio_mpipe_link_open_flags for more detail.
*
* @param link A link state object, which will be initialized if this
* function completes successfully.
* @param context An initialized mPIPE context.
* @param link_name Name of the link.
* @param flags Zero or more @ref gxio_mpipe_link_open_flags, ORed together.
* @return 0 if the link was successfully opened, or a negative error code.
*
*/
extern int gxio_mpipe_link_open(gxio_mpipe_link_t *link,
gxio_mpipe_context_t *context,
const char *link_name, unsigned int flags);
/* Close an mPIPE link.
*
* Closing a link makes it available for use by other processes. Once
* a link has been closed, packets may no longer be sent on or received
* from the link, and its state may not be examined or changed.
*
* @param link A link state object, which will no longer be initialized
* if this function completes successfully.
* @return 0 if the link was successfully closed, or a negative error code.
*
*/
extern int gxio_mpipe_link_close(gxio_mpipe_link_t *link);
/* Return a link's channel number.
*
* @param link A properly initialized link state object.
* @return The channel number for the link.
*/
static inline int gxio_mpipe_link_channel(gxio_mpipe_link_t *link)
{
return link->channel;
}
///////////////////////////////////////////////////////////////////
// Timestamp //
///////////////////////////////////////////////////////////////////
/* Get the timestamp of mPIPE when this routine is called.
*
* @param context An initialized mPIPE context.
* @param ts A timespec structure to store the current clock.
* @return If the call was successful, zero; otherwise, a negative error
* code.
*/
extern int gxio_mpipe_get_timestamp(gxio_mpipe_context_t *context,
struct timespec *ts);
/* Set the timestamp of mPIPE.
*
* @param context An initialized mPIPE context.
* @param ts A timespec structure to store the requested clock.
* @return If the call was successful, zero; otherwise, a negative error
* code.
*/
extern int gxio_mpipe_set_timestamp(gxio_mpipe_context_t *context,
const struct timespec *ts);
/* Adjust the timestamp of mPIPE.
*
* @param context An initialized mPIPE context.
* @param delta A signed time offset to adjust, in nanoseconds.
* The absolute value of this parameter must be less than or
* equal to 1000000000.
* @return If the call was successful, zero; otherwise, a negative error
* code.
*/
extern int gxio_mpipe_adjust_timestamp(gxio_mpipe_context_t *context,
int64_t delta);
#endif /* !_GXIO_MPIPE_H_ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/*
*
* An API for allocating, configuring, and manipulating TRIO hardware
* resources
*/
/*
*
* The TILE-Gx TRIO shim provides connections to external devices via
* PCIe or other transaction IO standards. The gxio_trio_ API,
* declared in <gxio/trio.h>, allows applications to allocate and
* configure TRIO IO resources like DMA command rings, memory map
* windows, and device interrupts. The following sections introduce
* the various components of the API. We strongly recommend reading
* the TRIO section of the IO Device Guide (UG404) before working with
* this API.
*
* @section trio__ingress TRIO Ingress Hardware Resources
*
* The TRIO ingress hardware is responsible for examining incoming
* PCIe or StreamIO packets and choosing a processing mechanism based
* on the packets' bus address. The gxio_trio_ API can be used to
* configure different handlers for different ranges of bus address
* space. The user can configure "mapped memory" and "scatter queue"
* regions to match incoming packets within 4kB-aligned ranges of bus
* addresses. Each range specifies a different set of mapping
* parameters to be applied when handling the ingress packet. The
* following sections describe how to work with MapMem and scatter
* queue regions.
*
* @subsection trio__mapmem TRIO MapMem Regions
*
* TRIO mapped memory (or MapMem) regions allow the user to map
* incoming read and write requests directly to the application's
* memory space. MapMem regions are allocated via
* gxio_trio_alloc_memory_maps(). Given an integer MapMem number,
* applications can use gxio_trio_init_memory_map() to specify the
* range of bus addresses that will match the region and the range of
* virtual addresses to which those packets will be applied.
*
* As with many other gxio APIs, the programmer must be sure to
* register memory pages that will be used with MapMem regions. Pages
* can be registered with TRIO by allocating an ASID (address space
* identifier) and then using gxio_trio_register_page() to register up to
* 16 pages with the hardware. The initialization functions for
* resources that require registered memory (MapMem, scatter queues,
* push DMA, and pull DMA) then take an 'asid' parameter in order to
* configure which set of registered pages is used by each resource.
*
* @subsection trio__scatter_queue TRIO Scatter Queues
*
* The TRIO shim's scatter queue regions allow users to dynamically
* map buffers from a large address space into a small range of bus
* addresses. This is particularly helpful for PCIe endpoint devices,
* where the host generally limits the size of BARs to tens of
* megabytes.
*
* Each scatter queue consists of a memory map region, a queue of
* tile-side buffer VAs to be mapped to that region, and a bus-mapped
* "doorbell" register that the remote endpoint can write to trigger a
* dequeue of the current buffer VA, thus swapping in a new buffer.
* The VAs pushed onto a scatter queue must be 4kB aligned, so
* applications may need to use higher-level protocols to inform
* remote entities that they should apply some additional, sub-4kB
* offset when reading or writing the scatter queue region. For more
* information, see the IO Device Guide (UG404).
*
* @section trio__egress TRIO Egress Hardware Resources
*
* The TRIO shim supports two mechanisms for egress packet generation:
* programmed IO (PIO) and push/pull DMA. PIO allows applications to
* create MMIO mappings for PCIe or StreamIO address space, such that
* the application can generate word-sized read or write transactions
* by issuing load or store instructions. Push and pull DMA are tuned
* for larger transactions; they use specialized hardware engines to
* transfer large blocks of data at line rate.
*
* @subsection trio__pio TRIO Programmed IO
*
* Programmed IO allows applications to create MMIO mappings for PCIe
* or StreamIO address space. The hardware PIO regions support access
* to PCIe configuration, IO, and memory space, but the gxio_trio API
* only supports memory space accesses. PIO regions are allocated
* with gxio_trio_alloc_pio_regions() and initialized via
* gxio_trio_init_pio_region(). Once a region is bound to a range of
* bus address via the initialization function, the application can
* use gxio_trio_map_pio_region() to create MMIO mappings from its VA
* space onto the range of bus addresses supported by the PIO region.
*
* @subsection trio_dma TRIO Push and Pull DMA
*
* The TRIO push and pull DMA engines allow users to copy blocks of
* data between application memory and the bus. Push DMA generates
* write packets that copy from application memory to the bus and pull
* DMA generates read packets that copy from the bus into application
* memory. The DMA engines are managed via an API that is very
* similar to the mPIPE eDMA interface. For a detailed explanation of
* the eDMA queue API, see @ref gxio_mpipe_wrappers.
*
* Push and pull DMA queues are allocated via
* gxio_trio_alloc_push_dma_ring() / gxio_trio_alloc_pull_dma_ring().
* Once allocated, users generally use a ::gxio_trio_dma_queue_t
* object to manage the queue, providing easy wrappers for reserving
* command slots in the DMA command ring, filling those slots, and
* waiting for commands to complete. DMA queues can be initialized
* via gxio_trio_init_push_dma_queue() or
* gxio_trio_init_pull_dma_queue().
*
* See @ref trio/push_dma/app.c for an example of how to use push DMA.
*
* @section trio_shortcomings Plans for Future API Revisions
*
* The simulation framework is incomplete. Future features include:
*
* - Support for reset and deallocation of resources.
*
* - Support for pull DMA.
*
* - Support for interrupt regions and user-space interrupt delivery.
*
* - Support for getting BAR mappings and reserving regions of BAR
* address space.
*/
#ifndef _GXIO_TRIO_H_
#define _GXIO_TRIO_H_
#include <linux/types.h>
#include "common.h"
#include "dma_queue.h"
#include <arch/trio_constants.h>
#include <arch/trio.h>
#include <arch/trio_pcie_intfc.h>
#include <arch/trio_pcie_rc.h>
#include <arch/trio_shm.h>
#include <hv/drv_trio_intf.h>
#include <hv/iorpc.h>
/* A context object used to manage TRIO hardware resources. */
typedef struct {
/* File descriptor for calling up to Linux (and thus the HV). */
int fd;
/* The VA at which the MAC MMIO registers are mapped. */
char *mmio_base_mac;
/* The VA at which the PIO config space are mapped for each PCIe MAC.
Gx36 has max 3 PCIe MACs per TRIO shim. */
char *mmio_base_pio_cfg[TILEGX_TRIO_PCIES];
#ifdef USE_SHARED_PCIE_CONFIG_REGION
/* Index of the shared PIO region for PCI config access. */
int pio_cfg_index;
#else
/* Index of the PIO region for PCI config access per MAC. */
int pio_cfg_index[TILEGX_TRIO_PCIES];
#endif
/* The VA at which the push DMA MMIO registers are mapped. */
char *mmio_push_dma[TRIO_NUM_PUSH_DMA_RINGS];
/* The VA at which the pull DMA MMIO registers are mapped. */
char *mmio_pull_dma[TRIO_NUM_PUSH_DMA_RINGS];
/* Application space ID. */
unsigned int asid;
} gxio_trio_context_t;
/* Command descriptor for push or pull DMA. */
typedef TRIO_DMA_DESC_t gxio_trio_dma_desc_t;
/* A convenient, thread-safe interface to an eDMA ring. */
typedef struct {
/* State object for tracking head and tail pointers. */
__gxio_dma_queue_t dma_queue;
/* The ring entries. */
gxio_trio_dma_desc_t *dma_descs;
/* The number of entries minus one. */
unsigned long mask_num_entries;
/* The log2() of the number of entries. */
unsigned int log2_num_entries;
} gxio_trio_dma_queue_t;
/* Initialize a TRIO context.
*
* This function allocates a TRIO "service domain" and maps the MMIO
* registers into the the caller's VA space.
*
* @param trio_index Which TRIO shim; Gx36 must pass 0.
* @param context Context object to be initialized.
*/
extern int gxio_trio_init(gxio_trio_context_t *context,
unsigned int trio_index);
/* This indicates that an ASID hasn't been allocated. */
#define GXIO_ASID_NULL -1
/* Ordering modes for map memory regions and scatter queue regions. */
typedef enum gxio_trio_order_mode_e {
/* Writes are not ordered. Reads always wait for previous writes. */
GXIO_TRIO_ORDER_MODE_UNORDERED =
TRIO_MAP_MEM_SETUP__ORDER_MODE_VAL_UNORDERED,
/* Both writes and reads wait for previous transactions to complete. */
GXIO_TRIO_ORDER_MODE_STRICT =
TRIO_MAP_MEM_SETUP__ORDER_MODE_VAL_STRICT,
/* Writes are ordered unless the incoming packet has the
relaxed-ordering attributes set. */
GXIO_TRIO_ORDER_MODE_OBEY_PACKET =
TRIO_MAP_MEM_SETUP__ORDER_MODE_VAL_REL_ORD
} gxio_trio_order_mode_t;
/* Initialize a memory mapping region.
*
* @param context An initialized TRIO context.
* @param map A Memory map region allocated by gxio_trio_alloc_memory_map().
* @param target_mem VA of backing memory, should be registered via
* gxio_trio_register_page() and aligned to 4kB.
* @param target_size Length of the memory mapping, must be a multiple
* of 4kB.
* @param asid ASID to be used for Tile-side address translation.
* @param mac MAC number.
* @param bus_address Bus address at which the mapping starts.
* @param order_mode Memory ordering mode for this mapping.
* @return Zero on success, else ::GXIO_TRIO_ERR_BAD_MEMORY_MAP,
* GXIO_TRIO_ERR_BAD_ASID, or ::GXIO_TRIO_ERR_BAD_BUS_RANGE.
*/
extern int gxio_trio_init_memory_map(gxio_trio_context_t *context,
unsigned int map, void *target_mem,
size_t target_size, unsigned int asid,
unsigned int mac, uint64_t bus_address,
gxio_trio_order_mode_t order_mode);
/* Flags that can be passed to resource allocation functions. */
enum gxio_trio_alloc_flags_e {
GXIO_TRIO_ALLOC_FIXED = HV_TRIO_ALLOC_FIXED,
};
/* Flags that can be passed to memory registration functions. */
enum gxio_trio_mem_flags_e {
/* Do not fill L3 when writing, and invalidate lines upon egress. */
GXIO_TRIO_MEM_FLAG_NT_HINT = IORPC_MEM_BUFFER_FLAG_NT_HINT,
/* L3 cache fills should only populate IO cache ways. */
GXIO_TRIO_MEM_FLAG_IO_PIN = IORPC_MEM_BUFFER_FLAG_IO_PIN,
};
/* Flag indicating a request generator uses a special traffic
class. */
#define GXIO_TRIO_FLAG_TRAFFIC_CLASS(N) HV_TRIO_FLAG_TC(N)
/* Flag indicating a request generator uses a virtual function
number. */
#define GXIO_TRIO_FLAG_VFUNC(N) HV_TRIO_FLAG_VFUNC(N)
/*****************************************************************
* Memory Registration *
******************************************************************/
/* Allocate Application Space Identifiers (ASIDs). Each ASID can
* register up to 16 page translations. ASIDs are used by memory map
* regions, scatter queues, and DMA queues to translate application
* VAs into memory system PAs.
*
* @param context An initialized TRIO context.
* @param count Number of ASIDs required.
* @param first Index of first ASID if ::GXIO_TRIO_ALLOC_FIXED flag
* is set, otherwise ignored.
* @param flags Flag bits, including bits from ::gxio_trio_alloc_flags_e.
* @return Index of first ASID, or ::GXIO_TRIO_ERR_NO_ASID if allocation
* failed.
*/
extern int gxio_trio_alloc_asids(gxio_trio_context_t *context,
unsigned int count, unsigned int first,
unsigned int flags);
#endif /* ! _GXIO_TRIO_H_ */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _GXIO_USB_H_
#define _GXIO_USB_H_
#include "common.h"
#include <hv/drv_usb_host_intf.h>
#include <hv/iorpc.h>
/*
*
* An API for manipulating general-purpose I/O pins.
*/
/*
*
* The USB shim allows access to the processor's Universal Serial Bus
* connections.
*/
/* A context object used to manage USB hardware resources. */
typedef struct {
/* File descriptor for calling up to the hypervisor. */
int fd;
/* The VA at which our MMIO registers are mapped. */
char *mmio_base;
} gxio_usb_host_context_t;
/* Initialize a USB context.
*
* A properly initialized context must be obtained before any of the other
* gxio_usb_host routines may be used.
*
* @param context Pointer to a gxio_usb_host_context_t, which will be
* initialized by this routine, if it succeeds.
* @param usb_index Index of the USB shim to use.
* @param is_ehci Nonzero to use the EHCI interface; zero to use the OHCI
* intereface.
* @return Zero if the context was successfully initialized, else a
* GXIO_ERR_xxx error code.
*/
extern int gxio_usb_host_init(gxio_usb_host_context_t * context, int usb_index,
int is_ehci);
/* Destroy a USB context.
*
* Once destroyed, a context may not be used with any gxio_usb_host routines
* other than gxio_usb_host_init(). After this routine returns, no further
* interrupts or signals requested on this context will be delivered. The
* state and configuration of the pins which had been attached to this
* context are unchanged by this operation.
*
* @param context Pointer to a gxio_usb_host_context_t.
* @return Zero if the context was successfully destroyed, else a
* GXIO_ERR_xxx error code.
*/
extern int gxio_usb_host_destroy(gxio_usb_host_context_t * context);
/* Retrieve the address of the shim's MMIO registers.
*
* @param context Pointer to a properly initialized gxio_usb_host_context_t.
* @return The address of the shim's MMIO registers.
*/
extern void *gxio_usb_host_get_reg_start(gxio_usb_host_context_t * context);
/* Retrieve the length of the shim's MMIO registers.
*
* @param context Pointer to a properly initialized gxio_usb_host_context_t.
* @return The length of the shim's MMIO registers.
*/
extern size_t gxio_usb_host_get_reg_len(gxio_usb_host_context_t * context);
#endif /* _GXIO_USB_H_ */
/*
* Copyright 2011 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/**
* Interface definitions for the mpipe driver.
*/
#ifndef _SYS_HV_DRV_MPIPE_INTF_H
#define _SYS_HV_DRV_MPIPE_INTF_H
#include <arch/mpipe.h>
#include <arch/mpipe_constants.h>
/** Number of buffer stacks (32). */
#define HV_MPIPE_NUM_BUFFER_STACKS \
(MPIPE_MMIO_INIT_DAT_GX36_1__BUFFER_STACK_MASK_WIDTH)
/** Number of NotifRings (256). */
#define HV_MPIPE_NUM_NOTIF_RINGS (MPIPE_NUM_NOTIF_RINGS)
/** Number of NotifGroups (32). */
#define HV_MPIPE_NUM_NOTIF_GROUPS (MPIPE_NUM_NOTIF_GROUPS)
/** Number of buckets (4160). */
#define HV_MPIPE_NUM_BUCKETS (MPIPE_NUM_BUCKETS)
/** Number of "lo" buckets (4096). */
#define HV_MPIPE_NUM_LO_BUCKETS 4096
/** Number of "hi" buckets (64). */
#define HV_MPIPE_NUM_HI_BUCKETS \
(HV_MPIPE_NUM_BUCKETS - HV_MPIPE_NUM_LO_BUCKETS)
/** Number of edma rings (24). */
#define HV_MPIPE_NUM_EDMA_RINGS \
(MPIPE_MMIO_INIT_DAT_GX36_1__EDMA_POST_MASK_WIDTH)
/** A flag bit indicating a fixed resource allocation. */
#define HV_MPIPE_ALLOC_FIXED 0x01
/** Offset for the config register MMIO region. */
#define HV_MPIPE_CONFIG_MMIO_OFFSET \
(MPIPE_MMIO_ADDR__REGION_VAL_CFG << MPIPE_MMIO_ADDR__REGION_SHIFT)
/** Size of the config register MMIO region. */
#define HV_MPIPE_CONFIG_MMIO_SIZE (64 * 1024)
/** Offset for the config register MMIO region. */
#define HV_MPIPE_FAST_MMIO_OFFSET \
(MPIPE_MMIO_ADDR__REGION_VAL_IDMA << MPIPE_MMIO_ADDR__REGION_SHIFT)
/** Size of the fast register MMIO region (IDMA, EDMA, buffer stack). */
#define HV_MPIPE_FAST_MMIO_SIZE \
((MPIPE_MMIO_ADDR__REGION_VAL_BSM + 1 - MPIPE_MMIO_ADDR__REGION_VAL_IDMA) \
<< MPIPE_MMIO_ADDR__REGION_SHIFT)
/*
* Each type of resource allocation comes in quantized chunks, where
* XXX_BITS is the number of chunks, and XXX_RES_PER_BIT is the number
* of resources in each chunk.
*/
/** Number of buffer stack chunks available (32). */
#define HV_MPIPE_ALLOC_BUFFER_STACKS_BITS \
MPIPE_MMIO_INIT_DAT_GX36_1__BUFFER_STACK_MASK_WIDTH
/** Granularity of buffer stack allocation (1). */
#define HV_MPIPE_ALLOC_BUFFER_STACKS_RES_PER_BIT \
(HV_MPIPE_NUM_BUFFER_STACKS / HV_MPIPE_ALLOC_BUFFER_STACKS_BITS)
/** Number of NotifRing chunks available (32). */
#define HV_MPIPE_ALLOC_NOTIF_RINGS_BITS \
MPIPE_MMIO_INIT_DAT_GX36_0__NOTIF_RING_MASK_WIDTH
/** Granularity of NotifRing allocation (8). */
#define HV_MPIPE_ALLOC_NOTIF_RINGS_RES_PER_BIT \
(HV_MPIPE_NUM_NOTIF_RINGS / HV_MPIPE_ALLOC_NOTIF_RINGS_BITS)
/** Number of NotifGroup chunks available (32). */
#define HV_MPIPE_ALLOC_NOTIF_GROUPS_BITS \
HV_MPIPE_NUM_NOTIF_GROUPS
/** Granularity of NotifGroup allocation (1). */
#define HV_MPIPE_ALLOC_NOTIF_GROUPS_RES_PER_BIT \
(HV_MPIPE_NUM_NOTIF_GROUPS / HV_MPIPE_ALLOC_NOTIF_GROUPS_BITS)
/** Number of lo bucket chunks available (16). */
#define HV_MPIPE_ALLOC_LO_BUCKETS_BITS \
MPIPE_MMIO_INIT_DAT_GX36_0__BUCKET_RELEASE_MASK_LO_WIDTH
/** Granularity of lo bucket allocation (256). */
#define HV_MPIPE_ALLOC_LO_BUCKETS_RES_PER_BIT \
(HV_MPIPE_NUM_LO_BUCKETS / HV_MPIPE_ALLOC_LO_BUCKETS_BITS)
/** Number of hi bucket chunks available (16). */
#define HV_MPIPE_ALLOC_HI_BUCKETS_BITS \
MPIPE_MMIO_INIT_DAT_GX36_0__BUCKET_RELEASE_MASK_HI_WIDTH
/** Granularity of hi bucket allocation (4). */
#define HV_MPIPE_ALLOC_HI_BUCKETS_RES_PER_BIT \
(HV_MPIPE_NUM_HI_BUCKETS / HV_MPIPE_ALLOC_HI_BUCKETS_BITS)
/** Number of eDMA ring chunks available (24). */
#define HV_MPIPE_ALLOC_EDMA_RINGS_BITS \
MPIPE_MMIO_INIT_DAT_GX36_1__EDMA_POST_MASK_WIDTH
/** Granularity of eDMA ring allocation (1). */
#define HV_MPIPE_ALLOC_EDMA_RINGS_RES_PER_BIT \
(HV_MPIPE_NUM_EDMA_RINGS / HV_MPIPE_ALLOC_EDMA_RINGS_BITS)
/** Bit vector encoding which NotifRings are in a NotifGroup. */
typedef struct
{
/** The actual bits. */
uint64_t ring_mask[4];
} gxio_mpipe_notif_group_bits_t;
/** Another name for MPIPE_LBL_INIT_DAT_BSTS_TBL_t. */
typedef MPIPE_LBL_INIT_DAT_BSTS_TBL_t gxio_mpipe_bucket_info_t;
/** Eight buffer stack ids. */
typedef struct
{
/** The stacks. */
uint8_t stacks[8];
} gxio_mpipe_rules_stacks_t;
/** A destination mac address. */
typedef struct
{
/** The octets. */
uint8_t octets[6];
} gxio_mpipe_rules_dmac_t;
/** A vlan. */
typedef uint16_t gxio_mpipe_rules_vlan_t;
/** Maximum number of characters in a link name. */
#define GXIO_MPIPE_LINK_NAME_LEN 32
/** Structure holding a link name. Only needed, and only typedef'ed,
* because the IORPC stub generator only handles types which are single
* words coming before the parameter name. */
typedef struct
{
/** The name itself. */
char name[GXIO_MPIPE_LINK_NAME_LEN];
}
_gxio_mpipe_link_name_t;
/** Maximum number of characters in a symbol name. */
#define GXIO_MPIPE_SYMBOL_NAME_LEN 128
/** Structure holding a symbol name. Only needed, and only typedef'ed,
* because the IORPC stub generator only handles types which are single
* words coming before the parameter name. */
typedef struct
{
/** The name itself. */
char name[GXIO_MPIPE_SYMBOL_NAME_LEN];
}
_gxio_mpipe_symbol_name_t;
/** Structure holding a MAC address. */
typedef struct
{
/** The address. */
uint8_t mac[6];
}
_gxio_mpipe_link_mac_t;
/** Request shared data permission -- that is, the ability to send and
* receive packets -- on the specified link. Other processes may also
* request shared data permission on the same link.
*
* No more than one of ::GXIO_MPIPE_LINK_DATA, ::GXIO_MPIPE_LINK_NO_DATA,
* or ::GXIO_MPIPE_LINK_EXCL_DATA may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_DATA is assumed.
*/
#define GXIO_MPIPE_LINK_DATA 0x00000001UL
/** Do not request data permission on the specified link.
*
* No more than one of ::GXIO_MPIPE_LINK_DATA, ::GXIO_MPIPE_LINK_NO_DATA,
* or ::GXIO_MPIPE_LINK_EXCL_DATA may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_DATA is assumed.
*/
#define GXIO_MPIPE_LINK_NO_DATA 0x00000002UL
/** Request exclusive data permission -- that is, the ability to send and
* receive packets -- on the specified link. No other processes may
* request data permission on this link, and if any process already has
* data permission on it, this open will fail.
*
* No more than one of ::GXIO_MPIPE_LINK_DATA, ::GXIO_MPIPE_LINK_NO_DATA,
* or ::GXIO_MPIPE_LINK_EXCL_DATA may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_DATA is assumed.
*/
#define GXIO_MPIPE_LINK_EXCL_DATA 0x00000004UL
/** Request shared stats permission -- that is, the ability to read and write
* registers which contain link statistics, and to get link attributes --
* on the specified link. Other processes may also request shared stats
* permission on the same link.
*
* No more than one of ::GXIO_MPIPE_LINK_STATS, ::GXIO_MPIPE_LINK_NO_STATS,
* or ::GXIO_MPIPE_LINK_EXCL_STATS may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_STATS is assumed.
*/
#define GXIO_MPIPE_LINK_STATS 0x00000008UL
/** Do not request stats permission on the specified link.
*
* No more than one of ::GXIO_MPIPE_LINK_STATS, ::GXIO_MPIPE_LINK_NO_STATS,
* or ::GXIO_MPIPE_LINK_EXCL_STATS may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_STATS is assumed.
*/
#define GXIO_MPIPE_LINK_NO_STATS 0x00000010UL
/** Request exclusive stats permission -- that is, the ability to read and
* write registers which contain link statistics, and to get link
* attributes -- on the specified link. No other processes may request
* stats permission on this link, and if any process already
* has stats permission on it, this open will fail.
*
* Requesting exclusive stats permission is normally a very bad idea, since
* it prevents programs like mpipe-stat from providing information on this
* link. Applications should only do this if they use MAC statistics
* registers, and cannot tolerate any of the clear-on-read registers being
* reset by other statistics programs.
*
* No more than one of ::GXIO_MPIPE_LINK_STATS, ::GXIO_MPIPE_LINK_NO_STATS,
* or ::GXIO_MPIPE_LINK_EXCL_STATS may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_STATS is assumed.
*/
#define GXIO_MPIPE_LINK_EXCL_STATS 0x00000020UL
/** Request shared control permission -- that is, the ability to modify link
* attributes, and read and write MAC and MDIO registers -- on the
* specified link. Other processes may also request shared control
* permission on the same link.
*
* No more than one of ::GXIO_MPIPE_LINK_CTL, ::GXIO_MPIPE_LINK_NO_CTL,
* or ::GXIO_MPIPE_LINK_EXCL_CTL may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_CTL is assumed.
*/
#define GXIO_MPIPE_LINK_CTL 0x00000040UL
/** Do not request control permission on the specified link.
*
* No more than one of ::GXIO_MPIPE_LINK_CTL, ::GXIO_MPIPE_LINK_NO_CTL,
* or ::GXIO_MPIPE_LINK_EXCL_CTL may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_CTL is assumed.
*/
#define GXIO_MPIPE_LINK_NO_CTL 0x00000080UL
/** Request exclusive control permission -- that is, the ability to modify
* link attributes, and read and write MAC and MDIO registers -- on the
* specified link. No other processes may request control permission on
* this link, and if any process already has control permission on it,
* this open will fail.
*
* Requesting exclusive control permission is not always a good idea, since
* it prevents programs like mpipe-link from configuring the link.
*
* No more than one of ::GXIO_MPIPE_LINK_CTL, ::GXIO_MPIPE_LINK_NO_CTL,
* or ::GXIO_MPIPE_LINK_EXCL_CTL may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_CTL is assumed.
*/
#define GXIO_MPIPE_LINK_EXCL_CTL 0x00000100UL
/** Set the desired state of the link to up, allowing any speeds which are
* supported by the link hardware, as part of this open operation; do not
* change the desired state of the link when it is closed or the process
* exits. No more than one of ::GXIO_MPIPE_LINK_AUTO_UP,
* ::GXIO_MPIPE_LINK_AUTO_UPDOWN, ::GXIO_MPIPE_LINK_AUTO_DOWN, or
* ::GXIO_MPIPE_LINK_AUTO_NONE may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_AUTO_UPDOWN is assumed.
*/
#define GXIO_MPIPE_LINK_AUTO_UP 0x00000200UL
/** Set the desired state of the link to up, allowing any speeds which are
* supported by the link hardware, as part of this open operation; when the
* link is closed or this process exits, if no other process has the link
* open, set the desired state of the link to down. No more than one of
* ::GXIO_MPIPE_LINK_AUTO_UP, ::GXIO_MPIPE_LINK_AUTO_UPDOWN,
* ::GXIO_MPIPE_LINK_AUTO_DOWN, or ::GXIO_MPIPE_LINK_AUTO_NONE may be
* specifed in a gxio_mpipe_link_open() call. If none are specified,
* ::GXIO_MPIPE_LINK_AUTO_UPDOWN is assumed.
*/
#define GXIO_MPIPE_LINK_AUTO_UPDOWN 0x00000400UL
/** Do not change the desired state of the link as part of the open
* operation; when the link is closed or this process exits, if no other
* process has the link open, set the desired state of the link to down.
* No more than one of ::GXIO_MPIPE_LINK_AUTO_UP,
* ::GXIO_MPIPE_LINK_AUTO_UPDOWN, ::GXIO_MPIPE_LINK_AUTO_DOWN, or
* ::GXIO_MPIPE_LINK_AUTO_NONE may be specifed in a gxio_mpipe_link_open()
* call. If none are specified, ::GXIO_MPIPE_LINK_AUTO_UPDOWN is assumed.
*/
#define GXIO_MPIPE_LINK_AUTO_DOWN 0x00000800UL
/** Do not change the desired state of the link as part of the open
* operation; do not change the desired state of the link when it is
* closed or the process exits. No more than one of
* ::GXIO_MPIPE_LINK_AUTO_UP, ::GXIO_MPIPE_LINK_AUTO_UPDOWN,
* ::GXIO_MPIPE_LINK_AUTO_DOWN, or ::GXIO_MPIPE_LINK_AUTO_NONE may be
* specifed in a gxio_mpipe_link_open() call. If none are specified,
* ::GXIO_MPIPE_LINK_AUTO_UPDOWN is assumed.
*/
#define GXIO_MPIPE_LINK_AUTO_NONE 0x00001000UL
/** Request that this open call not complete until the network link is up.
* The process will wait as long as necessary for this to happen;
* applications which wish to abandon waiting for the link after a
* specific time period should not specify this flag when opening a link,
* but should instead call gxio_mpipe_link_wait() afterward. The link
* must be opened with stats permission. Note that this flag by itself
* does not change the desired link state; if other open flags or previous
* link state changes have not requested a desired state of up, the open
* call will never complete. This flag is not available to kernel
* clients.
*/
#define GXIO_MPIPE_LINK_WAIT 0x00002000UL
/*
* Note: link attributes must fit in 24 bits, since we use the top 8 bits
* of the IORPC offset word for the channel number.
*/
/** Determine whether jumbo frames may be received. If this attribute's
* value value is nonzero, the MAC will accept frames of up to 10240 bytes.
* If the value is zero, the MAC will only accept frames of up to 1544
* bytes. The default value is zero. */
#define GXIO_MPIPE_LINK_RECEIVE_JUMBO 0x010000
/** Determine whether to send pause frames on this link if the mPIPE packet
* FIFO is nearly full. If the value is zero, pause frames are not sent.
* If the value is nonzero, it is the delay value which will be sent in any
* pause frames which are output, in units of 512 bit times.
*
* Bear in mind that in almost all circumstances, the mPIPE packet FIFO
* will never fill up, since mPIPE will empty it as fast as or faster than
* the incoming data rate, by either delivering or dropping packets. The
* only situation in which this is not true is if the memory and cache
* subsystem is extremely heavily loaded, and mPIPE cannot perform DMA of
* packet data to memory in a timely fashion. In particular, pause frames
* will <em>not</em> be sent if packets cannot be delivered because
* NotifRings are full, buckets are full, or buffers are not available in
* a buffer stack. */
#define GXIO_MPIPE_LINK_SEND_PAUSE 0x020000
/** Determine whether to suspend output on the receipt of pause frames.
* If the value is nonzero, mPIPE shim will suspend output on the link's
* channel when a pause frame is received. If the value is zero, pause
* frames will be ignored. The default value is zero. */
#define GXIO_MPIPE_LINK_RECEIVE_PAUSE 0x030000
/** Interface MAC address. The value is a 6-byte MAC address, in the least
* significant 48 bits of the value; in other words, an address which would
* be printed as '12:34:56:78:90:AB' in IEEE 802 canonical format would
* be returned as 0x12345678ab.
*
* Depending upon the overall system design, a MAC address may or may not
* be available for each interface. Note that the interface's MAC address
* does not limit the packets received on its channel, although the
* classifier's rules could be configured to do that. Similarly, the MAC
* address is not used when transmitting packets, although applications
* could certainly decide to use the assigned address as a source MAC
* address when doing so. This attribute may only be retrieved with
* gxio_mpipe_link_get_attr(); it may not be modified.
*/
#define GXIO_MPIPE_LINK_MAC 0x040000
/** Determine whether to discard egress packets on link down. If this value
* is nonzero, packets sent on this link while the link is down will be
* discarded. If this value is zero, no packets will be sent on this link
* while it is down. The default value is one. */
#define GXIO_MPIPE_LINK_DISCARD_IF_DOWN 0x050000
/** Possible link state. The value is a combination of link state flags,
* ORed together, that indicate link modes which are actually supported by
* the hardware. This attribute may only be retrieved with
* gxio_mpipe_link_get_attr(); it may not be modified. */
#define GXIO_MPIPE_LINK_POSSIBLE_STATE 0x060000
/** Current link state. The value is a combination of link state flags,
* ORed together, that indicate the current state of the hardware. If the
* link is down, the value ANDed with ::GXIO_MPIPE_LINK_SPEED will be zero;
* if the link is up, the value ANDed with ::GXIO_MPIPE_LINK_SPEED will
* result in exactly one of the speed values, indicating the current speed.
* This attribute may only be retrieved with gxio_mpipe_link_get_attr(); it
* may not be modified. */
#define GXIO_MPIPE_LINK_CURRENT_STATE 0x070000
/** Desired link state. The value is a conbination of flags, which specify
* the desired state for the link. With gxio_mpipe_link_set_attr(), this
* will, in the background, attempt to bring up the link using whichever of
* the requested flags are reasonable, or take down the link if the flags
* are zero. The actual link up or down operation may happen after this
* call completes. If the link state changes in the future, the system
* will continue to try to get back to the desired link state; for
* instance, if the link is brought up successfully, and then the network
* cable is disconnected, the link will go down. However, the desired
* state of the link is still up, so if the cable is reconnected, the link
* will be brought up again.
*
* With gxio_mpipe_link_set_attr(), this will indicate the desired state
* for the link, as set with a previous gxio_mpipe_link_set_attr() call,
* or implicitly by a gxio_mpipe_link_open() or link close operation.
* This may not reflect the current state of the link; to get that, use
* ::GXIO_MPIPE_LINK_CURRENT_STATE.
*/
#define GXIO_MPIPE_LINK_DESIRED_STATE 0x080000
/** Link can run, should run, or is running at 10 Mbps. */
#define GXIO_MPIPE_LINK_10M 0x0000000000000001UL
/** Link can run, should run, or is running at 100 Mbps. */
#define GXIO_MPIPE_LINK_100M 0x0000000000000002UL
/** Link can run, should run, or is running at 1 Gbps. */
#define GXIO_MPIPE_LINK_1G 0x0000000000000004UL
/** Link can run, should run, or is running at 10 Gbps. */
#define GXIO_MPIPE_LINK_10G 0x0000000000000008UL
/** Link can run, should run, or is running at 20 Gbps. */
#define GXIO_MPIPE_LINK_20G 0x0000000000000010UL
/** Link can run, should run, or is running at 25 Gbps. */
#define GXIO_MPIPE_LINK_25G 0x0000000000000020UL
/** Link can run, should run, or is running at 50 Gbps. */
#define GXIO_MPIPE_LINK_50G 0x0000000000000040UL
/** Link should run at the highest speed supported by the link and by
* the device connected to the link. Only usable as a value for
* the link's desired state; never returned as a value for the current
* or possible states. */
#define GXIO_MPIPE_LINK_ANYSPEED 0x0000000000000800UL
/** All legal link speeds. This value is provided for use in extracting
* the speed-related subset of the link state flags; it is not intended
* to be set directly as a value for one of the GXIO_MPIPE_LINK_xxx_STATE
* attributes. A link is up or is requested to be up if its current or
* desired state, respectively, ANDED with this value, is nonzero. */
#define GXIO_MPIPE_LINK_SPEED_MASK 0x0000000000000FFFUL
/** Link can run, should run, or is running in MAC loopback mode. This
* loops transmitted packets back to the receiver, inside the Tile
* Processor. */
#define GXIO_MPIPE_LINK_LOOP_MAC 0x0000000000001000UL
/** Link can run, should run, or is running in PHY loopback mode. This
* loops transmitted packets back to the receiver, inside the external
* PHY chip. */
#define GXIO_MPIPE_LINK_LOOP_PHY 0x0000000000002000UL
/** Link can run, should run, or is running in external loopback mode.
* This requires that an external loopback plug be installed on the
* Ethernet port. Note that only some links require that this be
* configured via the gxio_mpipe_link routines; other links can do
* external loopack with the plug and no special configuration. */
#define GXIO_MPIPE_LINK_LOOP_EXT 0x0000000000004000UL
/** All legal loopback types. */
#define GXIO_MPIPE_LINK_LOOP_MASK 0x000000000000F000UL
/** Link can run, should run, or is running in full-duplex mode.
* If neither ::GXIO_MPIPE_LINK_FDX nor ::GXIO_MPIPE_LINK_HDX are
* specified in a set of desired state flags, both are assumed. */
#define GXIO_MPIPE_LINK_FDX 0x0000000000010000UL
/** Link can run, should run, or is running in half-duplex mode.
* If neither ::GXIO_MPIPE_LINK_FDX nor ::GXIO_MPIPE_LINK_HDX are
* specified in a set of desired state flags, both are assumed. */
#define GXIO_MPIPE_LINK_HDX 0x0000000000020000UL
/** An individual rule. */
typedef struct
{
/** The total size. */
uint16_t size;
/** The priority. */
int16_t priority;
/** The "headroom" in each buffer. */
uint8_t headroom;
/** The "tailroom" in each buffer. */
uint8_t tailroom;
/** The "capacity" of the largest buffer. */
uint16_t capacity;
/** The mask for converting a flow hash into a bucket. */
uint16_t bucket_mask;
/** The offset for converting a flow hash into a bucket. */
uint16_t bucket_first;
/** The buffer stack ids. */
gxio_mpipe_rules_stacks_t stacks;
/** The actual channels. */
uint32_t channel_bits;
/** The number of dmacs. */
uint16_t num_dmacs;
/** The number of vlans. */
uint16_t num_vlans;
/** The actual dmacs and vlans. */
uint8_t dmacs_and_vlans[];
} gxio_mpipe_rules_rule_t;
/** A list of classifier rules. */
typedef struct
{
/** The offset to the end of the current rule. */
uint16_t tail;
/** The offset to the start of the current rule. */
uint16_t head;
/** The actual rules. */
uint8_t rules[4096 - 4];
} gxio_mpipe_rules_list_t;
/** mPIPE statistics structure. These counters include all relevant
* events occurring on all links within the mPIPE shim. */
typedef struct
{
/** Number of ingress packets dropped for any reason. */
uint64_t ingress_drops;
/** Number of ingress packets dropped because a buffer stack was empty. */
uint64_t ingress_drops_no_buf;
/** Number of ingress packets dropped or truncated due to lack of space in
* the iPkt buffer. */
uint64_t ingress_drops_ipkt;
/** Number of ingress packets dropped by the classifier or load balancer */
uint64_t ingress_drops_cls_lb;
/** Total number of ingress packets. */
uint64_t ingress_packets;
/** Total number of egress packets. */
uint64_t egress_packets;
/** Total number of ingress bytes. */
uint64_t ingress_bytes;
/** Total number of egress bytes. */
uint64_t egress_bytes;
}
gxio_mpipe_stats_t;
#endif /* _SYS_HV_DRV_MPIPE_INTF_H */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/**
* Interface definitions for the trio driver.
*/
#ifndef _SYS_HV_DRV_TRIO_INTF_H
#define _SYS_HV_DRV_TRIO_INTF_H
#include <arch/trio.h>
/** The vendor ID for all Tilera processors. */
#define TILERA_VENDOR_ID 0x1a41
/** The device ID for the Gx36 processor. */
#define TILERA_GX36_DEV_ID 0x0200
/** Device ID for our internal bridge when running as RC. */
#define TILERA_GX36_RC_DEV_ID 0x2000
/** Maximum number of TRIO interfaces. */
#define TILEGX_NUM_TRIO 2
/** Gx36 has max 3 PCIe MACs per TRIO interface. */
#define TILEGX_TRIO_PCIES 3
/** Specify port properties for a PCIe MAC. */
struct pcie_port_property
{
/** If true, the link can be configured in PCIe root complex mode. */
uint8_t allow_rc: 1;
/** If true, the link can be configured in PCIe endpoint mode. */
uint8_t allow_ep: 1;
/** If true, the link can be configured in StreamIO mode. */
uint8_t allow_sio: 1;
/** If true, the link is allowed to support 1-lane operation. Software
* will not consider it an error if the link comes up as a x1 link. */
uint8_t allow_x1: 1;
/** If true, the link is allowed to support 2-lane operation. Software
* will not consider it an error if the link comes up as a x2 link. */
uint8_t allow_x2: 1;
/** If true, the link is allowed to support 4-lane operation. Software
* will not consider it an error if the link comes up as a x4 link. */
uint8_t allow_x4: 1;
/** If true, the link is allowed to support 8-lane operation. Software
* will not consider it an error if the link comes up as a x8 link. */
uint8_t allow_x8: 1;
/** Reserved. */
uint8_t reserved: 1;
};
/** Configurations can be issued to configure a char stream interrupt. */
typedef enum pcie_stream_intr_config_sel_e
{
/** Interrupt configuration for memory map regions. */
MEM_MAP_SEL,
/** Interrupt configuration for push DMAs. */
PUSH_DMA_SEL,
/** Interrupt configuration for pull DMAs. */
PULL_DMA_SEL,
}
pcie_stream_intr_config_sel_t;
/** The mmap file offset (PA) of the TRIO config region. */
#define HV_TRIO_CONFIG_OFFSET \
((unsigned long long)TRIO_MMIO_ADDRESS_SPACE__REGION_VAL_CFG << \
TRIO_MMIO_ADDRESS_SPACE__REGION_SHIFT)
/** The maximum size of the TRIO config region. */
#define HV_TRIO_CONFIG_SIZE \
(1ULL << TRIO_CFG_REGION_ADDR__REGION_SHIFT)
/** Size of the config region mapped into client. We can't use
* TRIO_MMIO_ADDRESS_SPACE__OFFSET_WIDTH because it
* will require the kernel to allocate 4GB VA space
* from the VMALLOC region which has a total range
* of 4GB.
*/
#define HV_TRIO_CONFIG_IOREMAP_SIZE \
((uint64_t) 1 << TRIO_CFG_REGION_ADDR__PROT_SHIFT)
/** The mmap file offset (PA) of a scatter queue region. */
#define HV_TRIO_SQ_OFFSET(queue) \
(((unsigned long long)TRIO_MMIO_ADDRESS_SPACE__REGION_VAL_MAP_SQ << \
TRIO_MMIO_ADDRESS_SPACE__REGION_SHIFT) | \
((queue) << TRIO_MAP_SQ_REGION_ADDR__SQ_SEL_SHIFT))
/** The maximum size of a scatter queue region. */
#define HV_TRIO_SQ_SIZE \
(1ULL << TRIO_MAP_SQ_REGION_ADDR__SQ_SEL_SHIFT)
/** The "hardware MMIO region" of the first PIO region. */
#define HV_TRIO_FIRST_PIO_REGION 8
/** The mmap file offset (PA) of a PIO region. */
#define HV_TRIO_PIO_OFFSET(region) \
(((unsigned long long)(region) + HV_TRIO_FIRST_PIO_REGION) \
<< TRIO_PIO_REGIONS_ADDR__REGION_SHIFT)
/** The maximum size of a PIO region. */
#define HV_TRIO_PIO_SIZE (1ULL << TRIO_PIO_REGIONS_ADDR__ADDR_WIDTH)
/** The mmap file offset (PA) of a push DMA region. */
#define HV_TRIO_PUSH_DMA_OFFSET(ring) \
(((unsigned long long)TRIO_MMIO_ADDRESS_SPACE__REGION_VAL_PUSH_DMA << \
TRIO_MMIO_ADDRESS_SPACE__REGION_SHIFT) | \
((ring) << TRIO_PUSH_DMA_REGION_ADDR__RING_SEL_SHIFT))
/** The mmap file offset (PA) of a pull DMA region. */
#define HV_TRIO_PULL_DMA_OFFSET(ring) \
(((unsigned long long)TRIO_MMIO_ADDRESS_SPACE__REGION_VAL_PULL_DMA << \
TRIO_MMIO_ADDRESS_SPACE__REGION_SHIFT) | \
((ring) << TRIO_PULL_DMA_REGION_ADDR__RING_SEL_SHIFT))
/** The maximum size of a DMA region. */
#define HV_TRIO_DMA_REGION_SIZE \
(1ULL << TRIO_PUSH_DMA_REGION_ADDR__RING_SEL_SHIFT)
/** The mmap file offset (PA) of a Mem-Map interrupt region. */
#define HV_TRIO_MEM_MAP_INTR_OFFSET(map) \
(((unsigned long long)TRIO_MMIO_ADDRESS_SPACE__REGION_VAL_MAP_MEM << \
TRIO_MMIO_ADDRESS_SPACE__REGION_SHIFT) | \
((map) << TRIO_MAP_MEM_REGION_ADDR__MAP_SEL_SHIFT))
/** The maximum size of a Mem-Map interrupt region. */
#define HV_TRIO_MEM_MAP_INTR_SIZE \
(1ULL << TRIO_MAP_MEM_REGION_ADDR__MAP_SEL_SHIFT)
/** A flag bit indicating a fixed resource allocation. */
#define HV_TRIO_ALLOC_FIXED 0x01
/** TRIO requires that all mappings have 4kB aligned start addresses. */
#define HV_TRIO_PAGE_SHIFT 12
/** TRIO requires that all mappings have 4kB aligned start addresses. */
#define HV_TRIO_PAGE_SIZE (1ull << HV_TRIO_PAGE_SHIFT)
/* Specify all PCIe port properties for a TRIO. */
struct pcie_trio_ports_property
{
struct pcie_port_property ports[TILEGX_TRIO_PCIES];
};
/* Flags indicating traffic class. */
#define HV_TRIO_FLAG_TC_SHIFT 4
#define HV_TRIO_FLAG_TC_RMASK 0xf
#define HV_TRIO_FLAG_TC(N) \
((((N) & HV_TRIO_FLAG_TC_RMASK) + 1) << HV_TRIO_FLAG_TC_SHIFT)
/* Flags indicating virtual functions. */
#define HV_TRIO_FLAG_VFUNC_SHIFT 8
#define HV_TRIO_FLAG_VFUNC_RMASK 0xff
#define HV_TRIO_FLAG_VFUNC(N) \
((((N) & HV_TRIO_FLAG_VFUNC_RMASK) + 1) << HV_TRIO_FLAG_VFUNC_SHIFT)
/* Flag indicating an ordered PIO region. */
#define HV_TRIO_PIO_FLAG_ORDERED (1 << 16)
/* Flags indicating special types of PIO regions. */
#define HV_TRIO_PIO_FLAG_SPACE_SHIFT 17
#define HV_TRIO_PIO_FLAG_SPACE_MASK (0x3 << HV_TRIO_PIO_FLAG_SPACE_SHIFT)
#define HV_TRIO_PIO_FLAG_CONFIG_SPACE (0x1 << HV_TRIO_PIO_FLAG_SPACE_SHIFT)
#define HV_TRIO_PIO_FLAG_IO_SPACE (0x2 << HV_TRIO_PIO_FLAG_SPACE_SHIFT)
#endif /* _SYS_HV_DRV_TRIO_INTF_H */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/**
* Interface definitions for the USB host driver.
*/
#ifndef _SYS_HV_DRV_USB_HOST_INTF_H
#define _SYS_HV_DRV_USB_HOST_INTF_H
#include <arch/usb_host.h>
/** Offset for the EHCI register MMIO region. */
#define HV_USB_HOST_MMIO_OFFSET_EHCI ((uint64_t) USB_HOST_HCCAPBASE_REG)
/** Offset for the OHCI register MMIO region. */
#define HV_USB_HOST_MMIO_OFFSET_OHCI ((uint64_t) USB_HOST_OHCD_HC_REVISION_REG)
/** Size of the register MMIO region. This turns out to be the same for
* both EHCI and OHCI. */
#define HV_USB_HOST_MMIO_SIZE ((uint64_t) 0x1000)
/** The number of service domains supported by the USB host shim. */
#define HV_USB_HOST_NUM_SVC_DOM 1
#endif /* _SYS_HV_DRV_USB_HOST_INTF_H */
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#ifndef _HV_IORPC_H_
#define _HV_IORPC_H_
/**
*
* Error codes and struct definitions for the IO RPC library.
*
* The hypervisor's IO RPC component provides a convenient way for
* driver authors to proxy system calls between user space, linux, and
* the hypervisor driver. The core of the system is a set of Python
* files that take ".idl" files as input and generates the following
* source code:
*
* - _rpc_call() routines for use in userspace IO libraries. These
* routines take an argument list specified in the .idl file, pack the
* arguments in to a buffer, and read or write that buffer via the
* Linux iorpc driver.
*
* - dispatch_read() and dispatch_write() routines that hypervisor
* drivers can use to implement most of their dev_pread() and
* dev_pwrite() methods. These routines decode the incoming parameter
* blob, permission check and translate parameters where appropriate,
* and then invoke a callback routine for whichever RPC call has
* arrived. The driver simply implements the set of callback
* routines.
*
* The IO RPC system also includes the Linux 'iorpc' driver, which
* proxies calls between the userspace library and the hypervisor
* driver. The Linux driver is almost entirely device agnostic; it
* watches for special flags indicating cases where a memory buffer
* address might need to be translated, etc. As a result, driver
* writers can avoid many of the problem cases related to registering
* hardware resources like memory pages or interrupts. However, the
* drivers must be careful to obey the conventions documented below in
* order to work properly with the generic Linux iorpc driver.
*
* @section iorpc_domains Service Domains
*
* All iorpc-based drivers must support a notion of service domains.
* A service domain is basically an application context - state
* indicating resources that are allocated to that particular app
* which it may access and (perhaps) other applications may not
* access. Drivers can support any number of service domains they
* choose. In some cases the design is limited by a number of service
* domains supported by the IO hardware; in other cases the service
* domains are a purely software concept and the driver chooses a
* maximum number of domains based on how much state memory it is
* willing to preallocate.
*
* For example, the mPIPE driver only supports as many service domains
* as are supported by the mPIPE hardware. This limitation is
* required because the hardware implements its own MMIO protection
* scheme to allow large MMIO mappings while still protecting small
* register ranges within the page that should only be accessed by the
* hypervisor.
*
* In contrast, drivers with no hardware service domain limitations
* (for instance the TRIO shim) can implement an arbitrary number of
* service domains. In these cases, each service domain is limited to
* a carefully restricted set of legal MMIO addresses if necessary to
* keep one application from corrupting another application's state.
*
* @section iorpc_conventions System Call Conventions
*
* The driver's open routine is responsible for allocating a new
* service domain for each hv_dev_open() call. By convention, the
* return value from open() should be the service domain number on
* success, or GXIO_ERR_NO_SVC_DOM if no more service domains are
* available.
*
* The implementations of hv_dev_pread() and hv_dev_pwrite() are
* responsible for validating the devhdl value passed up by the
* client. Since the device handle returned by hv_dev_open() should
* embed the positive service domain number, drivers should make sure
* that DRV_HDL2BITS(devhdl) is a legal service domain. If the client
* passes an illegal service domain number, the routine should return
* GXIO_ERR_INVAL_SVC_DOM. Once the service domain number has been
* validated, the driver can copy to/from the client buffer and call
* the dispatch_read() or dispatch_write() methods created by the RPC
* generator.
*
* The hv_dev_close() implementation should reset all service domain
* state and put the service domain back on a free list for
* reallocation by a future application. In most cases, this will
* require executing a hardware reset or drain flow and denying any
* MMIO regions that were created for the service domain.
*
* @section iorpc_data Special Data Types
*
* The .idl file syntax allows the creation of syscalls with special
* parameters that require permission checks or translations as part
* of the system call path. Because of limitations in the code
* generator, APIs are generally limited to just one of these special
* parameters per system call, and they are sometimes required to be
* the first or last parameter to the call. Special parameters
* include:
*
* @subsection iorpc_mem_buffer MEM_BUFFER
*
* The MEM_BUFFER() datatype allows user space to "register" memory
* buffers with a device. Registering memory accomplishes two tasks:
* Linux keeps track of all buffers that might be modified by a
* hardware device, and the hardware device drivers bind registered
* buffers to particular hardware resources like ingress NotifRings.
* The MEM_BUFFER() idl syntax can take extra flags like ALIGN_64KB,
* ALIGN_SELF_SIZE, and FLAGS indicating that memory buffers must have
* certain alignment or that the user should be able to pass a "memory
* flags" word specifying attributes like nt_hint or IO cache pinning.
* The parser will accept multiple MEM_BUFFER() flags.
*
* Implementations must obey the following conventions when
* registering memory buffers via the iorpc flow. These rules are a
* result of the Linux driver implementation, which needs to keep
* track of how many times a particular page has been registered with
* the hardware so that it can release the page when all those
* registrations are cleared.
*
* - Memory registrations that refer to a resource which has already
* been bound must return GXIO_ERR_ALREADY_INIT. Thus, it is an
* error to register memory twice without resetting (i.e. closing) the
* resource in between. This convention keeps the Linux driver from
* having to track which particular devices a page is bound to.
*
* - At present, a memory registration is only cleared when the
* service domain is reset. In this case, the Linux driver simply
* closes the HV device file handle and then decrements the reference
* counts of all pages that were previously registered with the
* device.
*
* - In the future, we may add a mechanism for unregistering memory.
* One possible implementation would require that the user specify
* which buffer is currently registered. The HV would then verify
* that that page was actually the one currently mapped and return
* success or failure to Linux, which would then only decrement the
* page reference count if the addresses were mapped. Another scheme
* might allow Linux to pass a token to the HV to be returned when the
* resource is unmapped.
*
* @subsection iorpc_interrupt INTERRUPT
*
* The INTERRUPT .idl datatype allows the client to bind hardware
* interrupts to a particular combination of IPI parameters - CPU, IPI
* PL, and event bit number. This data is passed via a special
* datatype so that the Linux driver can validate the CPU and PL and
* the HV generic iorpc code can translate client CPUs to real CPUs.
*
* @subsection iorpc_pollfd_setup POLLFD_SETUP
*
* The POLLFD_SETUP .idl datatype allows the client to set up hardware
* interrupt bindings which are received by Linux but which are made
* visible to user processes as state transitions on a file descriptor;
* this allows user processes to use Linux primitives, such as poll(), to
* await particular hardware events. This data is passed via a special
* datatype so that the Linux driver may recognize the pollable file
* descriptor and translate it to a set of interrupt target information,
* and so that the HV generic iorpc code can translate client CPUs to real
* CPUs.
*
* @subsection iorpc_pollfd POLLFD
*
* The POLLFD .idl datatype allows manipulation of hardware interrupt
* bindings set up via the POLLFD_SETUP datatype; common operations are
* resetting the state of the requested interrupt events, and unbinding any
* bound interrupts. This data is passed via a special datatype so that
* the Linux driver may recognize the pollable file descriptor and
* translate it to an interrupt identifier previously supplied by the
* hypervisor as the result of an earlier pollfd_setup operation.
*
* @subsection iorpc_blob BLOB
*
* The BLOB .idl datatype allows the client to write an arbitrary
* length string of bytes up to the hypervisor driver. This can be
* useful for passing up large, arbitrarily structured data like
* classifier programs. The iorpc stack takes care of validating the
* buffer VA and CPA as the data passes up to the hypervisor. Unlike
* MEM_BUFFER(), the buffer is not registered - Linux does not bump
* page refcounts and the HV driver should not reuse the buffer once
* the system call is complete.
*
* @section iorpc_translation Translating User Space Calls
*
* The ::iorpc_offset structure describes the formatting of the offset
* that is passed to pread() or pwrite() as part of the generated RPC code.
* When the user calls up to Linux, the rpc code fills in all the fields of
* the offset, including a 16-bit opcode, a 16 bit format indicator, and 32
* bits of user-specified "sub-offset". The opcode indicates which syscall
* is being requested. The format indicates whether there is a "prefix
* struct" at the start of the memory buffer passed to pwrite(), and if so
* what data is in that prefix struct. These prefix structs are used to
* implement special datatypes like MEM_BUFFER() and INTERRUPT - we arrange
* to put data that needs translation and permission checks at the start of
* the buffer so that the Linux driver and generic portions of the HV iorpc
* code can easily access the data. The 32 bits of user-specified
* "sub-offset" are most useful for pread() calls where the user needs to
* also pass in a few bits indicating which register to read, etc.
*
* The Linux iorpc driver watches for system calls that contain prefix
* structs so that it can translate parameters and bump reference
* counts as appropriate. It does not (currently) have any knowledge
* of the per-device opcodes - it doesn't care what operation you're
* doing to mPIPE, so long as it can do all the generic book-keeping.
* The hv/iorpc.h header file defines all of the generic encoding bits
* needed to translate iorpc calls without knowing which particular
* opcode is being issued.
*
* @section iorpc_globals Global iorpc Calls
*
* Implementing mmap() required adding some special iorpc syscalls
* that are only called by the Linux driver, never by userspace.
* These include get_mmio_base() and check_mmio_offset(). These
* routines are described in globals.idl and must be included in every
* iorpc driver. By providing these routines in every driver, Linux's
* mmap implementation can easily get the PTE bits it needs and
* validate the PA offset without needing to know the per-device
* opcodes to perform those tasks.
*
* @section iorpc_kernel Supporting gxio APIs in the Kernel
*
* The iorpc code generator also supports generation of kernel code
* implementing the gxio APIs. This capability is currently used by
* the mPIPE network driver, and will likely be used by the TRIO root
* complex and endpoint drivers and perhaps an in-kernel crypto
* driver. Each driver that wants to instantiate iorpc calls in the
* kernel needs to generate a kernel version of the generate rpc code
* and (probably) copy any related gxio source files into the kernel.
* The mPIPE driver provides a good example of this pattern.
*/
#ifdef __KERNEL__
#include <linux/stddef.h>
#else
#include <stddef.h>
#endif
#if defined(__HV__)
#include <hv/hypervisor.h>
#elif defined(__KERNEL__)
#include "hypervisor.h"
#include <linux/types.h>
#else
#include <stdint.h>
#endif
/** Code indicating translation services required within the RPC path.
* These indicate whether there is a translatable struct at the start
* of the RPC buffer and what information that struct contains.
*/
enum iorpc_format_e
{
/** No translation required, no prefix struct. */
IORPC_FORMAT_NONE,
/** No translation required, no prefix struct, no access to this
* operation from user space. */
IORPC_FORMAT_NONE_NOUSER,
/** Prefix struct contains user VA and size. */
IORPC_FORMAT_USER_MEM,
/** Prefix struct contains CPA, size, and homing bits. */
IORPC_FORMAT_KERNEL_MEM,
/** Prefix struct contains interrupt. */
IORPC_FORMAT_KERNEL_INTERRUPT,
/** Prefix struct contains user-level interrupt. */
IORPC_FORMAT_USER_INTERRUPT,
/** Prefix struct contains pollfd_setup (interrupt information). */
IORPC_FORMAT_KERNEL_POLLFD_SETUP,
/** Prefix struct contains user-level pollfd_setup (file descriptor). */
IORPC_FORMAT_USER_POLLFD_SETUP,
/** Prefix struct contains pollfd (interrupt cookie). */
IORPC_FORMAT_KERNEL_POLLFD,
/** Prefix struct contains user-level pollfd (file descriptor). */
IORPC_FORMAT_USER_POLLFD,
};
/** Generate an opcode given format and code. */
#define IORPC_OPCODE(FORMAT, CODE) (((FORMAT) << 16) | (CODE))
/** The offset passed through the read() and write() system calls
combines an opcode with 32 bits of user-specified offset. */
union iorpc_offset
{
#ifndef __BIG_ENDIAN__
uint64_t offset; /**< All bits. */
struct
{
uint16_t code; /**< RPC code. */
uint16_t format; /**< iorpc_format_e */
uint32_t sub_offset; /**< caller-specified offset. */
};
uint32_t opcode; /**< Opcode combines code & format. */
#else
uint64_t offset; /**< All bits. */
struct
{
uint32_t sub_offset; /**< caller-specified offset. */
uint16_t format; /**< iorpc_format_e */
uint16_t code; /**< RPC code. */
};
struct
{
uint32_t padding;
uint32_t opcode; /**< Opcode combines code & format. */
};
#endif
};
/** Homing and cache hinting bits that can be used by IO devices. */
struct iorpc_mem_attr
{
unsigned int lotar_x:4; /**< lotar X bits (or Gx page_mask). */
unsigned int lotar_y:4; /**< lotar Y bits (or Gx page_offset). */
unsigned int hfh:1; /**< Uses hash-for-home. */
unsigned int nt_hint:1; /**< Non-temporal hint. */
unsigned int io_pin:1; /**< Only fill 'IO' cache ways. */
};
/** Set the nt_hint bit. */
#define IORPC_MEM_BUFFER_FLAG_NT_HINT (1 << 0)
/** Set the IO pin bit. */
#define IORPC_MEM_BUFFER_FLAG_IO_PIN (1 << 1)
/** A structure used to describe memory registration. Different
protection levels describe memory differently, so this union
contains all the different possible descriptions. As a request
moves up the call chain, each layer translates from one
description format to the next. In particular, the Linux iorpc
driver translates user VAs into CPAs and homing parameters. */
union iorpc_mem_buffer
{
struct
{
uint64_t va; /**< User virtual address. */
uint64_t size; /**< Buffer size. */
unsigned int flags; /**< nt_hint, IO pin. */
}
user; /**< Buffer as described by user apps. */
struct
{
unsigned long long cpa; /**< Client physical address. */
#if defined(__KERNEL__) || defined(__HV__)
size_t size; /**< Buffer size. */
HV_PTE pte; /**< PTE describing memory homing. */
#else
uint64_t size;
uint64_t pte;
#endif
unsigned int flags; /**< nt_hint, IO pin. */
}
kernel; /**< Buffer as described by kernel. */
struct
{
unsigned long long pa; /**< Physical address. */
size_t size; /**< Buffer size. */
struct iorpc_mem_attr attr; /**< Homing and locality hint bits. */
}
hv; /**< Buffer parameters for HV driver. */
};
/** A structure used to describe interrupts. The format differs slightly
* for user and kernel interrupts. As with the mem_buffer_t, translation
* between the formats is done at each level. */
union iorpc_interrupt
{
struct
{
int cpu; /**< CPU. */
int event; /**< evt_num */
}
user; /**< Interrupt as described by user applications. */
struct
{
int x; /**< X coord. */
int y; /**< Y coord. */
int ipi; /**< int_num */
int event; /**< evt_num */
}
kernel; /**< Interrupt as described by the kernel. */
};
/** A structure used to describe interrupts used with poll(). The format
* differs significantly for requests from user to kernel, and kernel to
* hypervisor. As with the mem_buffer_t, translation between the formats
* is done at each level. */
union iorpc_pollfd_setup
{
struct
{
int fd; /**< Pollable file descriptor. */
}
user; /**< pollfd_setup as described by user applications. */
struct
{
int x; /**< X coord. */
int y; /**< Y coord. */
int ipi; /**< int_num */
int event; /**< evt_num */
}
kernel; /**< pollfd_setup as described by the kernel. */
};
/** A structure used to describe previously set up interrupts used with
* poll(). The format differs significantly for requests from user to
* kernel, and kernel to hypervisor. As with the mem_buffer_t, translation
* between the formats is done at each level. */
union iorpc_pollfd
{
struct
{
int fd; /**< Pollable file descriptor. */
}
user; /**< pollfd as described by user applications. */
struct
{
int cookie; /**< hv cookie returned by the pollfd_setup operation. */
}
kernel; /**< pollfd as described by the kernel. */
};
/** The various iorpc devices use error codes from -1100 to -1299.
*
* This range is distinct from netio (-700 to -799), the hypervisor
* (-800 to -899), tilepci (-900 to -999), ilib (-1000 to -1099),
* gxcr (-1300 to -1399) and gxpci (-1400 to -1499).
*/
enum gxio_err_e {
/** Largest iorpc error number. */
GXIO_ERR_MAX = -1101,
/********************************************************/
/* Generic Error Codes */
/********************************************************/
/** Bad RPC opcode - possible version incompatibility. */
GXIO_ERR_OPCODE = -1101,
/** Invalid parameter. */
GXIO_ERR_INVAL = -1102,
/** Memory buffer did not meet alignment requirements. */
GXIO_ERR_ALIGNMENT = -1103,
/** Memory buffers must be coherent and cacheable. */
GXIO_ERR_COHERENCE = -1104,
/** Resource already initialized. */
GXIO_ERR_ALREADY_INIT = -1105,
/** No service domains available. */
GXIO_ERR_NO_SVC_DOM = -1106,
/** Illegal service domain number. */
GXIO_ERR_INVAL_SVC_DOM = -1107,
/** Illegal MMIO address. */
GXIO_ERR_MMIO_ADDRESS = -1108,
/** Illegal interrupt binding. */
GXIO_ERR_INTERRUPT = -1109,
/** Unreasonable client memory. */
GXIO_ERR_CLIENT_MEMORY = -1110,
/** No more IOTLB entries. */
GXIO_ERR_IOTLB_ENTRY = -1111,
/** Invalid memory size. */
GXIO_ERR_INVAL_MEMORY_SIZE = -1112,
/** Unsupported operation. */
GXIO_ERR_UNSUPPORTED_OP = -1113,
/** Insufficient DMA credits. */
GXIO_ERR_DMA_CREDITS = -1114,
/** Operation timed out. */
GXIO_ERR_TIMEOUT = -1115,
/** No such device or object. */
GXIO_ERR_NO_DEVICE = -1116,
/** Device or resource busy. */
GXIO_ERR_BUSY = -1117,
/** I/O error. */
GXIO_ERR_IO = -1118,
/** Permissions error. */
GXIO_ERR_PERM = -1119,
/********************************************************/
/* Test Device Error Codes */
/********************************************************/
/** Illegal register number. */
GXIO_TEST_ERR_REG_NUMBER = -1120,
/** Illegal buffer slot. */
GXIO_TEST_ERR_BUFFER_SLOT = -1121,
/********************************************************/
/* MPIPE Error Codes */
/********************************************************/
/** Invalid buffer size. */
GXIO_MPIPE_ERR_INVAL_BUFFER_SIZE = -1131,
/** Cannot allocate buffer stack. */
GXIO_MPIPE_ERR_NO_BUFFER_STACK = -1140,
/** Invalid buffer stack number. */
GXIO_MPIPE_ERR_BAD_BUFFER_STACK = -1141,
/** Cannot allocate NotifRing. */
GXIO_MPIPE_ERR_NO_NOTIF_RING = -1142,
/** Invalid NotifRing number. */
GXIO_MPIPE_ERR_BAD_NOTIF_RING = -1143,
/** Cannot allocate NotifGroup. */
GXIO_MPIPE_ERR_NO_NOTIF_GROUP = -1144,
/** Invalid NotifGroup number. */
GXIO_MPIPE_ERR_BAD_NOTIF_GROUP = -1145,
/** Cannot allocate bucket. */
GXIO_MPIPE_ERR_NO_BUCKET = -1146,
/** Invalid bucket number. */
GXIO_MPIPE_ERR_BAD_BUCKET = -1147,
/** Cannot allocate eDMA ring. */
GXIO_MPIPE_ERR_NO_EDMA_RING = -1148,
/** Invalid eDMA ring number. */
GXIO_MPIPE_ERR_BAD_EDMA_RING = -1149,
/** Invalid channel number. */
GXIO_MPIPE_ERR_BAD_CHANNEL = -1150,
/** Bad configuration. */
GXIO_MPIPE_ERR_BAD_CONFIG = -1151,
/** Empty iqueue. */
GXIO_MPIPE_ERR_IQUEUE_EMPTY = -1152,
/** Empty rules. */
GXIO_MPIPE_ERR_RULES_EMPTY = -1160,
/** Full rules. */
GXIO_MPIPE_ERR_RULES_FULL = -1161,
/** Corrupt rules. */
GXIO_MPIPE_ERR_RULES_CORRUPT = -1162,
/** Invalid rules. */
GXIO_MPIPE_ERR_RULES_INVALID = -1163,
/** Classifier is too big. */
GXIO_MPIPE_ERR_CLASSIFIER_TOO_BIG = -1170,
/** Classifier is too complex. */
GXIO_MPIPE_ERR_CLASSIFIER_TOO_COMPLEX = -1171,
/** Classifier has bad header. */
GXIO_MPIPE_ERR_CLASSIFIER_BAD_HEADER = -1172,
/** Classifier has bad contents. */
GXIO_MPIPE_ERR_CLASSIFIER_BAD_CONTENTS = -1173,
/** Classifier encountered invalid symbol. */
GXIO_MPIPE_ERR_CLASSIFIER_INVAL_SYMBOL = -1174,
/** Classifier encountered invalid bounds. */
GXIO_MPIPE_ERR_CLASSIFIER_INVAL_BOUNDS = -1175,
/** Classifier encountered invalid relocation. */
GXIO_MPIPE_ERR_CLASSIFIER_INVAL_RELOCATION = -1176,
/** Classifier encountered undefined symbol. */
GXIO_MPIPE_ERR_CLASSIFIER_UNDEF_SYMBOL = -1177,
/********************************************************/
/* TRIO Error Codes */
/********************************************************/
/** Cannot allocate memory map region. */
GXIO_TRIO_ERR_NO_MEMORY_MAP = -1180,
/** Invalid memory map region number. */
GXIO_TRIO_ERR_BAD_MEMORY_MAP = -1181,
/** Cannot allocate scatter queue. */
GXIO_TRIO_ERR_NO_SCATTER_QUEUE = -1182,
/** Invalid scatter queue number. */
GXIO_TRIO_ERR_BAD_SCATTER_QUEUE = -1183,
/** Cannot allocate push DMA ring. */
GXIO_TRIO_ERR_NO_PUSH_DMA_RING = -1184,
/** Invalid push DMA ring index. */
GXIO_TRIO_ERR_BAD_PUSH_DMA_RING = -1185,
/** Cannot allocate pull DMA ring. */
GXIO_TRIO_ERR_NO_PULL_DMA_RING = -1186,
/** Invalid pull DMA ring index. */
GXIO_TRIO_ERR_BAD_PULL_DMA_RING = -1187,
/** Cannot allocate PIO region. */
GXIO_TRIO_ERR_NO_PIO = -1188,
/** Invalid PIO region index. */
GXIO_TRIO_ERR_BAD_PIO = -1189,
/** Cannot allocate ASID. */
GXIO_TRIO_ERR_NO_ASID = -1190,
/** Invalid ASID. */
GXIO_TRIO_ERR_BAD_ASID = -1191,
/********************************************************/
/* MICA Error Codes */
/********************************************************/
/** No such accelerator type. */
GXIO_MICA_ERR_BAD_ACCEL_TYPE = -1220,
/** Cannot allocate context. */
GXIO_MICA_ERR_NO_CONTEXT = -1221,
/** PKA command queue is full, can't add another command. */
GXIO_MICA_ERR_PKA_CMD_QUEUE_FULL = -1222,
/** PKA result queue is empty, can't get a result from the queue. */
GXIO_MICA_ERR_PKA_RESULT_QUEUE_EMPTY = -1223,
/********************************************************/
/* GPIO Error Codes */
/********************************************************/
/** Pin not available. Either the physical pin does not exist, or
* it is reserved by the hypervisor for system usage. */
GXIO_GPIO_ERR_PIN_UNAVAILABLE = -1240,
/** Pin busy. The pin exists, and is available for use via GXIO, but
* it has been attached by some other process or driver. */
GXIO_GPIO_ERR_PIN_BUSY = -1241,
/** Cannot access unattached pin. One or more of the pins being
* manipulated by this call are not attached to the requesting
* context. */
GXIO_GPIO_ERR_PIN_UNATTACHED = -1242,
/** Invalid I/O mode for pin. The wiring of the pin in the system
* is such that the I/O mode or electrical control parameters
* requested could cause damage. */
GXIO_GPIO_ERR_PIN_INVALID_MODE = -1243,
/** Smallest iorpc error number. */
GXIO_ERR_MIN = -1299
};
#endif /* !_HV_IORPC_H_ */
......@@ -14,4 +14,9 @@ obj-$(CONFIG_SMP) += smpboot.o smp.o tlb.o
obj-$(CONFIG_MODULES) += module.o
obj-$(CONFIG_EARLY_PRINTK) += early_printk.o
obj-$(CONFIG_KEXEC) += machine_kexec.o relocate_kernel_$(BITS).o
ifdef CONFIG_TILEGX
obj-$(CONFIG_PCI) += pci_gx.o
else
obj-$(CONFIG_PCI) += pci.o
endif
obj-$(CONFIG_TILE_USB) += usb.o
......@@ -14,6 +14,7 @@
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include <linux/swiotlb.h>
#include <linux/vmalloc.h>
#include <linux/export.h>
#include <asm/tlbflush.h>
......@@ -22,13 +23,18 @@
/* Generic DMA mapping functions: */
/*
* Allocate what Linux calls "coherent" memory, which for us just
* means uncached.
* Allocate what Linux calls "coherent" memory. On TILEPro this is
* uncached memory; on TILE-Gx it is hash-for-home memory.
*/
void *dma_alloc_coherent(struct device *dev,
size_t size,
dma_addr_t *dma_handle,
gfp_t gfp)
#ifdef __tilepro__
#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
#else
#define PAGE_HOME_DMA PAGE_HOME_HASH
#endif
static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
u64 dma_mask = dev->coherent_dma_mask ?: DMA_BIT_MASK(32);
int node = dev_to_node(dev);
......@@ -39,39 +45,42 @@ void *dma_alloc_coherent(struct device *dev,
gfp |= __GFP_ZERO;
/*
* By forcing NUMA node 0 for 32-bit masks we ensure that the
* high 32 bits of the resulting PA will be zero. If the mask
* size is, e.g., 24, we may still not be able to guarantee a
* suitable memory address, in which case we will return NULL.
* But such devices are uncommon.
* If the mask specifies that the memory be in the first 4 GB, then
* we force the allocation to come from the DMA zone. We also
* force the node to 0 since that's the only node where the DMA
* zone isn't empty. If the mask size is smaller than 32 bits, we
* may still not be able to guarantee a suitable memory address, in
* which case we will return NULL. But such devices are uncommon.
*/
if (dma_mask <= DMA_BIT_MASK(32))
if (dma_mask <= DMA_BIT_MASK(32)) {
gfp |= GFP_DMA;
node = 0;
}
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_UNCACHED);
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
if (pg == NULL)
return NULL;
addr = page_to_phys(pg);
if (addr + size > dma_mask) {
homecache_free_pages(addr, order);
__homecache_free_pages(pg, order);
return NULL;
}
*dma_handle = addr;
return page_address(pg);
}
EXPORT_SYMBOL(dma_alloc_coherent);
/*
* Free memory that was allocated with dma_alloc_coherent.
* Free memory that was allocated with tile_dma_alloc_coherent.
*/
void dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle)
static void tile_dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
homecache_free_pages((unsigned long)vaddr, get_order(size));
}
EXPORT_SYMBOL(dma_free_coherent);
/*
* The map routines "map" the specified address range for DMA
......@@ -87,129 +96,392 @@ EXPORT_SYMBOL(dma_free_coherent);
* can count on nothing having been touched.
*/
/* Flush a PA range from cache page by page. */
static void __dma_map_pa_range(dma_addr_t dma_addr, size_t size)
/* Set up a single page for DMA access. */
static void __dma_prep_page(struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction)
{
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
size_t bytesleft = PAGE_SIZE - (dma_addr & (PAGE_SIZE - 1));
/*
* Flush the page from cache if necessary.
* On tilegx, data is delivered to hash-for-home L3; on tilepro,
* data is delivered direct to memory.
*
* NOTE: If we were just doing DMA_TO_DEVICE we could optimize
* this to be a "flush" not a "finv" and keep some of the
* state in cache across the DMA operation, but it doesn't seem
* worth creating the necessary flush_buffer_xxx() infrastructure.
*/
int home = page_home(page);
switch (home) {
case PAGE_HOME_HASH:
#ifdef __tilegx__
return;
#endif
break;
case PAGE_HOME_UNCACHED:
#ifdef __tilepro__
return;
#endif
break;
case PAGE_HOME_IMMUTABLE:
/* Should be going to the device only. */
BUG_ON(direction == DMA_FROM_DEVICE ||
direction == DMA_BIDIRECTIONAL);
return;
case PAGE_HOME_INCOHERENT:
/* Incoherent anyway, so no need to work hard here. */
return;
default:
BUG_ON(home < 0 || home >= NR_CPUS);
break;
}
homecache_finv_page(page);
#ifdef DEBUG_ALIGNMENT
/* Warn if the region isn't cacheline aligned. */
if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
PFN_PHYS(page_to_pfn(page)) + offset, size);
#endif
}
while ((ssize_t)size > 0) {
/* Flush the page. */
homecache_flush_cache(page++, 0);
/* Make the page ready to be read by the core. */
static void __dma_complete_page(struct page *page, unsigned long offset,
size_t size, enum dma_data_direction direction)
{
#ifdef __tilegx__
switch (page_home(page)) {
case PAGE_HOME_HASH:
/* I/O device delivered data the way the cpu wanted it. */
break;
case PAGE_HOME_INCOHERENT:
/* Incoherent anyway, so no need to work hard here. */
break;
case PAGE_HOME_IMMUTABLE:
/* Extra read-only copies are not a problem. */
break;
default:
/* Flush the bogus hash-for-home I/O entries to memory. */
homecache_finv_map_page(page, PAGE_HOME_HASH);
break;
}
#endif
}
/* Figure out if we need to continue on the next page. */
size -= bytesleft;
bytesleft = PAGE_SIZE;
static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
unsigned long offset = dma_addr & (PAGE_SIZE - 1);
size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
while (size != 0) {
__dma_prep_page(page, offset, bytes, direction);
size -= bytes;
++page;
offset = 0;
bytes = min((size_t)PAGE_SIZE, size);
}
}
/*
* dma_map_single can be passed any memory address, and there appear
* to be no alignment constraints.
*
* There is a chance that the start of the buffer will share a cache
* line with some other data that has been touched in the meantime.
*/
dma_addr_t dma_map_single(struct device *dev, void *ptr, size_t size,
static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
enum dma_data_direction direction)
{
dma_addr_t dma_addr = __pa(ptr);
struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
unsigned long offset = dma_addr & (PAGE_SIZE - 1);
size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
while (size != 0) {
__dma_complete_page(page, offset, bytes, direction);
size -= bytes;
++page;
offset = 0;
bytes = min((size_t)PAGE_SIZE, size);
}
}
static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(size == 0);
__dma_map_pa_range(dma_addr, size);
WARN_ON(nents == 0 || sglist->length == 0);
return dma_addr;
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->dma_length = sg->length;
#endif
}
return nents;
}
static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_complete_pa_range(sg->dma_address, sg->length,
direction);
}
}
EXPORT_SYMBOL(dma_map_single);
void dma_unmap_single(struct device *dev, dma_addr_t dma_addr, size_t size,
static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
BUG_ON(offset + size > PAGE_SIZE);
__dma_prep_page(page, offset, size, direction);
return page_to_pa(page) + offset;
}
static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
dma_address & PAGE_OFFSET, size, direction);
}
static void tile_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
__dma_complete_pa_range(dma_handle, size, direction);
}
static void tile_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle, size_t size,
enum dma_data_direction direction)
{
__dma_prep_pa_range(dma_handle, size, direction);
}
static void tile_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_cpu(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
EXPORT_SYMBOL(dma_unmap_single);
int dma_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
static void tile_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sglist, int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_device(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
static inline int
tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
return 0;
}
static inline int
tile_dma_supported(struct device *dev, u64 mask)
{
return 1;
}
static struct dma_map_ops tile_default_dma_map_ops = {
.alloc = tile_dma_alloc_coherent,
.free = tile_dma_free_coherent,
.map_page = tile_dma_map_page,
.unmap_page = tile_dma_unmap_page,
.map_sg = tile_dma_map_sg,
.unmap_sg = tile_dma_unmap_sg,
.sync_single_for_cpu = tile_dma_sync_single_for_cpu,
.sync_single_for_device = tile_dma_sync_single_for_device,
.sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
.sync_sg_for_device = tile_dma_sync_sg_for_device,
.mapping_error = tile_dma_mapping_error,
.dma_supported = tile_dma_supported
};
struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
EXPORT_SYMBOL(tile_dma_map_ops);
/* Generic PCI DMA mapping functions */
static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
int node = dev_to_node(dev);
int order = get_order(size);
struct page *pg;
dma_addr_t addr;
gfp |= __GFP_ZERO;
pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
if (pg == NULL)
return NULL;
addr = page_to_phys(pg);
*dma_handle = phys_to_dma(dev, addr);
return page_address(pg);
}
/*
* Free memory that was allocated with tile_pci_dma_alloc_coherent.
*/
static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_handle,
struct dma_attrs *attrs)
{
homecache_free_pages((unsigned long)vaddr, get_order(size));
}
static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
int nents, enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nents == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_map_pa_range(sg->dma_address, sg->length);
__dma_prep_pa_range(sg->dma_address, sg->length, direction);
sg->dma_address = phys_to_dma(dev, sg->dma_address);
#ifdef CONFIG_NEED_SG_DMA_LENGTH
sg->dma_length = sg->length;
#endif
}
return nents;
}
EXPORT_SYMBOL(dma_map_sg);
void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nhwentries,
enum dma_data_direction direction)
static void tile_pci_dma_unmap_sg(struct device *dev,
struct scatterlist *sglist, int nents,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
for_each_sg(sglist, sg, nents, i) {
sg->dma_address = sg_phys(sg);
__dma_complete_pa_range(sg->dma_address, sg->length,
direction);
}
}
EXPORT_SYMBOL(dma_unmap_sg);
dma_addr_t dma_map_page(struct device *dev, struct page *page,
static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
unsigned long offset, size_t size,
enum dma_data_direction direction)
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
BUG_ON(offset + size > PAGE_SIZE);
homecache_flush_cache(page, 0);
__dma_prep_page(page, offset, size, direction);
return page_to_pa(page) + offset;
return phys_to_dma(dev, page_to_pa(page) + offset);
}
EXPORT_SYMBOL(dma_map_page);
void dma_unmap_page(struct device *dev, dma_addr_t dma_address, size_t size,
enum dma_data_direction direction)
static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
size_t size,
enum dma_data_direction direction,
struct dma_attrs *attrs)
{
BUG_ON(!valid_dma_direction(direction));
dma_address = dma_to_phys(dev, dma_address);
__dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
dma_address & PAGE_OFFSET, size, direction);
}
EXPORT_SYMBOL(dma_unmap_page);
void dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction)
static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction direction)
{
BUG_ON(!valid_dma_direction(direction));
dma_handle = dma_to_phys(dev, dma_handle);
__dma_complete_pa_range(dma_handle, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_for_cpu);
void dma_sync_single_for_device(struct device *dev, dma_addr_t dma_handle,
size_t size, enum dma_data_direction direction)
static void tile_pci_dma_sync_single_for_device(struct device *dev,
dma_addr_t dma_handle,
size_t size,
enum dma_data_direction
direction)
{
unsigned long start = PFN_DOWN(dma_handle);
unsigned long end = PFN_DOWN(dma_handle + size - 1);
unsigned long i;
dma_handle = dma_to_phys(dev, dma_handle);
BUG_ON(!valid_dma_direction(direction));
for (i = start; i <= end; ++i)
homecache_flush_cache(pfn_to_page(i), 0);
__dma_prep_pa_range(dma_handle, size, direction);
}
EXPORT_SYMBOL(dma_sync_single_for_device);
void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, int nelems,
static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
struct scatterlist *sglist,
int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
BUG_ON(!valid_dma_direction(direction));
WARN_ON(nelems == 0 || sg[0].length == 0);
WARN_ON(nelems == 0 || sglist->length == 0);
for_each_sg(sglist, sg, nelems, i) {
dma_sync_single_for_cpu(dev, sg->dma_address,
sg_dma_len(sg), direction);
}
}
EXPORT_SYMBOL(dma_sync_sg_for_cpu);
/*
* Flush and invalidate cache for scatterlist.
*/
void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
int nelems, enum dma_data_direction direction)
static void tile_pci_dma_sync_sg_for_device(struct device *dev,
struct scatterlist *sglist,
int nelems,
enum dma_data_direction direction)
{
struct scatterlist *sg;
int i;
......@@ -222,31 +494,93 @@ void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sglist,
sg_dma_len(sg), direction);
}
}
EXPORT_SYMBOL(dma_sync_sg_for_device);
void dma_sync_single_range_for_cpu(struct device *dev, dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
static inline int
tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
{
dma_sync_single_for_cpu(dev, dma_handle + offset, size, direction);
return 0;
}
EXPORT_SYMBOL(dma_sync_single_range_for_cpu);
void dma_sync_single_range_for_device(struct device *dev,
dma_addr_t dma_handle,
unsigned long offset, size_t size,
enum dma_data_direction direction)
static inline int
tile_pci_dma_supported(struct device *dev, u64 mask)
{
dma_sync_single_for_device(dev, dma_handle + offset, size, direction);
return 1;
}
EXPORT_SYMBOL(dma_sync_single_range_for_device);
/*
* dma_alloc_noncoherent() returns non-cacheable memory, so there's no
* need to do any flushing here.
*/
void dma_cache_sync(struct device *dev, void *vaddr, size_t size,
enum dma_data_direction direction)
static struct dma_map_ops tile_pci_default_dma_map_ops = {
.alloc = tile_pci_dma_alloc_coherent,
.free = tile_pci_dma_free_coherent,
.map_page = tile_pci_dma_map_page,
.unmap_page = tile_pci_dma_unmap_page,
.map_sg = tile_pci_dma_map_sg,
.unmap_sg = tile_pci_dma_unmap_sg,
.sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
.sync_single_for_device = tile_pci_dma_sync_single_for_device,
.sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
.sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
.mapping_error = tile_pci_dma_mapping_error,
.dma_supported = tile_pci_dma_supported
};
struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
EXPORT_SYMBOL(gx_pci_dma_map_ops);
/* PCI DMA mapping functions for legacy PCI devices */
#ifdef CONFIG_SWIOTLB
static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
dma_addr_t *dma_handle, gfp_t gfp,
struct dma_attrs *attrs)
{
gfp |= GFP_DMA;
return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
}
static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
void *vaddr, dma_addr_t dma_addr,
struct dma_attrs *attrs)
{
swiotlb_free_coherent(dev, size, vaddr, dma_addr);
}
static struct dma_map_ops pci_swiotlb_dma_ops = {
.alloc = tile_swiotlb_alloc_coherent,
.free = tile_swiotlb_free_coherent,
.map_page = swiotlb_map_page,
.unmap_page = swiotlb_unmap_page,
.map_sg = swiotlb_map_sg_attrs,
.unmap_sg = swiotlb_unmap_sg_attrs,
.sync_single_for_cpu = swiotlb_sync_single_for_cpu,
.sync_single_for_device = swiotlb_sync_single_for_device,
.sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
.sync_sg_for_device = swiotlb_sync_sg_for_device,
.dma_supported = swiotlb_dma_supported,
.mapping_error = swiotlb_dma_mapping_error,
};
struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
#else
struct dma_map_ops *gx_legacy_pci_dma_map_ops;
#endif
EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
int dma_set_coherent_mask(struct device *dev, u64 mask)
{
struct dma_map_ops *dma_ops = get_dma_ops(dev);
/* Handle legacy PCI devices with limited memory addressability. */
if (((dma_ops == gx_pci_dma_map_ops) ||
(dma_ops == gx_legacy_pci_dma_map_ops)) &&
(mask <= DMA_BIT_MASK(32))) {
if (mask > dev->archdata.max_direct_dma_addr)
mask = dev->archdata.max_direct_dma_addr;
}
if (!dma_supported(dev, mask))
return -EIO;
dev->coherent_dma_mask = mask;
return 0;
}
EXPORT_SYMBOL(dma_cache_sync);
EXPORT_SYMBOL(dma_set_coherent_mask);
#endif
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
#include <linux/kernel.h>
#include <linux/mmzone.h>
#include <linux/pci.h>
#include <linux/delay.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/capability.h>
#include <linux/sched.h>
#include <linux/errno.h>
#include <linux/irq.h>
#include <linux/msi.h>
#include <linux/io.h>
#include <linux/uaccess.h>
#include <linux/ctype.h>
#include <asm/processor.h>
#include <asm/sections.h>
#include <asm/byteorder.h>
#include <gxio/iorpc_globals.h>
#include <gxio/kiorpc.h>
#include <gxio/trio.h>
#include <gxio/iorpc_trio.h>
#include <hv/drv_trio_intf.h>
#include <arch/sim.h>
/*
* This file containes the routines to search for PCI buses,
* enumerate the buses, and configure any attached devices.
*/
#define DEBUG_PCI_CFG 0
#if DEBUG_PCI_CFG
#define TRACE_CFG_WR(size, val, bus, dev, func, offset) \
pr_info("CFG WR %d-byte VAL %#x to bus %d dev %d func %d addr %u\n", \
size, val, bus, dev, func, offset & 0xFFF);
#define TRACE_CFG_RD(size, val, bus, dev, func, offset) \
pr_info("CFG RD %d-byte VAL %#x from bus %d dev %d func %d addr %u\n", \
size, val, bus, dev, func, offset & 0xFFF);
#else
#define TRACE_CFG_WR(...)
#define TRACE_CFG_RD(...)
#endif
static int __devinitdata pci_probe = 1;
/* Information on the PCIe RC ports configuration. */
static int __devinitdata pcie_rc[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
/*
* On some platforms with one or more Gx endpoint ports, we need to
* delay the PCIe RC port probe for a few seconds to work around
* a HW PCIe link-training bug. The exact delay is specified with
* a kernel boot argument in the form of "pcie_rc_delay=T,P,S",
* where T is the TRIO instance number, P is the port number and S is
* the delay in seconds. If the delay is not provided, the value
* will be DEFAULT_RC_DELAY.
*/
static int __devinitdata rc_delay[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
/* Default number of seconds that the PCIe RC port probe can be delayed. */
#define DEFAULT_RC_DELAY 10
/* Max number of seconds that the PCIe RC port probe can be delayed. */
#define MAX_RC_DELAY 20
/* Array of the PCIe ports configuration info obtained from the BIB. */
struct pcie_port_property pcie_ports[TILEGX_NUM_TRIO][TILEGX_TRIO_PCIES];
/* All drivers share the TRIO contexts defined here. */
gxio_trio_context_t trio_contexts[TILEGX_NUM_TRIO];
/* Pointer to an array of PCIe RC controllers. */
struct pci_controller pci_controllers[TILEGX_NUM_TRIO * TILEGX_TRIO_PCIES];
int num_rc_controllers;
static int num_ep_controllers;
static struct pci_ops tile_cfg_ops;
/* Mask of CPUs that should receive PCIe interrupts. */
static struct cpumask intr_cpus_map;
/*
* We don't need to worry about the alignment of resources.
*/
resource_size_t pcibios_align_resource(void *data, const struct resource *res,
resource_size_t size, resource_size_t align)
{
return res->start;
}
EXPORT_SYMBOL(pcibios_align_resource);
/*
* Pick a CPU to receive and handle the PCIe interrupts, based on the IRQ #.
* For now, we simply send interrupts to non-dataplane CPUs.
* We may implement methods to allow user to specify the target CPUs,
* e.g. via boot arguments.
*/
static int tile_irq_cpu(int irq)
{
unsigned int count;
int i = 0;
int cpu;
count = cpumask_weight(&intr_cpus_map);
if (unlikely(count == 0)) {
pr_warning("intr_cpus_map empty, interrupts will be"
" delievered to dataplane tiles\n");
return irq % (smp_height * smp_width);
}
count = irq % count;
for_each_cpu(cpu, &intr_cpus_map) {
if (i++ == count)
break;
}
return cpu;
}
/*
* Open a file descriptor to the TRIO shim.
*/
static int __devinit tile_pcie_open(int trio_index)
{
gxio_trio_context_t *context = &trio_contexts[trio_index];
int ret;
/*
* This opens a file descriptor to the TRIO shim.
*/
ret = gxio_trio_init(context, trio_index);
if (ret < 0)
return ret;
/*
* Allocate an ASID for the kernel.
*/
ret = gxio_trio_alloc_asids(context, 1, 0, 0);
if (ret < 0) {
pr_err("PCI: ASID alloc failure on TRIO %d, give up\n",
trio_index);
goto asid_alloc_failure;
}
context->asid = ret;
#ifdef USE_SHARED_PCIE_CONFIG_REGION
/*
* Alloc a PIO region for config access, shared by all MACs per TRIO.
* This shouldn't fail since the kernel is supposed to the first
* client of the TRIO's PIO regions.
*/
ret = gxio_trio_alloc_pio_regions(context, 1, 0, 0);
if (ret < 0) {
pr_err("PCI: CFG PIO alloc failure on TRIO %d, give up\n",
trio_index);
goto pio_alloc_failure;
}
context->pio_cfg_index = ret;
/*
* For PIO CFG, the bus_address_hi parameter is 0. The mac parameter
* is also 0 because it is specified in PIO_REGION_SETUP_CFG_ADDR.
*/
ret = gxio_trio_init_pio_region_aux(context, context->pio_cfg_index,
0, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
if (ret < 0) {
pr_err("PCI: CFG PIO init failure on TRIO %d, give up\n",
trio_index);
goto pio_alloc_failure;
}
#endif
return ret;
asid_alloc_failure:
#ifdef USE_SHARED_PCIE_CONFIG_REGION
pio_alloc_failure:
#endif
hv_dev_close(context->fd);
return ret;
}
static void
tilegx_legacy_irq_ack(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
}
static void
tilegx_legacy_irq_mask(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
}
static void
tilegx_legacy_irq_unmask(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
}
static struct irq_chip tilegx_legacy_irq_chip = {
.name = "tilegx_legacy_irq",
.irq_ack = tilegx_legacy_irq_ack,
.irq_mask = tilegx_legacy_irq_mask,
.irq_unmask = tilegx_legacy_irq_unmask,
/* TBD: support set_affinity. */
};
/*
* This is a wrapper function of the kernel level-trigger interrupt
* handler handle_level_irq() for PCI legacy interrupts. The TRIO
* is configured such that only INTx Assert interrupts are proxied
* to Linux which just calls handle_level_irq() after clearing the
* MAC INTx Assert status bit associated with this interrupt.
*/
static void
trio_handle_level_irq(unsigned int irq, struct irq_desc *desc)
{
struct pci_controller *controller = irq_desc_get_handler_data(desc);
gxio_trio_context_t *trio_context = controller->trio;
uint64_t intx = (uint64_t)irq_desc_get_chip_data(desc);
int mac = controller->mac;
unsigned int reg_offset;
uint64_t level_mask;
handle_level_irq(irq, desc);
/*
* Clear the INTx Level status, otherwise future interrupts are
* not sent.
*/
reg_offset = (TRIO_PCIE_INTFC_MAC_INT_STS <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
level_mask = TRIO_PCIE_INTFC_MAC_INT_STS__INT_LEVEL_MASK << intx;
__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset, level_mask);
}
/*
* Create kernel irqs and set up the handlers for the legacy interrupts.
* Also some minimum initialization for the MSI support.
*/
static int __devinit tile_init_irqs(struct pci_controller *controller)
{
int i;
int j;
int irq;
int result;
cpumask_copy(&intr_cpus_map, cpu_online_mask);
for (i = 0; i < 4; i++) {
gxio_trio_context_t *context = controller->trio;
int cpu;
/* Ask the kernel to allocate an IRQ. */
irq = create_irq();
if (irq < 0) {
pr_err("PCI: no free irq vectors, failed for %d\n", i);
goto free_irqs;
}
controller->irq_intx_table[i] = irq;
/* Distribute the 4 IRQs to different tiles. */
cpu = tile_irq_cpu(irq);
/* Configure the TRIO intr binding for this IRQ. */
result = gxio_trio_config_legacy_intr(context, cpu_x(cpu),
cpu_y(cpu), KERNEL_PL,
irq, controller->mac, i);
if (result < 0) {
pr_err("PCI: MAC intx config failed for %d\n", i);
goto free_irqs;
}
/*
* Register the IRQ handler with the kernel.
*/
irq_set_chip_and_handler(irq, &tilegx_legacy_irq_chip,
trio_handle_level_irq);
irq_set_chip_data(irq, (void *)(uint64_t)i);
irq_set_handler_data(irq, controller);
}
return 0;
free_irqs:
for (j = 0; j < i; j++)
destroy_irq(controller->irq_intx_table[j]);
return -1;
}
/*
* Find valid controllers and fill in pci_controller structs for each
* of them.
*
* Returns the number of controllers discovered.
*/
int __init tile_pci_init(void)
{
int num_trio_shims = 0;
int ctl_index = 0;
int i, j;
if (!pci_probe) {
pr_info("PCI: disabled by boot argument\n");
return 0;
}
pr_info("PCI: Searching for controllers...\n");
/*
* We loop over all the TRIO shims.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
int ret;
ret = tile_pcie_open(i);
if (ret < 0)
continue;
num_trio_shims++;
}
if (num_trio_shims == 0 || sim_is_simulator())
return 0;
/*
* Now determine which PCIe ports are configured to operate in RC mode.
* We look at the Board Information Block first and then see if there
* are any overriding configuration by the HW strapping pin.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
gxio_trio_context_t *context = &trio_contexts[i];
int ret;
if (context->fd < 0)
continue;
ret = hv_dev_pread(context->fd, 0,
(HV_VirtAddr)&pcie_ports[i][0],
sizeof(struct pcie_port_property) * TILEGX_TRIO_PCIES,
GXIO_TRIO_OP_GET_PORT_PROPERTY);
if (ret < 0) {
pr_err("PCI: PCIE_GET_PORT_PROPERTY failure, error %d,"
" on TRIO %d\n", ret, i);
continue;
}
for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
if (pcie_ports[i][j].allow_rc) {
pcie_rc[i][j] = 1;
num_rc_controllers++;
}
else if (pcie_ports[i][j].allow_ep) {
num_ep_controllers++;
}
}
}
/*
* Return if no PCIe ports are configured to operate in RC mode.
*/
if (num_rc_controllers == 0)
return 0;
/*
* Set the TRIO pointer and MAC index for each PCIe RC port.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
for (j = 0; j < TILEGX_TRIO_PCIES; j++) {
if (pcie_rc[i][j]) {
pci_controllers[ctl_index].trio =
&trio_contexts[i];
pci_controllers[ctl_index].mac = j;
pci_controllers[ctl_index].trio_index = i;
ctl_index++;
if (ctl_index == num_rc_controllers)
goto out;
}
}
}
out:
/*
* Configure each PCIe RC port.
*/
for (i = 0; i < num_rc_controllers; i++) {
/*
* Configure the PCIe MAC to run in RC mode.
*/
struct pci_controller *controller = &pci_controllers[i];
controller->index = i;
controller->ops = &tile_cfg_ops;
/*
* The PCI memory resource is located above the PA space.
* For every host bridge, the BAR window or the MMIO aperture
* is in range [3GB, 4GB - 1] of a 4GB space beyond the
* PA space.
*/
controller->mem_offset = TILE_PCI_MEM_START +
(i * TILE_PCI_BAR_WINDOW_TOP);
controller->mem_space.start = controller->mem_offset +
TILE_PCI_BAR_WINDOW_TOP - TILE_PCI_BAR_WINDOW_SIZE;
controller->mem_space.end = controller->mem_offset +
TILE_PCI_BAR_WINDOW_TOP - 1;
controller->mem_space.flags = IORESOURCE_MEM;
snprintf(controller->mem_space_name,
sizeof(controller->mem_space_name),
"PCI mem domain %d", i);
controller->mem_space.name = controller->mem_space_name;
}
return num_rc_controllers;
}
/*
* (pin - 1) converts from the PCI standard's [1:4] convention to
* a normal [0:3] range.
*/
static int tile_map_irq(const struct pci_dev *dev, u8 device, u8 pin)
{
struct pci_controller *controller =
(struct pci_controller *)dev->sysdata;
return controller->irq_intx_table[pin - 1];
}
static void __devinit fixup_read_and_payload_sizes(struct pci_controller *
controller)
{
gxio_trio_context_t *trio_context = controller->trio;
struct pci_bus *root_bus = controller->root_bus;
TRIO_PCIE_RC_DEVICE_CONTROL_t dev_control;
TRIO_PCIE_RC_DEVICE_CAP_t rc_dev_cap;
unsigned int reg_offset;
struct pci_bus *child;
int mac;
int err;
mac = controller->mac;
/*
* Set our max read request size to be 4KB.
*/
reg_offset =
(TRIO_PCIE_RC_DEVICE_CONTROL <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
reg_offset);
dev_control.max_read_req_sz = 5;
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
dev_control.word);
/*
* Set the max payload size supported by this Gx PCIe MAC.
* Though Gx PCIe supports Max Payload Size of up to 1024 bytes,
* experiments have shown that setting MPS to 256 yields the
* best performance.
*/
reg_offset =
(TRIO_PCIE_RC_DEVICE_CAP <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
rc_dev_cap.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
reg_offset);
rc_dev_cap.mps_sup = 1;
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
rc_dev_cap.word);
/* Configure PCI Express MPS setting. */
list_for_each_entry(child, &root_bus->children, node) {
struct pci_dev *self = child->self;
if (!self)
continue;
pcie_bus_configure_settings(child, self->pcie_mpss);
}
/*
* Set the mac_config register in trio based on the MPS/MRS of the link.
*/
reg_offset =
(TRIO_PCIE_RC_DEVICE_CONTROL <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
dev_control.word = __gxio_mmio_read32(trio_context->mmio_base_mac +
reg_offset);
err = gxio_trio_set_mps_mrs(trio_context,
dev_control.max_payload_size,
dev_control.max_read_req_sz,
mac);
if (err < 0) {
pr_err("PCI: PCIE_CONFIGURE_MAC_MPS_MRS failure, "
"MAC %d on TRIO %d\n",
mac, controller->trio_index);
}
}
static int __devinit setup_pcie_rc_delay(char *str)
{
unsigned long delay = 0;
unsigned long trio_index;
unsigned long mac;
if (str == NULL || !isdigit(*str))
return -EINVAL;
trio_index = simple_strtoul(str, (char **)&str, 10);
if (trio_index >= TILEGX_NUM_TRIO)
return -EINVAL;
if (*str != ',')
return -EINVAL;
str++;
if (!isdigit(*str))
return -EINVAL;
mac = simple_strtoul(str, (char **)&str, 10);
if (mac >= TILEGX_TRIO_PCIES)
return -EINVAL;
if (*str != '\0') {
if (*str != ',')
return -EINVAL;
str++;
if (!isdigit(*str))
return -EINVAL;
delay = simple_strtoul(str, (char **)&str, 10);
if (delay > MAX_RC_DELAY)
return -EINVAL;
}
rc_delay[trio_index][mac] = delay ? : DEFAULT_RC_DELAY;
pr_info("Delaying PCIe RC link training for %u sec"
" on MAC %lu on TRIO %lu\n", rc_delay[trio_index][mac],
mac, trio_index);
return 0;
}
early_param("pcie_rc_delay", setup_pcie_rc_delay);
/*
* PCI initialization entry point, called by subsys_initcall.
*/
int __init pcibios_init(void)
{
resource_size_t offset;
LIST_HEAD(resources);
int next_busno;
int i;
tile_pci_init();
if (num_rc_controllers == 0 && num_ep_controllers == 0)
return 0;
/*
* We loop over all the TRIO shims and set up the MMIO mappings.
*/
for (i = 0; i < TILEGX_NUM_TRIO; i++) {
gxio_trio_context_t *context = &trio_contexts[i];
if (context->fd < 0)
continue;
/*
* Map in the MMIO space for the MAC.
*/
offset = 0;
context->mmio_base_mac =
iorpc_ioremap(context->fd, offset,
HV_TRIO_CONFIG_IOREMAP_SIZE);
if (context->mmio_base_mac == NULL) {
pr_err("PCI: MAC map failure on TRIO %d\n", i);
hv_dev_close(context->fd);
context->fd = -1;
continue;
}
}
/*
* Delay a bit in case devices aren't ready. Some devices are
* known to require at least 20ms here, but we use a more
* conservative value.
*/
msleep(250);
/* Scan all of the recorded PCI controllers. */
for (next_busno = 0, i = 0; i < num_rc_controllers; i++) {
struct pci_controller *controller = &pci_controllers[i];
gxio_trio_context_t *trio_context = controller->trio;
TRIO_PCIE_INTFC_PORT_CONFIG_t port_config;
TRIO_PCIE_INTFC_PORT_STATUS_t port_status;
TRIO_PCIE_INTFC_TX_FIFO_CTL_t tx_fifo_ctl;
struct pci_bus *bus;
unsigned int reg_offset;
unsigned int class_code_revision;
int trio_index;
int mac;
int ret;
if (trio_context->fd < 0)
continue;
trio_index = controller->trio_index;
mac = controller->mac;
/*
* Check the port strap state which will override the BIB
* setting.
*/
reg_offset =
(TRIO_PCIE_INTFC_PORT_CONFIG <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
port_config.word =
__gxio_mmio_read(trio_context->mmio_base_mac +
reg_offset);
if ((port_config.strap_state !=
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC) &&
(port_config.strap_state !=
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_RC_G1)) {
/*
* If this is really intended to be an EP port,
* record it so that the endpoint driver will know about it.
*/
if (port_config.strap_state ==
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT ||
port_config.strap_state ==
TRIO_PCIE_INTFC_PORT_CONFIG__STRAP_STATE_VAL_AUTO_CONFIG_ENDPOINT_G1)
pcie_ports[trio_index][mac].allow_ep = 1;
continue;
}
/*
* Delay the RC link training if needed.
*/
if (rc_delay[trio_index][mac])
msleep(rc_delay[trio_index][mac] * 1000);
ret = gxio_trio_force_rc_link_up(trio_context, mac);
if (ret < 0)
pr_err("PCI: PCIE_FORCE_LINK_UP failure, "
"MAC %d on TRIO %d\n", mac, trio_index);
pr_info("PCI: Found PCI controller #%d on TRIO %d MAC %d\n", i,
trio_index, controller->mac);
/*
* Wait a bit here because some EP devices take longer
* to come up.
*/
msleep(1000);
/*
* Check for PCIe link-up status.
*/
reg_offset =
(TRIO_PCIE_INTFC_PORT_STATUS <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
port_status.word =
__gxio_mmio_read(trio_context->mmio_base_mac +
reg_offset);
if (!port_status.dl_up) {
pr_err("PCI: link is down, MAC %d on TRIO %d\n",
mac, trio_index);
continue;
}
/*
* Ensure that the link can come out of L1 power down state.
* Strictly speaking, this is needed only in the case of
* heavy RC-initiated DMAs.
*/
reg_offset =
(TRIO_PCIE_INTFC_TX_FIFO_CTL <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_INTERFACE <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
tx_fifo_ctl.word =
__gxio_mmio_read(trio_context->mmio_base_mac +
reg_offset);
tx_fifo_ctl.min_p_credits = 0;
__gxio_mmio_write(trio_context->mmio_base_mac + reg_offset,
tx_fifo_ctl.word);
/*
* Change the device ID so that Linux bus crawl doesn't confuse
* the internal bridge with any Tilera endpoints.
*/
reg_offset =
(TRIO_PCIE_RC_DEVICE_ID_VEN_ID <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
__gxio_mmio_write32(trio_context->mmio_base_mac + reg_offset,
(TILERA_GX36_RC_DEV_ID <<
TRIO_PCIE_RC_DEVICE_ID_VEN_ID__DEV_ID_SHIFT) |
TILERA_VENDOR_ID);
/*
* Set the internal P2P bridge class code.
*/
reg_offset =
(TRIO_PCIE_RC_REVISION_ID <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_STANDARD <<
TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(mac << TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
class_code_revision =
__gxio_mmio_read32(trio_context->mmio_base_mac +
reg_offset);
class_code_revision = (class_code_revision & 0xff ) |
(PCI_CLASS_BRIDGE_PCI << 16);
__gxio_mmio_write32(trio_context->mmio_base_mac +
reg_offset, class_code_revision);
#ifdef USE_SHARED_PCIE_CONFIG_REGION
/*
* Map in the MMIO space for the PIO region.
*/
offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index) |
(((unsigned long long)mac) <<
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
#else
/*
* Alloc a PIO region for PCI config access per MAC.
*/
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
if (ret < 0) {
pr_err("PCI: PCI CFG PIO alloc failure for mac %d "
"on TRIO %d, give up\n", mac, trio_index);
continue;
}
trio_context->pio_cfg_index[mac] = ret;
/*
* For PIO CFG, the bus_address_hi parameter is 0.
*/
ret = gxio_trio_init_pio_region_aux(trio_context,
trio_context->pio_cfg_index[mac],
mac, 0, HV_TRIO_PIO_FLAG_CONFIG_SPACE);
if (ret < 0) {
pr_err("PCI: PCI CFG PIO init failure for mac %d "
"on TRIO %d, give up\n", mac, trio_index);
continue;
}
offset = HV_TRIO_PIO_OFFSET(trio_context->pio_cfg_index[mac]) |
(((unsigned long long)mac) <<
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT);
#endif
trio_context->mmio_base_pio_cfg[mac] =
iorpc_ioremap(trio_context->fd, offset,
(1 << TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR__MAC_SHIFT));
if (trio_context->mmio_base_pio_cfg[mac] == NULL) {
pr_err("PCI: PIO map failure for mac %d on TRIO %d\n",
mac, trio_index);
continue;
}
/*
* Initialize the PCIe interrupts.
*/
if (tile_init_irqs(controller)) {
pr_err("PCI: IRQs init failure for mac %d on TRIO %d\n",
mac, trio_index);
continue;
}
/*
* The PCI memory resource is located above the PA space.
* The memory range for the PCI root bus should not overlap
* with the physical RAM
*/
pci_add_resource_offset(&resources, &controller->mem_space,
controller->mem_offset);
controller->first_busno = next_busno;
bus = pci_scan_root_bus(NULL, next_busno, controller->ops,
controller, &resources);
controller->root_bus = bus;
next_busno = bus->subordinate + 1;
}
/* Do machine dependent PCI interrupt routing */
pci_fixup_irqs(pci_common_swizzle, tile_map_irq);
/*
* This comes from the generic Linux PCI driver.
*
* It allocates all of the resources (I/O memory, etc)
* associated with the devices read in above.
*/
pci_assign_unassigned_resources();
/* Record the I/O resources in the PCI controller structure. */
for (i = 0; i < num_rc_controllers; i++) {
struct pci_controller *controller = &pci_controllers[i];
gxio_trio_context_t *trio_context = controller->trio;
struct pci_bus *root_bus = pci_controllers[i].root_bus;
struct pci_bus *next_bus;
uint32_t bus_address_hi;
struct pci_dev *dev;
int ret;
int j;
/*
* Skip controllers that are not properly initialized or
* have down links.
*/
if (root_bus == NULL)
continue;
/* Configure the max_payload_size values for this domain. */
fixup_read_and_payload_sizes(controller);
list_for_each_entry(dev, &root_bus->devices, bus_list) {
/* Find the PCI host controller, ie. the 1st bridge. */
if ((dev->class >> 8) == PCI_CLASS_BRIDGE_PCI &&
(PCI_SLOT(dev->devfn) == 0)) {
next_bus = dev->subordinate;
pci_controllers[i].mem_resources[0] =
*next_bus->resource[0];
pci_controllers[i].mem_resources[1] =
*next_bus->resource[1];
pci_controllers[i].mem_resources[2] =
*next_bus->resource[2];
break;
}
}
if (pci_controllers[i].mem_resources[1].flags & IORESOURCE_MEM)
bus_address_hi =
pci_controllers[i].mem_resources[1].start >> 32;
else if (pci_controllers[i].mem_resources[2].flags & IORESOURCE_PREFETCH)
bus_address_hi =
pci_controllers[i].mem_resources[2].start >> 32;
else {
/* This is unlikely. */
pr_err("PCI: no memory resources on TRIO %d mac %d\n",
controller->trio_index, controller->mac);
continue;
}
/*
* Alloc a PIO region for PCI memory access for each RC port.
*/
ret = gxio_trio_alloc_pio_regions(trio_context, 1, 0, 0);
if (ret < 0) {
pr_err("PCI: MEM PIO alloc failure on TRIO %d mac %d, "
"give up\n", controller->trio_index,
controller->mac);
continue;
}
controller->pio_mem_index = ret;
/*
* For PIO MEM, the bus_address_hi parameter is hard-coded 0
* because we always assign 32-bit PCI bus BAR ranges.
*/
ret = gxio_trio_init_pio_region_aux(trio_context,
controller->pio_mem_index,
controller->mac,
0,
0);
if (ret < 0) {
pr_err("PCI: MEM PIO init failure on TRIO %d mac %d, "
"give up\n", controller->trio_index,
controller->mac);
continue;
}
/*
* Configure a Mem-Map region for each memory controller so
* that Linux can map all of its PA space to the PCI bus.
* Use the IOMMU to handle hash-for-home memory.
*/
for_each_online_node(j) {
unsigned long start_pfn = node_start_pfn[j];
unsigned long end_pfn = node_end_pfn[j];
unsigned long nr_pages = end_pfn - start_pfn;
ret = gxio_trio_alloc_memory_maps(trio_context, 1, 0,
0);
if (ret < 0) {
pr_err("PCI: Mem-Map alloc failure on TRIO %d "
"mac %d for MC %d, give up\n",
controller->trio_index,
controller->mac, j);
goto alloc_mem_map_failed;
}
controller->mem_maps[j] = ret;
/*
* Initialize the Mem-Map and the I/O MMU so that all
* the physical memory can be accessed by the endpoint
* devices. The base bus address is set to the base CPA
* of this memory controller plus an offset (see pci.h).
* The region's base VA is set to the base CPA. The
* I/O MMU table essentially translates the CPA to
* the real PA. Implicitly, for node 0, we create
* a separate Mem-Map region that serves as the inbound
* window for legacy 32-bit devices. This is a direct
* map of the low 4GB CPA space.
*/
ret = gxio_trio_init_memory_map_mmu_aux(trio_context,
controller->mem_maps[j],
start_pfn << PAGE_SHIFT,
nr_pages << PAGE_SHIFT,
trio_context->asid,
controller->mac,
(start_pfn << PAGE_SHIFT) +
TILE_PCI_MEM_MAP_BASE_OFFSET,
j,
GXIO_TRIO_ORDER_MODE_UNORDERED);
if (ret < 0) {
pr_err("PCI: Mem-Map init failure on TRIO %d "
"mac %d for MC %d, give up\n",
controller->trio_index,
controller->mac, j);
goto alloc_mem_map_failed;
}
continue;
alloc_mem_map_failed:
break;
}
}
return 0;
}
subsys_initcall(pcibios_init);
/* Note: to be deleted after Linux 3.6 merge. */
void __devinit pcibios_fixup_bus(struct pci_bus *bus)
{
}
/*
* This can be called from the generic PCI layer, but doesn't need to
* do anything.
*/
char __devinit *pcibios_setup(char *str)
{
if (!strcmp(str, "off")) {
pci_probe = 0;
return NULL;
}
return str;
}
/*
* This is called from the generic Linux layer.
*/
void __devinit pcibios_update_irq(struct pci_dev *dev, int irq)
{
pci_write_config_byte(dev, PCI_INTERRUPT_LINE, irq);
}
/*
* Enable memory address decoding, as appropriate, for the
* device described by the 'dev' struct. The I/O decoding
* is disabled, though the TILE-Gx supports I/O addressing.
*
* This is called from the generic PCI layer, and can be called
* for bridges or endpoints.
*/
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
return pci_enable_resources(dev, mask);
}
/* Called for each device after PCI setup is done. */
static void __init
pcibios_fixup_final(struct pci_dev *pdev)
{
set_dma_ops(&pdev->dev, gx_pci_dma_map_ops);
set_dma_offset(&pdev->dev, TILE_PCI_MEM_MAP_BASE_OFFSET);
pdev->dev.archdata.max_direct_dma_addr =
TILE_PCI_MAX_DIRECT_DMA_ADDRESS;
}
DECLARE_PCI_FIXUP_FINAL(PCI_ANY_ID, PCI_ANY_ID, pcibios_fixup_final);
/* Map a PCI MMIO bus address into VA space. */
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
{
struct pci_controller *controller = NULL;
resource_size_t bar_start;
resource_size_t bar_end;
resource_size_t offset;
resource_size_t start;
resource_size_t end;
int trio_fd;
int i, j;
start = phys_addr;
end = phys_addr + size - 1;
/*
* In the following, each PCI controller's mem_resources[1]
* represents its (non-prefetchable) PCI memory resource and
* mem_resources[2] refers to its prefetchable PCI memory resource.
* By searching phys_addr in each controller's mem_resources[], we can
* determine the controller that should accept the PCI memory access.
*/
for (i = 0; i < num_rc_controllers; i++) {
/*
* Skip controllers that are not properly initialized or
* have down links.
*/
if (pci_controllers[i].root_bus == NULL)
continue;
for (j = 1; j < 3; j++) {
bar_start =
pci_controllers[i].mem_resources[j].start;
bar_end =
pci_controllers[i].mem_resources[j].end;
if ((start >= bar_start) && (end <= bar_end)) {
controller = &pci_controllers[i];
goto got_it;
}
}
}
if (controller == NULL)
return NULL;
got_it:
trio_fd = controller->trio->fd;
/* Convert the resource start to the bus address offset. */
start = phys_addr - controller->mem_offset;
offset = HV_TRIO_PIO_OFFSET(controller->pio_mem_index) + start;
/*
* We need to keep the PCI bus address's in-page offset in the VA.
*/
return iorpc_ioremap(trio_fd, offset, size) +
(phys_addr & (PAGE_SIZE - 1));
}
EXPORT_SYMBOL(ioremap);
void pci_iounmap(struct pci_dev *dev, void __iomem *addr)
{
iounmap(addr);
}
EXPORT_SYMBOL(pci_iounmap);
/****************************************************************
*
* Tile PCI config space read/write routines
*
****************************************************************/
/*
* These are the normal read and write ops
* These are expanded with macros from pci_bus_read_config_byte() etc.
*
* devfn is the combined PCI device & function.
*
* offset is in bytes, from the start of config space for the
* specified bus & device.
*/
static int __devinit tile_cfg_read(struct pci_bus *bus,
unsigned int devfn,
int offset,
int size,
u32 *val)
{
struct pci_controller *controller = bus->sysdata;
gxio_trio_context_t *trio_context = controller->trio;
int busnum = bus->number & 0xff;
int device = PCI_SLOT(devfn);
int function = PCI_FUNC(devfn);
int config_type = 1;
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
void *mmio_addr;
/*
* Map all accesses to the local device on root bus into the
* MMIO space of the MAC. Accesses to the downstream devices
* go to the PIO space.
*/
if (pci_is_root_bus(bus)) {
if (device == 0) {
/*
* This is the internal downstream P2P bridge,
* access directly.
*/
unsigned int reg_offset;
reg_offset = ((offset & 0xFFF) <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(controller->mac <<
TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
mmio_addr = trio_context->mmio_base_mac + reg_offset;
goto valid_device;
} else {
/*
* We fake an empty device for (device > 0),
* since there is only one device on bus 0.
*/
goto invalid_device;
}
}
/*
* Accesses to the directly attached device have to be
* sent as type-0 configs.
*/
if (busnum == (controller->first_busno + 1)) {
/*
* There is only one device off of our built-in P2P bridge.
*/
if (device != 0)
goto invalid_device;
config_type = 0;
}
cfg_addr.word = 0;
cfg_addr.reg_addr = (offset & 0xFFF);
cfg_addr.fn = function;
cfg_addr.dev = device;
cfg_addr.bus = busnum;
cfg_addr.type = config_type;
/*
* Note that we don't set the mac field in cfg_addr because the
* mapping is per port.
*/
mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
cfg_addr.word;
valid_device:
switch (size) {
case 4:
*val = __gxio_mmio_read32(mmio_addr);
break;
case 2:
*val = __gxio_mmio_read16(mmio_addr);
break;
case 1:
*val = __gxio_mmio_read8(mmio_addr);
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
TRACE_CFG_RD(size, *val, busnum, device, function, offset);
return 0;
invalid_device:
switch (size) {
case 4:
*val = 0xFFFFFFFF;
break;
case 2:
*val = 0xFFFF;
break;
case 1:
*val = 0xFF;
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
return 0;
}
/*
* See tile_cfg_read() for relevent comments.
* Note that "val" is the value to write, not a pointer to that value.
*/
static int __devinit tile_cfg_write(struct pci_bus *bus,
unsigned int devfn,
int offset,
int size,
u32 val)
{
struct pci_controller *controller = bus->sysdata;
gxio_trio_context_t *trio_context = controller->trio;
int busnum = bus->number & 0xff;
int device = PCI_SLOT(devfn);
int function = PCI_FUNC(devfn);
int config_type = 1;
TRIO_TILE_PIO_REGION_SETUP_CFG_ADDR_t cfg_addr;
void *mmio_addr;
u32 val_32 = (u32)val;
u16 val_16 = (u16)val;
u8 val_8 = (u8)val;
/*
* Map all accesses to the local device on root bus into the
* MMIO space of the MAC. Accesses to the downstream devices
* go to the PIO space.
*/
if (pci_is_root_bus(bus)) {
if (device == 0) {
/*
* This is the internal downstream P2P bridge,
* access directly.
*/
unsigned int reg_offset;
reg_offset = ((offset & 0xFFF) <<
TRIO_CFG_REGION_ADDR__REG_SHIFT) |
(TRIO_CFG_REGION_ADDR__INTFC_VAL_MAC_PROTECTED
<< TRIO_CFG_REGION_ADDR__INTFC_SHIFT ) |
(controller->mac <<
TRIO_CFG_REGION_ADDR__MAC_SEL_SHIFT);
mmio_addr = trio_context->mmio_base_mac + reg_offset;
goto valid_device;
} else {
/*
* We fake an empty device for (device > 0),
* since there is only one device on bus 0.
*/
goto invalid_device;
}
}
/*
* Accesses to the directly attached device have to be
* sent as type-0 configs.
*/
if (busnum == (controller->first_busno + 1)) {
/*
* There is only one device off of our built-in P2P bridge.
*/
if (device != 0)
goto invalid_device;
config_type = 0;
}
cfg_addr.word = 0;
cfg_addr.reg_addr = (offset & 0xFFF);
cfg_addr.fn = function;
cfg_addr.dev = device;
cfg_addr.bus = busnum;
cfg_addr.type = config_type;
/*
* Note that we don't set the mac field in cfg_addr because the
* mapping is per port.
*/
mmio_addr = trio_context->mmio_base_pio_cfg[controller->mac] +
cfg_addr.word;
valid_device:
switch (size) {
case 4:
__gxio_mmio_write32(mmio_addr, val_32);
TRACE_CFG_WR(size, val_32, busnum, device, function, offset);
break;
case 2:
__gxio_mmio_write16(mmio_addr, val_16);
TRACE_CFG_WR(size, val_16, busnum, device, function, offset);
break;
case 1:
__gxio_mmio_write8(mmio_addr, val_8);
TRACE_CFG_WR(size, val_8, busnum, device, function, offset);
break;
default:
return PCIBIOS_FUNC_NOT_SUPPORTED;
}
invalid_device:
return 0;
}
static struct pci_ops tile_cfg_ops = {
.read = tile_cfg_read,
.write = tile_cfg_write,
};
/*
* MSI support starts here.
*/
static unsigned int
tilegx_msi_startup(struct irq_data *d)
{
if (d->msi_desc)
unmask_msi_irq(d);
return 0;
}
static void
tilegx_msi_ack(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_EVENT_RESET_K, 1UL << d->irq);
}
static void
tilegx_msi_mask(struct irq_data *d)
{
mask_msi_irq(d);
__insn_mtspr(SPR_IPI_MASK_SET_K, 1UL << d->irq);
}
static void
tilegx_msi_unmask(struct irq_data *d)
{
__insn_mtspr(SPR_IPI_MASK_RESET_K, 1UL << d->irq);
unmask_msi_irq(d);
}
static struct irq_chip tilegx_msi_chip = {
.name = "tilegx_msi",
.irq_startup = tilegx_msi_startup,
.irq_ack = tilegx_msi_ack,
.irq_mask = tilegx_msi_mask,
.irq_unmask = tilegx_msi_unmask,
/* TBD: support set_affinity. */
};
int arch_setup_msi_irq(struct pci_dev *pdev, struct msi_desc *desc)
{
struct pci_controller *controller;
gxio_trio_context_t *trio_context;
struct msi_msg msg;
int default_irq;
uint64_t mem_map_base;
uint64_t mem_map_limit;
u64 msi_addr;
int mem_map;
int cpu;
int irq;
int ret;
irq = create_irq();
if (irq < 0)
return irq;
/*
* Since we use a 64-bit Mem-Map to accept the MSI write, we fail
* devices that are not capable of generating a 64-bit message address.
* These devices will fall back to using the legacy interrupts.
* Most PCIe endpoint devices do support 64-bit message addressing.
*/
if (desc->msi_attrib.is_64 == 0) {
dev_printk(KERN_INFO, &pdev->dev,
"64-bit MSI message address not supported, "
"falling back to legacy interrupts.\n");
ret = -ENOMEM;
goto is_64_failure;
}
default_irq = desc->msi_attrib.default_irq;
controller = irq_get_handler_data(default_irq);
BUG_ON(!controller);
trio_context = controller->trio;
/*
* Allocate the Mem-Map that will accept the MSI write and
* trigger the TILE-side interrupts.
*/
mem_map = gxio_trio_alloc_memory_maps(trio_context, 1, 0, 0);
if (mem_map < 0) {
dev_printk(KERN_INFO, &pdev->dev,
"%s Mem-Map alloc failure. "
"Failed to initialize MSI interrupts. "
"Falling back to legacy interrupts.\n",
desc->msi_attrib.is_msix ? "MSI-X" : "MSI");
ret = -ENOMEM;
goto msi_mem_map_alloc_failure;
}
/* We try to distribute different IRQs to different tiles. */
cpu = tile_irq_cpu(irq);
/*
* Now call up to the HV to configure the Mem-Map interrupt and
* set up the IPI binding.
*/
mem_map_base = MEM_MAP_INTR_REGIONS_BASE +
mem_map * MEM_MAP_INTR_REGION_SIZE;
mem_map_limit = mem_map_base + MEM_MAP_INTR_REGION_SIZE - 1;
ret = gxio_trio_config_msi_intr(trio_context, cpu_x(cpu), cpu_y(cpu),
KERNEL_PL, irq, controller->mac,
mem_map, mem_map_base, mem_map_limit,
trio_context->asid);
if (ret < 0) {
dev_printk(KERN_INFO, &pdev->dev, "HV MSI config failed.\n");
goto hv_msi_config_failure;
}
irq_set_msi_desc(irq, desc);
msi_addr = mem_map_base + TRIO_MAP_MEM_REG_INT3 - TRIO_MAP_MEM_REG_INT0;
msg.address_hi = msi_addr >> 32;
msg.address_lo = msi_addr & 0xffffffff;
msg.data = mem_map;
write_msi_msg(irq, &msg);
irq_set_chip_and_handler(irq, &tilegx_msi_chip, handle_level_irq);
irq_set_handler_data(irq, controller);
return 0;
hv_msi_config_failure:
/* Free mem-map */
msi_mem_map_alloc_failure:
is_64_failure:
destroy_irq(irq);
return ret;
}
void arch_teardown_msi_irq(unsigned int irq)
{
destroy_irq(irq);
}
......@@ -23,6 +23,7 @@
#include <linux/irq.h>
#include <linux/kexec.h>
#include <linux/pci.h>
#include <linux/swiotlb.h>
#include <linux/initrd.h>
#include <linux/io.h>
#include <linux/highmem.h>
......@@ -109,7 +110,7 @@ static unsigned int __initdata maxnodemem_pfn[MAX_NUMNODES] = {
};
static nodemask_t __initdata isolnodes;
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
enum { DEFAULT_PCI_RESERVE_MB = 64 };
static unsigned int __initdata pci_reserve_mb = DEFAULT_PCI_RESERVE_MB;
unsigned long __initdata pci_reserve_start_pfn = -1U;
......@@ -160,7 +161,7 @@ static int __init setup_isolnodes(char *str)
}
early_param("isolnodes", setup_isolnodes);
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
static int __init setup_pci_reserve(char* str)
{
unsigned long mb;
......@@ -411,7 +412,7 @@ static void __init setup_memory(void)
continue;
}
#endif
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Blocks that overlap the pci reserved region must
* have enough space to hold the maximum percpu data
......@@ -604,11 +605,9 @@ static void __init setup_bootmem_allocator_node(int i)
/* Free all the space back into the allocator. */
free_bootmem(PFN_PHYS(start), PFN_PHYS(end - start));
#if defined(CONFIG_PCI)
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Throw away any memory aliased by the PCI region. FIXME: this
* is a temporary hack to work around bug 10502, and needs to be
* fixed properly.
* Throw away any memory aliased by the PCI region.
*/
if (pci_reserve_start_pfn < end && pci_reserve_end_pfn > start)
reserve_bootmem(PFN_PHYS(pci_reserve_start_pfn),
......@@ -658,6 +657,8 @@ static void __init zone_sizes_init(void)
unsigned long zones_size[MAX_NR_ZONES] = { 0 };
int size = percpu_size();
int num_cpus = smp_height * smp_width;
const unsigned long dma_end = (1UL << (32 - PAGE_SHIFT));
int i;
for (i = 0; i < num_cpus; ++i)
......@@ -729,6 +730,14 @@ static void __init zone_sizes_init(void)
zones_size[ZONE_NORMAL] = end - start;
#endif
if (start < dma_end) {
zones_size[ZONE_DMA] = min(zones_size[ZONE_NORMAL],
dma_end - start);
zones_size[ZONE_NORMAL] -= zones_size[ZONE_DMA];
} else {
zones_size[ZONE_DMA] = 0;
}
/* Take zone metadata from controller 0 if we're isolnode. */
if (node_isset(i, isolnodes))
NODE_DATA(i)->bdata = &bootmem_node_data[0];
......@@ -738,7 +747,7 @@ static void __init zone_sizes_init(void)
PFN_UP(node_percpu[i]));
/* Track the type of memory on each node */
if (zones_size[ZONE_NORMAL])
if (zones_size[ZONE_NORMAL] || zones_size[ZONE_DMA])
node_set_state(i, N_NORMAL_MEMORY);
#ifdef CONFIG_HIGHMEM
if (end != start)
......@@ -1343,7 +1352,7 @@ void __init setup_arch(char **cmdline_p)
setup_cpu_maps();
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
/*
* Initialize the PCI structures. This is done before memory
* setup so that we know whether or not a pci_reserve region
......@@ -1372,6 +1381,10 @@ void __init setup_arch(char **cmdline_p)
* any memory using the bootmem allocator.
*/
#ifdef CONFIG_SWIOTLB
swiotlb_init(0);
#endif
paging_init();
setup_numa_mapping();
zone_sizes_init();
......@@ -1522,11 +1535,10 @@ static struct resource code_resource = {
};
/*
* We reserve all resources above 4GB so that PCI won't try to put
* mappings above 4GB; the standard allows that for some devices but
* the probing code trunates values to 32 bits.
* On Pro, we reserve all resources above 4GB so that PCI won't try to put
* mappings above 4GB.
*/
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
static struct resource* __init
insert_non_bus_resource(void)
{
......@@ -1571,8 +1583,7 @@ static int __init request_standard_resources(void)
int i;
enum { CODE_DELTA = MEM_SV_INTRPT - PAGE_OFFSET };
iomem_resource.end = -1LL;
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
insert_non_bus_resource();
#endif
......@@ -1580,7 +1591,7 @@ static int __init request_standard_resources(void)
u64 start_pfn = node_start_pfn[i];
u64 end_pfn = node_end_pfn[i];
#ifdef CONFIG_PCI
#if defined(CONFIG_PCI) && !defined(__tilegx__)
if (start_pfn <= pci_reserve_start_pfn &&
end_pfn > pci_reserve_start_pfn) {
if (end_pfn > pci_reserve_end_pfn)
......
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*
* Register the Tile-Gx USB interfaces as platform devices.
*
* The actual USB driver is just some glue (in
* drivers/usb/host/[eo]hci-tilegx.c) which makes the registers available
* to the standard kernel EHCI and OHCI drivers.
*/
#include <linux/dma-mapping.h>
#include <linux/platform_device.h>
#include <linux/usb/tilegx.h>
#include <linux/types.h>
static u64 ehci_dmamask = DMA_BIT_MASK(32);
#define USB_HOST_DEF(unit, type, dmamask) \
static struct \
tilegx_usb_platform_data tilegx_usb_platform_data_ ## type ## \
hci ## unit = { \
.dev_index = unit, \
}; \
\
static struct platform_device tilegx_usb_ ## type ## hci ## unit = { \
.name = "tilegx-" #type "hci", \
.id = unit, \
.dev = { \
.dma_mask = dmamask, \
.coherent_dma_mask = DMA_BIT_MASK(32), \
.platform_data = \
&tilegx_usb_platform_data_ ## type ## hci ## \
unit, \
}, \
};
USB_HOST_DEF(0, e, &ehci_dmamask)
USB_HOST_DEF(0, o, NULL)
USB_HOST_DEF(1, e, &ehci_dmamask)
USB_HOST_DEF(1, o, NULL)
#undef USB_HOST_DEF
static struct platform_device *tilegx_usb_devices[] __initdata = {
&tilegx_usb_ehci0,
&tilegx_usb_ehci1,
&tilegx_usb_ohci0,
&tilegx_usb_ohci1,
};
/** Add our set of possible USB devices. */
static int __init tilegx_usb_init(void)
{
platform_add_devices(tilegx_usb_devices,
ARRAY_SIZE(tilegx_usb_devices));
return 0;
}
arch_initcall(tilegx_usb_init);
......@@ -16,19 +16,6 @@
#include <net/checksum.h>
#include <linux/module.h>
static inline unsigned int longto16(unsigned long x)
{
unsigned long ret;
#ifdef __tilegx__
ret = __insn_v2sadu(x, 0);
ret = __insn_v2sadu(ret, 0);
#else
ret = __insn_sadh_u(x, 0);
ret = __insn_sadh_u(ret, 0);
#endif
return ret;
}
__wsum do_csum(const unsigned char *buff, int len)
{
int odd, count;
......@@ -94,7 +81,7 @@ __wsum do_csum(const unsigned char *buff, int len)
}
if (len & 1)
result += *buff;
result = longto16(result);
result = csum_long(result);
if (odd)
result = swab16(result);
out:
......
......@@ -64,10 +64,6 @@ early_param("noallocl2", set_noallocl2);
#endif
/* Provide no-op versions of these routines to keep flush_remote() cleaner. */
#define mark_caches_evicted_start() 0
#define mark_caches_evicted_finish(mask, timestamp) do {} while (0)
/*
* Update the irq_stat for cpus that we are going to interrupt
......@@ -107,7 +103,6 @@ static void hv_flush_update(const struct cpumask *cache_cpumask,
* there's never any good reason for hv_flush_remote() to fail.
* - Accepts a 32-bit PFN rather than a 64-bit PA, which generally
* is the type that Linux wants to pass around anyway.
* - Centralizes the mark_caches_evicted() handling.
* - Canonicalizes that lengths of zero make cpumasks NULL.
* - Handles deferring TLB flushes for dataplane tiles.
* - Tracks remote interrupts in the per-cpu irq_cpustat_t.
......@@ -126,7 +121,6 @@ void flush_remote(unsigned long cache_pfn, unsigned long cache_control,
HV_Remote_ASID *asids, int asidcount)
{
int rc;
int timestamp = 0; /* happy compiler */
struct cpumask cache_cpumask_copy, tlb_cpumask_copy;
struct cpumask *cache_cpumask, *tlb_cpumask;
HV_PhysAddr cache_pa;
......@@ -157,15 +151,11 @@ void flush_remote(unsigned long cache_pfn, unsigned long cache_control,
hv_flush_update(cache_cpumask, tlb_cpumask, tlb_va, tlb_length,
asids, asidcount);
cache_pa = (HV_PhysAddr)cache_pfn << PAGE_SHIFT;
if (cache_control & HV_FLUSH_EVICT_L2)
timestamp = mark_caches_evicted_start();
rc = hv_flush_remote(cache_pa, cache_control,
cpumask_bits(cache_cpumask),
tlb_va, tlb_length, tlb_pgsize,
cpumask_bits(tlb_cpumask),
asids, asidcount);
if (cache_control & HV_FLUSH_EVICT_L2)
mark_caches_evicted_finish(cache_cpumask, timestamp);
if (rc == 0)
return;
cpumask_scnprintf(cache_buf, sizeof(cache_buf), &cache_cpumask_copy);
......@@ -180,85 +170,86 @@ void flush_remote(unsigned long cache_pfn, unsigned long cache_control,
panic("Unsafe to continue.");
}
void flush_remote_page(struct page *page, int order)
static void homecache_finv_page_va(void* va, int home)
{
int i, pages = (1 << order);
for (i = 0; i < pages; ++i, ++page) {
void *p = kmap_atomic(page);
int hfh = 0;
int home = page_home(page);
#if CHIP_HAS_CBOX_HOME_MAP()
if (home == PAGE_HOME_HASH)
hfh = 1;
else
#endif
if (home == smp_processor_id()) {
finv_buffer_local(va, PAGE_SIZE);
} else if (home == PAGE_HOME_HASH) {
finv_buffer_remote(va, PAGE_SIZE, 1);
} else {
BUG_ON(home < 0 || home >= NR_CPUS);
finv_buffer_remote(p, PAGE_SIZE, hfh);
kunmap_atomic(p);
finv_buffer_remote(va, PAGE_SIZE, 0);
}
}
void homecache_evict(const struct cpumask *mask)
void homecache_finv_map_page(struct page *page, int home)
{
flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0);
unsigned long flags;
unsigned long va;
pte_t *ptep;
pte_t pte;
if (home == PAGE_HOME_UNCACHED)
return;
local_irq_save(flags);
#ifdef CONFIG_HIGHMEM
va = __fix_to_virt(FIX_KMAP_BEGIN + kmap_atomic_idx_push() +
(KM_TYPE_NR * smp_processor_id()));
#else
va = __fix_to_virt(FIX_HOMECACHE_BEGIN + smp_processor_id());
#endif
ptep = virt_to_pte(NULL, (unsigned long)va);
pte = pfn_pte(page_to_pfn(page), PAGE_KERNEL);
__set_pte(ptep, pte_set_home(pte, home));
homecache_finv_page_va((void *)va, home);
__pte_clear(ptep);
hv_flush_page(va, PAGE_SIZE);
#ifdef CONFIG_HIGHMEM
kmap_atomic_idx_pop();
#endif
local_irq_restore(flags);
}
/*
* Return a mask of the cpus whose caches currently own these pages.
* The return value is whether the pages are all coherently cached
* (i.e. none are immutable, incoherent, or uncached).
*/
static int homecache_mask(struct page *page, int pages,
struct cpumask *home_mask)
static void homecache_finv_page_home(struct page *page, int home)
{
int i;
int cached_coherently = 1;
cpumask_clear(home_mask);
for (i = 0; i < pages; ++i) {
int home = page_home(&page[i]);
if (home == PAGE_HOME_IMMUTABLE ||
home == PAGE_HOME_INCOHERENT) {
cpumask_copy(home_mask, cpu_possible_mask);
return 0;
}
#if CHIP_HAS_CBOX_HOME_MAP()
if (home == PAGE_HOME_HASH) {
cpumask_or(home_mask, home_mask, &hash_for_home_map);
continue;
}
#endif
if (home == PAGE_HOME_UNCACHED) {
cached_coherently = 0;
continue;
}
BUG_ON(home < 0 || home >= NR_CPUS);
cpumask_set_cpu(home, home_mask);
}
return cached_coherently;
if (!PageHighMem(page) && home == page_home(page))
homecache_finv_page_va(page_address(page), home);
else
homecache_finv_map_page(page, home);
}
/*
* Return the passed length, or zero if it's long enough that we
* believe we should evict the whole L2 cache.
*/
static unsigned long cache_flush_length(unsigned long length)
static inline bool incoherent_home(int home)
{
return (length >= CHIP_L2_CACHE_SIZE()) ? HV_FLUSH_EVICT_L2 : length;
return home == PAGE_HOME_IMMUTABLE || home == PAGE_HOME_INCOHERENT;
}
/* Flush a page out of whatever cache(s) it is in. */
void homecache_flush_cache(struct page *page, int order)
static void homecache_finv_page_internal(struct page *page, int force_map)
{
int pages = 1 << order;
int length = cache_flush_length(pages * PAGE_SIZE);
unsigned long pfn = page_to_pfn(page);
struct cpumask home_mask;
homecache_mask(page, pages, &home_mask);
flush_remote(pfn, length, &home_mask, 0, 0, 0, NULL, NULL, 0);
sim_validate_lines_evicted(PFN_PHYS(pfn), pages * PAGE_SIZE);
int home = page_home(page);
if (home == PAGE_HOME_UNCACHED)
return;
if (incoherent_home(home)) {
int cpu;
for_each_cpu(cpu, &cpu_cacheable_map)
homecache_finv_map_page(page, cpu);
} else if (force_map) {
/* Force if, e.g., the normal mapping is migrating. */
homecache_finv_map_page(page, home);
} else {
homecache_finv_page_home(page, home);
}
sim_validate_lines_evicted(PFN_PHYS(page_to_pfn(page)), PAGE_SIZE);
}
void homecache_finv_page(struct page *page)
{
homecache_finv_page_internal(page, 0);
}
void homecache_evict(const struct cpumask *mask)
{
flush_remote(0, HV_FLUSH_EVICT_L2, mask, 0, 0, 0, NULL, NULL, 0);
}
/* Report the home corresponding to a given PTE. */
static int pte_to_home(pte_t pte)
......@@ -441,15 +432,8 @@ struct page *homecache_alloc_pages_node(int nid, gfp_t gfp_mask,
return page;
}
void homecache_free_pages(unsigned long addr, unsigned int order)
void __homecache_free_pages(struct page *page, unsigned int order)
{
struct page *page;
if (addr == 0)
return;
VM_BUG_ON(!virt_addr_valid((void *)addr));
page = virt_to_page((void *)addr);
if (put_page_testzero(page)) {
homecache_change_page_home(page, order, initial_page_home());
if (order == 0) {
......@@ -460,3 +444,13 @@ void homecache_free_pages(unsigned long addr, unsigned int order)
}
}
}
EXPORT_SYMBOL(__homecache_free_pages);
void homecache_free_pages(unsigned long addr, unsigned int order)
{
if (addr != 0) {
VM_BUG_ON(!virt_addr_valid((void *)addr));
__homecache_free_pages(virt_to_page((void *)addr), order);
}
}
EXPORT_SYMBOL(homecache_free_pages);
......@@ -150,7 +150,21 @@ void __init shatter_pmd(pmd_t *pmd)
assign_pte(pmd, pte);
}
#ifdef CONFIG_HIGHMEM
#ifdef __tilegx__
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
if (pud_none(*pud))
assign_pmd(pud, alloc_pmd());
return pmd_offset(pud, va);
}
#else
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
}
#endif
/*
* This function initializes a certain range of kernel virtual memory
* with new bootmem page tables, everywhere page tables are missing in
......@@ -163,24 +177,17 @@ void __init shatter_pmd(pmd_t *pmd)
* checking the pgd every time.
*/
static void __init page_table_range_init(unsigned long start,
unsigned long end, pgd_t *pgd_base)
unsigned long end, pgd_t *pgd)
{
pgd_t *pgd;
int pgd_idx;
unsigned long vaddr;
vaddr = start;
pgd_idx = pgd_index(vaddr);
pgd = pgd_base + pgd_idx;
for ( ; (pgd_idx < PTRS_PER_PGD) && (vaddr != end); pgd++, pgd_idx++) {
pmd_t *pmd = pmd_offset(pud_offset(pgd, vaddr), vaddr);
start = round_down(start, PMD_SIZE);
end = round_up(end, PMD_SIZE);
for (vaddr = start; vaddr < end; vaddr += PMD_SIZE) {
pmd_t *pmd = get_pmd(pgd, vaddr);
if (pmd_none(*pmd))
assign_pte(pmd, alloc_pte());
vaddr += PMD_SIZE;
}
}
#endif /* CONFIG_HIGHMEM */
#if CHIP_HAS_CBOX_HOME_MAP()
......@@ -404,21 +411,6 @@ static inline pgprot_t ktext_set_nocache(pgprot_t prot)
return prot;
}
#ifndef __tilegx__
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
return pmd_offset(pud_offset(&pgtables[pgd_index(va)], va), va);
}
#else
static pmd_t *__init get_pmd(pgd_t pgtables[], unsigned long va)
{
pud_t *pud = pud_offset(&pgtables[pgd_index(va)], va);
if (pud_none(*pud))
assign_pmd(pud, alloc_pmd());
return pmd_offset(pud, va);
}
#endif
/* Temporary page table we use for staging. */
static pgd_t pgtables[PTRS_PER_PGD]
__attribute__((aligned(HV_PAGE_TABLE_ALIGN)));
......@@ -741,16 +733,15 @@ static void __init set_non_bootmem_pages_init(void)
for_each_zone(z) {
unsigned long start, end;
int nid = z->zone_pgdat->node_id;
#ifdef CONFIG_HIGHMEM
int idx = zone_idx(z);
#endif
start = z->zone_start_pfn;
if (start == 0)
continue; /* bootmem */
end = start + z->spanned_pages;
if (idx == ZONE_NORMAL) {
BUG_ON(start != node_start_pfn[nid]);
start = node_free_pfn[nid];
}
start = max(start, node_free_pfn[nid]);
start = max(start, max_low_pfn);
#ifdef CONFIG_HIGHMEM
if (idx == ZONE_HIGHMEM)
totalhigh_pages += z->spanned_pages;
......@@ -779,9 +770,6 @@ static void __init set_non_bootmem_pages_init(void)
*/
void __init paging_init(void)
{
#ifdef CONFIG_HIGHMEM
unsigned long vaddr, end;
#endif
#ifdef __tilegx__
pud_t *pud;
#endif
......@@ -789,14 +777,14 @@ void __init paging_init(void)
kernel_physical_mapping_init(pgd_base);
#ifdef CONFIG_HIGHMEM
/*
* Fixed mappings, only the page table structure has to be
* created - mappings will be set by set_fixmap():
*/
vaddr = __fix_to_virt(__end_of_fixed_addresses - 1) & PMD_MASK;
end = (FIXADDR_TOP + PMD_SIZE - 1) & PMD_MASK;
page_table_range_init(vaddr, end, pgd_base);
page_table_range_init(fix_to_virt(__end_of_fixed_addresses - 1),
FIXADDR_TOP, pgd_base);
#ifdef CONFIG_HIGHMEM
permanent_kmaps_init(pgd_base);
#endif
......
......@@ -575,13 +575,6 @@ void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
}
EXPORT_SYMBOL(ioremap_prot);
/* Map a PCI MMIO bus address into VA space. */
void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
{
panic("ioremap for PCI MMIO is not supported");
}
EXPORT_SYMBOL(ioremap);
/* Unmap an MMIO VA mapping. */
void iounmap(volatile void __iomem *addr_in)
{
......
......@@ -2143,9 +2143,9 @@ DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82865_HB,
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82875_HB,
quirk_unhide_mch_dev6);
#ifdef CONFIG_TILE
#ifdef CONFIG_TILEPRO
/*
* The Tilera TILEmpower platform needs to set the link speed
* The Tilera TILEmpower tilepro platform needs to set the link speed
* to 2.5GT(Giga-Transfers)/s (Gen 1). The default link speed
* setting is 5GT/s (Gen 2). 0x98 is the Link Control2 PCIe
* capability register of the PEX8624 PCIe switch. The switch
......@@ -2160,7 +2160,7 @@ static void __devinit quirk_tile_plx_gen1(struct pci_dev *dev)
}
}
DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_PLX, 0x8624, quirk_tile_plx_gen1);
#endif /* CONFIG_TILE */
#endif /* CONFIG_TILEPRO */
#ifdef CONFIG_PCI_MSI
/* Some chipsets do not support MSI. We cannot easily rely on setting
......
......@@ -1349,6 +1349,11 @@ MODULE_LICENSE ("GPL");
#define PLATFORM_DRIVER ehci_msm_driver
#endif
#ifdef CONFIG_TILE_USB
#include "ehci-tilegx.c"
#define PLATFORM_DRIVER ehci_hcd_tilegx_driver
#endif
#ifdef CONFIG_USB_EHCI_HCD_PMC_MSP
#include "ehci-pmcmsp.c"
#define PLATFORM_DRIVER ehci_hcd_msp_driver
......
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/*
* Tilera TILE-Gx USB EHCI host controller driver.
*/
#include <linux/irq.h>
#include <linux/platform_device.h>
#include <linux/usb/tilegx.h>
#include <linux/usb.h>
#include <asm/homecache.h>
#include <gxio/iorpc_usb_host.h>
#include <gxio/usb_host.h>
static void tilegx_start_ehc(void)
{
}
static void tilegx_stop_ehc(void)
{
}
static int tilegx_ehci_setup(struct usb_hcd *hcd)
{
int ret = ehci_init(hcd);
/*
* Some drivers do:
*
* struct ehci_hcd *ehci = hcd_to_ehci(hcd);
* ehci->need_io_watchdog = 0;
*
* here, but since this is a new driver we're going to leave the
* watchdog enabled. Later we may try to turn it off and see
* whether we run into any problems.
*/
return ret;
}
static const struct hc_driver ehci_tilegx_hc_driver = {
.description = hcd_name,
.product_desc = "Tile-Gx EHCI",
.hcd_priv_size = sizeof(struct ehci_hcd),
/*
* Generic hardware linkage.
*/
.irq = ehci_irq,
.flags = HCD_MEMORY | HCD_USB2,
/*
* Basic lifecycle operations.
*/
.reset = tilegx_ehci_setup,
.start = ehci_run,
.stop = ehci_stop,
.shutdown = ehci_shutdown,
/*
* Managing I/O requests and associated device resources.
*/
.urb_enqueue = ehci_urb_enqueue,
.urb_dequeue = ehci_urb_dequeue,
.endpoint_disable = ehci_endpoint_disable,
.endpoint_reset = ehci_endpoint_reset,
/*
* Scheduling support.
*/
.get_frame_number = ehci_get_frame,
/*
* Root hub support.
*/
.hub_status_data = ehci_hub_status_data,
.hub_control = ehci_hub_control,
.bus_suspend = ehci_bus_suspend,
.bus_resume = ehci_bus_resume,
.relinquish_port = ehci_relinquish_port,
.port_handed_over = ehci_port_handed_over,
.clear_tt_buffer_complete = ehci_clear_tt_buffer_complete,
};
static int ehci_hcd_tilegx_drv_probe(struct platform_device *pdev)
{
struct usb_hcd *hcd;
struct ehci_hcd *ehci;
struct tilegx_usb_platform_data *pdata = pdev->dev.platform_data;
pte_t pte = { 0 };
int my_cpu = smp_processor_id();
int ret;
if (usb_disabled())
return -ENODEV;
/*
* Try to initialize our GXIO context; if we can't, the device
* doesn't exist.
*/
if (gxio_usb_host_init(&pdata->usb_ctx, pdata->dev_index, 1) != 0)
return -ENXIO;
hcd = usb_create_hcd(&ehci_tilegx_hc_driver, &pdev->dev,
dev_name(&pdev->dev));
if (!hcd)
return -ENOMEM;
/*
* We don't use rsrc_start to map in our registers, but seems like
* we ought to set it to something, so we use the register VA.
*/
hcd->rsrc_start =
(ulong) gxio_usb_host_get_reg_start(&pdata->usb_ctx);
hcd->rsrc_len = gxio_usb_host_get_reg_len(&pdata->usb_ctx);
hcd->regs = gxio_usb_host_get_reg_start(&pdata->usb_ctx);
tilegx_start_ehc();
ehci = hcd_to_ehci(hcd);
ehci->caps = hcd->regs;
ehci->regs =
hcd->regs + HC_LENGTH(ehci, readl(&ehci->caps->hc_capbase));
/* cache this readonly data; minimize chip reads */
ehci->hcs_params = readl(&ehci->caps->hcs_params);
/* Create our IRQs and register them. */
pdata->irq = create_irq();
if (pdata->irq < 0) {
ret = -ENXIO;
goto err_no_irq;
}
tile_irq_activate(pdata->irq, TILE_IRQ_PERCPU);
/* Configure interrupts. */
ret = gxio_usb_host_cfg_interrupt(&pdata->usb_ctx,
cpu_x(my_cpu), cpu_y(my_cpu),
KERNEL_PL, pdata->irq);
if (ret) {
ret = -ENXIO;
goto err_have_irq;
}
/* Register all of our memory. */
pte = pte_set_home(pte, PAGE_HOME_HASH);
ret = gxio_usb_host_register_client_memory(&pdata->usb_ctx, pte, 0);
if (ret) {
ret = -ENXIO;
goto err_have_irq;
}
ret = usb_add_hcd(hcd, pdata->irq, IRQF_SHARED);
if (ret == 0) {
platform_set_drvdata(pdev, hcd);
return ret;
}
err_have_irq:
destroy_irq(pdata->irq);
err_no_irq:
tilegx_stop_ehc();
usb_put_hcd(hcd);
gxio_usb_host_destroy(&pdata->usb_ctx);
return ret;
}
static int ehci_hcd_tilegx_drv_remove(struct platform_device *pdev)
{
struct usb_hcd *hcd = platform_get_drvdata(pdev);
struct tilegx_usb_platform_data *pdata = pdev->dev.platform_data;
usb_remove_hcd(hcd);
usb_put_hcd(hcd);
tilegx_stop_ehc();
gxio_usb_host_destroy(&pdata->usb_ctx);
destroy_irq(pdata->irq);
platform_set_drvdata(pdev, NULL);
return 0;
}
static void ehci_hcd_tilegx_drv_shutdown(struct platform_device *pdev)
{
usb_hcd_platform_shutdown(pdev);
ehci_hcd_tilegx_drv_remove(pdev);
}
static struct platform_driver ehci_hcd_tilegx_driver = {
.probe = ehci_hcd_tilegx_drv_probe,
.remove = ehci_hcd_tilegx_drv_remove,
.shutdown = ehci_hcd_tilegx_drv_shutdown,
.driver = {
.name = "tilegx-ehci",
.owner = THIS_MODULE,
}
};
MODULE_ALIAS("platform:tilegx-ehci");
......@@ -1100,6 +1100,11 @@ MODULE_LICENSE ("GPL");
#define PLATFORM_DRIVER ohci_octeon_driver
#endif
#ifdef CONFIG_TILE_USB
#include "ohci-tilegx.c"
#define PLATFORM_DRIVER ohci_hcd_tilegx_driver
#endif
#ifdef CONFIG_USB_CNS3XXX_OHCI
#include "ohci-cns3xxx.c"
#define PLATFORM_DRIVER ohci_hcd_cns3xxx_driver
......
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*/
/*
* Tilera TILE-Gx USB OHCI host controller driver.
*/
#include <linux/irq.h>
#include <linux/platform_device.h>
#include <linux/usb/tilegx.h>
#include <linux/usb.h>
#include <asm/homecache.h>
#include <gxio/iorpc_usb_host.h>
#include <gxio/usb_host.h>
static void tilegx_start_ohc(void)
{
}
static void tilegx_stop_ohc(void)
{
}
static int tilegx_ohci_start(struct usb_hcd *hcd)
{
struct ohci_hcd *ohci = hcd_to_ohci(hcd);
int ret;
ret = ohci_init(ohci);
if (ret < 0)
return ret;
ret = ohci_run(ohci);
if (ret < 0) {
dev_err(hcd->self.controller, "can't start %s\n",
hcd->self.bus_name);
ohci_stop(hcd);
return ret;
}
return 0;
}
static const struct hc_driver ohci_tilegx_hc_driver = {
.description = hcd_name,
.product_desc = "Tile-Gx OHCI",
.hcd_priv_size = sizeof(struct ohci_hcd),
/*
* Generic hardware linkage.
*/
.irq = ohci_irq,
.flags = HCD_MEMORY | HCD_LOCAL_MEM | HCD_USB11,
/*
* Basic lifecycle operations.
*/
.start = tilegx_ohci_start,
.stop = ohci_stop,
.shutdown = ohci_shutdown,
/*
* Managing I/O requests and associated device resources.
*/
.urb_enqueue = ohci_urb_enqueue,
.urb_dequeue = ohci_urb_dequeue,
.endpoint_disable = ohci_endpoint_disable,
/*
* Scheduling support.
*/
.get_frame_number = ohci_get_frame,
/*
* Root hub support.
*/
.hub_status_data = ohci_hub_status_data,
.hub_control = ohci_hub_control,
.start_port_reset = ohci_start_port_reset,
};
static int ohci_hcd_tilegx_drv_probe(struct platform_device *pdev)
{
struct usb_hcd *hcd;
struct tilegx_usb_platform_data *pdata = pdev->dev.platform_data;
pte_t pte = { 0 };
int my_cpu = smp_processor_id();
int ret;
if (usb_disabled())
return -ENODEV;
/*
* Try to initialize our GXIO context; if we can't, the device
* doesn't exist.
*/
if (gxio_usb_host_init(&pdata->usb_ctx, pdata->dev_index, 0) != 0)
return -ENXIO;
hcd = usb_create_hcd(&ohci_tilegx_hc_driver, &pdev->dev,
dev_name(&pdev->dev));
if (!hcd)
return -ENOMEM;
/*
* We don't use rsrc_start to map in our registers, but seems like
* we ought to set it to something, so we use the register VA.
*/
hcd->rsrc_start =
(ulong) gxio_usb_host_get_reg_start(&pdata->usb_ctx);
hcd->rsrc_len = gxio_usb_host_get_reg_len(&pdata->usb_ctx);
hcd->regs = gxio_usb_host_get_reg_start(&pdata->usb_ctx);
tilegx_start_ohc();
/* Create our IRQs and register them. */
pdata->irq = create_irq();
if (pdata->irq < 0) {
ret = -ENXIO;
goto err_no_irq;
}
tile_irq_activate(pdata->irq, TILE_IRQ_PERCPU);
/* Configure interrupts. */
ret = gxio_usb_host_cfg_interrupt(&pdata->usb_ctx,
cpu_x(my_cpu), cpu_y(my_cpu),
KERNEL_PL, pdata->irq);
if (ret) {
ret = -ENXIO;
goto err_have_irq;
}
/* Register all of our memory. */
pte = pte_set_home(pte, PAGE_HOME_HASH);
ret = gxio_usb_host_register_client_memory(&pdata->usb_ctx, pte, 0);
if (ret) {
ret = -ENXIO;
goto err_have_irq;
}
ohci_hcd_init(hcd_to_ohci(hcd));
ret = usb_add_hcd(hcd, pdata->irq, IRQF_SHARED);
if (ret == 0) {
platform_set_drvdata(pdev, hcd);
return ret;
}
err_have_irq:
destroy_irq(pdata->irq);
err_no_irq:
tilegx_stop_ohc();
usb_put_hcd(hcd);
gxio_usb_host_destroy(&pdata->usb_ctx);
return ret;
}
static int ohci_hcd_tilegx_drv_remove(struct platform_device *pdev)
{
struct usb_hcd *hcd = platform_get_drvdata(pdev);
struct tilegx_usb_platform_data* pdata = pdev->dev.platform_data;
usb_remove_hcd(hcd);
usb_put_hcd(hcd);
tilegx_stop_ohc();
gxio_usb_host_destroy(&pdata->usb_ctx);
destroy_irq(pdata->irq);
platform_set_drvdata(pdev, NULL);
return 0;
}
static void ohci_hcd_tilegx_drv_shutdown(struct platform_device *pdev)
{
usb_hcd_platform_shutdown(pdev);
ohci_hcd_tilegx_drv_remove(pdev);
}
static struct platform_driver ohci_hcd_tilegx_driver = {
.probe = ohci_hcd_tilegx_drv_probe,
.remove = ohci_hcd_tilegx_drv_remove,
.shutdown = ohci_hcd_tilegx_drv_shutdown,
.driver = {
.name = "tilegx-ohci",
.owner = THIS_MODULE,
}
};
MODULE_ALIAS("platform:tilegx-ohci");
/*
* Copyright 2012 Tilera Corporation. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation, version 2.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for
* more details.
*
* Structure to contain platform-specific data related to Tile-Gx USB
* controllers.
*/
#ifndef _LINUX_USB_TILEGX_H
#define _LINUX_USB_TILEGX_H
#include <gxio/usb_host.h>
struct tilegx_usb_platform_data {
/* GXIO device index. */
int dev_index;
/* GXIO device context. */
gxio_usb_host_context_t usb_ctx;
/* Device IRQ. */
unsigned int irq;
};
#endif /* _LINUX_USB_TILEGX_H */
......@@ -24,23 +24,25 @@
static mempool_t *page_pool, *isa_page_pool;
#ifdef CONFIG_HIGHMEM
#if defined(CONFIG_HIGHMEM) || defined(CONFIG_NEED_BOUNCE_POOL)
static __init int init_emergency_pool(void)
{
#ifndef CONFIG_MEMORY_HOTPLUG
#if defined(CONFIG_HIGHMEM) && !defined(CONFIG_MEMORY_HOTPLUG)
if (max_pfn <= max_low_pfn)
return 0;
#endif
page_pool = mempool_create_page_pool(POOL_SIZE, 0);
BUG_ON(!page_pool);
printk("highmem bounce pool size: %d pages\n", POOL_SIZE);
printk("bounce pool size: %d pages\n", POOL_SIZE);
return 0;
}
__initcall(init_emergency_pool);
#endif
#ifdef CONFIG_HIGHMEM
/*
* highmem version, map in to vec
*/
......
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment