Commit f1615bbe authored by Daniel Vetter's avatar Daniel Vetter
Browse files

Merge tag 'v3.16-rc4' into drm-intel-next-queued


Due to Dave's vacation drm-next hasn't opened yet for 3.17 so I
couldn't move my drm-intel-next queue forward yet like I usually do.
Just pull in the latest upstream -rc to unblock patch merging - I
don't want to needlessly rebase my current patch pile really and void
all the testing we've done already.
Signed-off-by: default avatarDaniel Vetter <daniel.vetter@ffwll.ch>
parents cfb3c0ab cd3de83f

Too many changes to show.

To preserve performance only 1000 of 1000+ files are displayed.
......@@ -22,7 +22,6 @@
*.lst
*.symtypes
*.order
modules.builtin
*.elf
*.bin
*.gz
......@@ -33,6 +32,8 @@ modules.builtin
*.lzo
*.patch
*.gcno
modules.builtin
Module.symvers
#
# Top-level generic files
......@@ -44,7 +45,6 @@ modules.builtin
/vmlinuz
/System.map
/Module.markers
/Module.symvers
#
# Debian directory (make deb-pkg)
......
......@@ -9,6 +9,10 @@
Linus
----------
M: Matt Mackal
E: mpm@selenic.com
D: SLOB slab allocator
N: Matti Aarnio
E: mea@nic.funet.fi
D: Alpha systems hacking, IPv6 and other network related stuff
......
What: /sys/devices/system/cpu/dscr_default
Date: 13-May-2014
KernelVersion: v3.15.0
Contact:
Description: Writes are equivalent to writing to
/sys/devices/system/cpu/cpuN/dscr on all CPUs.
Reads return the last written value or 0.
This value is not a global default: it is a way to set
all per-CPU defaults at the same time.
Values: 64 bit unsigned integer (bit field)
What: /sys/devices/system/cpu/cpu[0-9]+/dscr
Date: 13-May-2014
KernelVersion: v3.15.0
Contact:
Description: Default value for the Data Stream Control Register (DSCR) on
a CPU.
This default value is used when the kernel is executing and
for any process that has not set the DSCR itself.
If a process ever sets the DSCR (via direct access to the
SPR) that value will be persisted for that process and used
on any CPU where it executes (overriding the value described
here).
If set by a process it will be inherited by child processes.
Values: 64 bit unsigned integer (bit field)
......@@ -62,6 +62,40 @@ KernelVersion: 3.11
Description:
This group contains functions available to this USB gadget.
What: /config/usb-gadget/gadget/functions/<func>.<inst>/interface.<n>
Date: May 2014
KernelVersion: 3.16
Description:
This group contains "Feature Descriptors" specific for one
gadget's USB interface or one interface group described
by an IAD.
The attributes:
compatible_id - 8-byte string for "Compatible ID"
sub_compatible_id - 8-byte string for "Sub Compatible ID"
What: /config/usb-gadget/gadget/functions/<func>.<inst>/interface.<n>/<property>
Date: May 2014
KernelVersion: 3.16
Description:
This group contains "Extended Property Descriptors" specific for one
gadget's USB interface or one interface group described
by an IAD.
The attributes:
type - value 1..7 for interpreting the data
1: unicode string
2: unicode string with environment variable
3: binary
4: little-endian 32-bit
5: big-endian 32-bit
6: unicode string with a symbolic link
7: multiple unicode strings
data - blob of data to be interpreted depending on
type
What: /config/usb-gadget/gadget/strings
Date: Jun 2013
KernelVersion: 3.11
......@@ -79,3 +113,14 @@ Description:
product - gadget's product description
manufacturer - gadget's manufacturer description
What: /config/usb-gadget/gadget/os_desc
Date: May 2014
KernelVersion: 3.16
Description:
This group contains "OS String" extension handling attributes.
use - flag turning "OS Desctiptors" support on/off
b_vendor_code - one-byte value used for custom per-device and
per-interface requests
qw_sign - an identifier to be reported as "OS String"
proper
......@@ -23,7 +23,7 @@ Description:
[fowner]]
lsm: [[subj_user=] [subj_role=] [subj_type=]
[obj_user=] [obj_role=] [obj_type=]]
option: [[appraise_type=]]
option: [[appraise_type=]] [permit_directio]
base: func:= [BPRM_CHECK][MMAP_CHECK][FILE_CHECK][MODULE_CHECK]
mask:= [MAY_READ] [MAY_WRITE] [MAY_APPEND] [MAY_EXEC]
......
......@@ -114,14 +114,17 @@ What: /sys/bus/iio/devices/iio:deviceX/in_temp_raw
What: /sys/bus/iio/devices/iio:deviceX/in_tempX_raw
What: /sys/bus/iio/devices/iio:deviceX/in_temp_x_raw
What: /sys/bus/iio/devices/iio:deviceX/in_temp_y_raw
What: /sys/bus/iio/devices/iio:deviceX/in_temp_z_raw
What: /sys/bus/iio/devices/iio:deviceX/in_temp_ambient_raw
What: /sys/bus/iio/devices/iio:deviceX/in_temp_object_raw
KernelVersion: 2.6.35
Contact: linux-iio@vger.kernel.org
Description:
Raw (unscaled no bias removal etc.) temperature measurement.
If an axis is specified it generally means that the temperature
sensor is associated with one part of a compound device (e.g.
a gyroscope axis). Units after application of scale and offset
a gyroscope axis). The ambient and object modifiers distinguish
between ambient (reference) and distant temperature for contact-
less measurements. Units after application of scale and offset
are milli degrees Celsius.
What: /sys/bus/iio/devices/iio:deviceX/in_tempX_input
......@@ -210,6 +213,14 @@ Contact: linux-iio@vger.kernel.org
Description:
Scaled humidity measurement in milli percent.
What: /sys/bus/iio/devices/iio:deviceX/in_X_mean_raw
KernelVersion: 3.5
Contact: linux-iio@vger.kernel.org
Description:
Averaged raw measurement from channel X. The number of values
used for averaging is device specific. The converting rules for
normal raw values also applies to the averaged raw values.
What: /sys/bus/iio/devices/iio:deviceX/in_accel_offset
What: /sys/bus/iio/devices/iio:deviceX/in_accel_x_offset
What: /sys/bus/iio/devices/iio:deviceX/in_accel_y_offset
......@@ -784,6 +795,7 @@ What: /sys/.../iio:deviceX/scan_elements/in_incli_x_en
What: /sys/.../iio:deviceX/scan_elements/in_incli_y_en
What: /sys/.../iio:deviceX/scan_elements/in_pressureY_en
What: /sys/.../iio:deviceX/scan_elements/in_pressure_en
What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_en
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
......@@ -799,6 +811,7 @@ What: /sys/.../iio:deviceX/scan_elements/in_voltageY_supply_type
What: /sys/.../iio:deviceX/scan_elements/in_timestamp_type
What: /sys/.../iio:deviceX/scan_elements/in_pressureY_type
What: /sys/.../iio:deviceX/scan_elements/in_pressure_type
What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_type
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
......@@ -845,6 +858,7 @@ What: /sys/.../iio:deviceX/scan_elements/in_incli_y_index
What: /sys/.../iio:deviceX/scan_elements/in_timestamp_index
What: /sys/.../iio:deviceX/scan_elements/in_pressureY_index
What: /sys/.../iio:deviceX/scan_elements/in_pressure_index
What: /sys/.../iio:deviceX/scan_elements/in_rot_quaternion_index
KernelVersion: 2.6.37
Contact: linux-iio@vger.kernel.org
Description:
......@@ -881,6 +895,25 @@ Description:
on-chip EEPROM. After power-up or chip reset the device will
automatically load the saved configuration.
What: /sys/.../iio:deviceX/in_illuminanceY_input
What: /sys/.../iio:deviceX/in_illuminanceY_raw
What: /sys/.../iio:deviceX/in_illuminanceY_mean_raw
KernelVersion: 3.4
Contact: linux-iio@vger.kernel.org
Description:
Illuminance measurement, units after application of scale
and offset are lux.
What: /sys/.../iio:deviceX/in_intensityY_raw
What: /sys/.../iio:deviceX/in_intensityY_ir_raw
What: /sys/.../iio:deviceX/in_intensityY_both_raw
KernelVersion: 3.4
Contact: linux-iio@vger.kernel.org
Description:
Unit-less light intensity. Modifiers both and ir indicate
that measurements contains visible and infrared light
components or just infrared light, respectively.
What: /sys/.../iio:deviceX/in_intensity_red_integration_time
What: /sys/.../iio:deviceX/in_intensity_green_integration_time
What: /sys/.../iio:deviceX/in_intensity_blue_integration_time
......@@ -891,3 +924,12 @@ Contact: linux-iio@vger.kernel.org
Description:
This attribute is used to get/set the integration time in
seconds.
What: /sys/bus/iio/devices/iio:deviceX/in_rot_quaternion_raw
KernelVersion: 3.15
Contact: linux-iio@vger.kernel.org
Description:
Raw value of quaternion components using a format
x y z w. Here x, y, and z component represents the axis about
which a rotation will occur and w component represents the
amount of rotation.
What /sys/bus/iio/devices/iio:deviceX/in_proximity_raw
Date: March 2014
KernelVersion: 3.15
Contact: Matt Ranostay <mranostay@gmail.com>
Description:
Get the current distance in meters of storm (1km steps)
1000-40000 = distance in meters
What /sys/bus/iio/devices/iio:deviceX/sensor_sensitivity
Date: March 2014
KernelVersion: 3.15
Contact: Matt Ranostay <mranostay@gmail.com>
Description:
Show or set the gain boost of the amp, from 0-31 range.
18 = indoors (default)
14 = outdoors
......@@ -250,3 +250,24 @@ Description:
valid. For example, writing a 2 to this file when sriov_numvfs
is not 0 and not 2 already will return an error. Writing a 10
when the value of sriov_totalvfs is 8 will return an error.
What: /sys/bus/pci/devices/.../driver_override
Date: April 2014
Contact: Alex Williamson <alex.williamson@redhat.com>
Description:
This file allows the driver for a device to be specified which
will override standard static and dynamic ID matching. When
specified, only a driver with a name matching the value written
to driver_override will have an opportunity to bind to the
device. The override is specified by writing a string to the
driver_override file (echo pci-stub > driver_override) and
may be cleared with an empty string (echo > driver_override).
This returns the device to standard matching rules binding.
Writing to driver_override does not automatically unbind the
device from its current driver or make any attempt to
automatically load the specified driver. If no driver with a
matching name is currently loaded in the kernel, the device
will not bind to any driver. This also allows devices to
opt-out of driver binding using a driver_override name such as
"none". Only a single driver may be specified in the override,
there is no support for parsing delimiters.
......@@ -169,6 +169,14 @@ Description:
"unknown", "notpresent", "down", "lowerlayerdown", "testing",
"dormant", "up".
What: /sys/class/net/<iface>/phys_port_id
Date: July 2013
KernelVersion: 3.12
Contact: netdev@vger.kernel.org
Description:
Indicates the interface unique physical port identifier within
the NIC, as a string.
What: /sys/class/net/<iface>/speed
Date: October 2009
KernelVersion: 2.6.33
......
What: /sys/class/net/<iface>/cdc_ncm/min_tx_pkt
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
The driver will pad NCM Transfer Blocks (NTBs) longer
than this to tx_max, allowing the device to receive
tx_max sized frames with no terminating short
packet. NTBs shorter than this limit are transmitted
as-is, without any padding, and are terminated with a
short USB packet.
Padding to tx_max allows the driver to transmit NTBs
back-to-back without any interleaving short USB
packets. This reduces the number of short packet
interrupts in the device, and represents a tradeoff
between USB bus bandwidth and device DMA optimization.
Set to 0 to pad all frames. Set greater than tx_max to
disable all padding.
What: /sys/class/net/<iface>/cdc_ncm/rx_max
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
The maximum NTB size for RX. Cannot exceed the
maximum value supported by the device. Must allow at
least one max sized datagram plus headers.
The actual limits are device dependent. See
dwNtbInMaxSize.
Note: Some devices will silently ignore changes to
this value, resulting in oversized NTBs and
corresponding framing errors.
What: /sys/class/net/<iface>/cdc_ncm/tx_max
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
The maximum NTB size for TX. Cannot exceed the
maximum value supported by the device. Must allow at
least one max sized datagram plus headers.
The actual limits are device dependent. See
dwNtbOutMaxSize.
What: /sys/class/net/<iface>/cdc_ncm/tx_timer_usecs
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
Datagram aggregation timeout in µs. The driver will
wait up to 3 times this timeout for more datagrams to
aggregate before transmitting an NTB frame.
Valid range: 5 to 4000000
Set to 0 to disable aggregation.
The following read-only attributes all represent fields of the
structure defined in section 6.2.1 "GetNtbParameters" of "Universal
Serial Bus Communications Class Subclass Specifications for Network
Control Model Devices" (CDC NCM), Revision 1.0 (Errata 1), November
24, 2010 from USB Implementers Forum, Inc. The descriptions are
quoted from table 6-3 of CDC NCM: "NTB Parameter Structure".
What: /sys/class/net/<iface>/cdc_ncm/bmNtbFormatsSupported
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
Bit 0: 16-bit NTB supported (set to 1)
Bit 1: 32-bit NTB supported
Bits 2 – 15: reserved (reset to zero; must be ignored by host)
What: /sys/class/net/<iface>/cdc_ncm/dwNtbInMaxSize
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
IN NTB Maximum Size in bytes
What: /sys/class/net/<iface>/cdc_ncm/wNdpInDivisor
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
Divisor used for IN NTB Datagram payload alignment
What: /sys/class/net/<iface>/cdc_ncm/wNdpInPayloadRemainder
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
Remainder used to align input datagram payload within
the NTB: (Payload Offset) mod (wNdpInDivisor) =
wNdpInPayloadRemainder
What: /sys/class/net/<iface>/cdc_ncm/wNdpInAlignment
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
NDP alignment modulus for NTBs on the IN pipe. Shall
be a power of 2, and shall be at least 4.
What: /sys/class/net/<iface>/cdc_ncm/dwNtbOutMaxSize
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
OUT NTB Maximum Size
What: /sys/class/net/<iface>/cdc_ncm/wNdpOutDivisor
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
OUT NTB Datagram alignment modulus
What: /sys/class/net/<iface>/cdc_ncm/wNdpOutPayloadRemainder
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
Remainder used to align output datagram payload
offsets within the NTB: Padding, shall be transmitted
as zero by function, and ignored by host. (Payload
Offset) mod (wNdpOutDivisor) = wNdpOutPayloadRemainder
What: /sys/class/net/<iface>/cdc_ncm/wNdpOutAlignment
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
NDP alignment modulus for use in NTBs on the OUT
pipe. Shall be a power of 2, and shall be at least 4.
What: /sys/class/net/<iface>/cdc_ncm/wNtbOutMaxDatagrams
Date: May 2014
KernelVersion: 3.16
Contact: Bjørn Mork <bjorn@mork.no>
Description:
Maximum number of datagrams that the host may pack
into a single OUT NTB. Zero means that the device
imposes no limit.
What: /sys/class/<iface>/queues/rx-<queue>/rps_cpus
Date: March 2010
KernelVersion: 2.6.35
Contact: netdev@vger.kernel.org
Description:
Mask of the CPU(s) currently enabled to participate into the
Receive Packet Steering packet processing flow for this
network device queue. Possible values depend on the number
of available CPU(s) in the system.
What: /sys/class/<iface>/queues/rx-<queue>/rps_flow_cnt
Date: April 2010
KernelVersion: 2.6.35
Contact: netdev@vger.kernel.org
Description:
Number of Receive Packet Steering flows being currently
processed by this particular network device receive queue.
What: /sys/class/<iface>/queues/tx-<queue>/tx_timeout
Date: November 2011
KernelVersion: 3.3
Contact: netdev@vger.kernel.org
Description:
Indicates the number of transmit timeout events seen by this
network interface transmit queue.
What: /sys/class/<iface>/queues/tx-<queue>/xps_cpus
Date: November 2010
KernelVersion: 2.6.38
Contact: netdev@vger.kernel.org
Description:
Mask of the CPU(s) currently enabled to participate into the
Transmit Packet Steering packet processing flow for this
network device transmit queue. Possible vaules depend on the
number of available CPU(s) in the system.
What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/hold_time
Date: November 2011
KernelVersion: 3.3
Contact: netdev@vger.kernel.org
Description:
Indicates the hold time in milliseconds to measure the slack
of this particular network device transmit queue.
Default value is 1000.
What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/inflight
Date: November 2011
KernelVersion: 3.3
Contact: netdev@vger.kernel.org
Description:
Indicates the number of bytes (objects) in flight on this
network device transmit queue.
What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/limit
Date: November 2011
KernelVersion: 3.3
Contact: netdev@vger.kernel.org
Description:
Indicates the current limit of bytes allowed to be queued
on this network device transmit queue. This value is clamped
to be within the bounds defined by limit_max and limit_min.
What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/limit_max
Date: November 2011
KernelVersion: 3.3
Contact: netdev@vger.kernel.org
Description:
Indicates the absolute maximum limit of bytes allowed to be
queued on this network device transmit queue. See
include/linux/dynamic_queue_limits.h for the default value.
What: /sys/class/<iface>/queues/tx-<queue>/byte_queue_limits/limit_min
Date: November 2011
KernelVersion: 3.3
Contact: netdev@vger.kernel.org
Description:
Indicates the absolute minimum limit of bytes allowed to be
queued on this network device transmit queue. Default value is
0.
What: /sys/class/<iface>/statistics/collisions
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of collisions seen by this network device.
This value might not be relevant with all MAC layers.
What: /sys/class/<iface>/statistics/multicast
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of multicast packets received by this
network device.
What: /sys/class/<iface>/statistics/rx_bytes
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of bytes received by this network device.
See the network driver for the exact meaning of when this
value is incremented.
What: /sys/class/<iface>/statistics/rx_compressed
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of compressed packets received by this
network device. This value might only be relevant for interfaces
that support packet compression (e.g: PPP).
What: /sys/class/<iface>/statistics/rx_crc_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets received with a CRC (FCS) error
by this network device. Note that the specific meaning might
depend on the MAC layer used by the interface.
What: /sys/class/<iface>/statistics/rx_dropped
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets received by the network device
but dropped, that are not forwarded to the upper layers for
packet processing. See the network driver for the exact
meaning of this value.
What: /sys/class/<iface>/statistics/rx_fifo_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of receive FIFO errors seen by this
network device. See the network driver for the exact
meaning of this value.
What: /sys/class/<iface>/statistics/rx_frame_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of received frames with error, such as
alignment errors. Note that the specific meaning depends on
on the MAC layer protocol used. See the network driver for
the exact meaning of this value.
What: /sys/class/<iface>/statistics/rx_length_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of received error packet with a length
error, oversized or undersized. See the network driver for the
exact meaning of this value.
What: /sys/class/<iface>/statistics/rx_missed_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of received packets that have been missed
due to lack of capacity in the receive side. See the network
driver for the exact meaning of this value.
What: /sys/class/<iface>/statistics/rx_over_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of received packets that are oversized
compared to what the network device is configured to accept
(e.g: larger than MTU). See the network driver for the exact
meaning of this value.
What: /sys/class/<iface>/statistics/rx_packets
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the total number of good packets received by this
network device.
What: /sys/class/<iface>/statistics/tx_aborted_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets that have been aborted
during transmission by a network device (e.g: because of
a medium collision). See the network driver for the exact
meaning of this value.
What: /sys/class/<iface>/statistics/tx_bytes
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of bytes transmitted by a network
device. See the network driver for the exact meaning of this
value, in particular whether this accounts for all successfully
transmitted packets or all packets that have been queued for
transmission.
What: /sys/class/<iface>/statistics/tx_carrier_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets that could not be transmitted
because of carrier errors (e.g: physical link down). See the
network driver for the exact meaning of this value.
What: /sys/class/<iface>/statistics/tx_compressed
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of transmitted compressed packets. Note
this might only be relevant for devices that support
compression (e.g: PPP).
What: /sys/class/<iface>/statistics/tx_dropped
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets dropped during transmission.
See the driver for the exact reasons as to why the packets were
dropped.
What: /sys/class/<iface>/statistics/tx_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets in error during transmission by
a network device. See the driver for the exact reasons as to
why the packets were dropped.
What: /sys/class/<iface>/statistics/tx_fifo_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets having caused a transmit
FIFO error. See the driver for the exact reasons as to why the
packets were dropped.
What: /sys/class/<iface>/statistics/tx_heartbeat_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets transmitted that have been
reported as heartbeat errors. See the driver for the exact
reasons as to why the packets were dropped.
What: /sys/class/<iface>/statistics/tx_packets
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets transmitted by a network
device. See the driver for whether this reports the number of all
attempted or successful transmissions.
What: /sys/class/<iface>/statistics/tx_window_errors
Date: April 2005
KernelVersion: 2.6.12
Contact: netdev@vger.kernel.org
Description:
Indicates the number of packets not successfully transmitted
due to a window collision. The specific meaning depends on the
MAC layer used. On Ethernet this is usually used to report
late collisions errors.
......@@ -128,7 +128,7 @@ Description: Discover cpuidle policy and mechanism
What: /sys/devices/system/cpu/cpu#/cpufreq/*
Date: pre-git history
Contact: cpufreq@vger.kernel.org
Contact: linux-pm@vger.kernel.org
Description: Discover and change clock speed of CPUs
Clock scaling allows you to change the clock speed of the
......@@ -146,7 +146,7 @@ Description: Discover and change clock speed of CPUs
What: /sys/devices/system/cpu/cpu#/cpufreq/freqdomain_cpus
Date: June 2013
Contact: cpufreq@vger.kernel.org
Contact: linux-pm@vger.kernel.org
Description: Discover CPUs in the same CPU frequency coordination domain
freqdomain_cpus is the list of CPUs (online+offline) that share
......
What: /sys/class/leds/blink1::<serial>/rgb
Date: January 2013
Contact: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Description: The ThingM blink1 is an USB RGB LED. The color notation is
3-byte hexadecimal. Read this attribute to get the last set
color. Write the 24-bit hexadecimal color to change the current
LED color. The default color is full white (0xFFFFFF).
For instance, set the color to green with: echo 00FF00 > rgb
What: /sys/class/leds/blink1::<serial>/fade
Date: January 2013
Contact: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Description: This attribute allows to set a fade time in milliseconds for
the next color change. Read the attribute to know the current
fade time. The default value is set to 0 (no fade time). For
instance, set a fade time of 2 seconds with: echo 2000 > fade
What: /sys/class/leds/blink1::<serial>/play
Date: January 2013
Contact: Vivien Didelot <vivien.didelot@savoirfairelinux.com>
Description: This attribute is used to play/pause the light patterns. Write 1
to start playing, 0 to stop. Reading this attribute returns the
current playing status.
What: /sys/devices/../../gisb_arb_timeout
Date: May 2014
KernelVersion: 3.17
Contact: Florian Fainelli <f.fainelli@gmail.com>
Description:
Returns the currently configured raw timeout value of the
Broadcom Set Top Box internal GISB bus arbiter. Minimum value
is 1, and maximum value is 0xffffffff.
What: /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_req
Date: Feb 2014
Contact: Li Jun <b47624@freescale.com>
Description:
Can be set and read.
Set a_bus_req(A-device bus request) input to be 1 if
the application running on the A-device wants to use the bus,
and to be 0 when the application no longer wants to use
the bus(or wants to work as peripheral). a_bus_req can also
be set to 1 by kernel in response to remote wakeup signaling
from the B-device, the A-device should decide to resume the bus.
Valid values are "1" and "0".
Reading: returns 1 if the application running on the A-device
is using the bus as host role, otherwise 0.
What: /sys/bus/platform/devices/ci_hdrc.0/inputs/a_bus_drop
Date: Feb 2014
Contact: Li Jun <b47624@freescale.com>
Description:
Can be set and read
The a_bus_drop(A-device bus drop) input is 1 when the
application running on the A-device wants to power down
the bus, and is 0 otherwise, When a_bus_drop is 1, then
the a_bus_req shall be 0.
Valid values are "1" and "0".
Reading: returns 1 if the bus is off(vbus is turned off) by
A-device, otherwise 0.
What: /sys/bus/platform/devices/ci_hdrc.0/inputs/b_bus_req
Date: Feb 2014
Contact: Li Jun <b47624@freescale.com>
Description:
Can be set and read.
The b_bus_req(B-device bus request) input is 1 during the time
that the application running on the B-device wants to use the
bus as host, and is 0 when the application no longer wants to
work as host and decides to switch back to be peripheral.
Valid values are "1" and "0".
Reading: returns if the application running on the B device
is using the bus as host role, otherwise 0.
What: /sys/bus/platform/devices/ci_hdrc.0/inputs/a_clr_err
Date: Feb 2014
Contact: Li Jun <b47624@freescale.com>
Description:
Only can be set.
The a_clr_err(A-device Vbus error clear) input is used to clear
vbus error, then A-device will power down the bus.
Valid value is "1"
......@@ -73,6 +73,11 @@ Perl
You will need perl 5 and the following modules: Getopt::Long, Getopt::Std,
File::Basename, and File::Find to build the kernel.
BC
--
You will need bc to build kernels 3.10 and higher
System utilities
================
......
......@@ -660,15 +660,23 @@ There are a number of driver model diagnostic macros in <linux/device.h>
which you should use to make sure messages are matched to the right device
and driver, and are tagged with the right level: dev_err(), dev_warn(),
dev_info(), and so forth. For messages that aren't associated with a
particular device, <linux/printk.h> defines pr_debug() and pr_info().
particular device, <linux/printk.h> defines pr_notice(), pr_info(),
pr_warn(), pr_err(), etc.
Coming up with good debugging messages can be quite a challenge; and once
you have them, they can be a huge help for remote troubleshooting. Such
messages should be compiled out when the DEBUG symbol is not defined (that
is, by default they are not included). When you use dev_dbg() or pr_debug(),
that's automatic. Many subsystems have Kconfig options to turn on -DDEBUG.
A related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to the
ones already enabled by DEBUG.
you have them, they can be a huge help for remote troubleshooting. However
debug message printing is handled differently than printing other non-debug
messages. While the other pr_XXX() functions print unconditionally,
pr_debug() does not; it is compiled out by default, unless either DEBUG is
defined or CONFIG_DYNAMIC_DEBUG is set. That is true for dev_dbg() also,
and a related convention uses VERBOSE_DEBUG to add dev_vdbg() messages to
the ones already enabled by DEBUG.
Many subsystems have Kconfig debug options to turn on -DDEBUG in the
corresponding Makefile; in other cases specific files #define DEBUG. And
when a debug message should be unconditionally printed, such as if it is
already inside a debug-related #ifdef secton, printk(KERN_DEBUG ...) can be
used.
Chapter 14: Allocating memory
......
This diff is collapsed.
......@@ -4,22 +4,26 @@
James E.J. Bottomley <James.Bottomley@HansenPartnership.com>
This document describes the DMA API. For a more gentle introduction
of the API (and actual examples) see
Documentation/DMA-API-HOWTO.txt.
of the API (and actual examples), see Documentation/DMA-API-HOWTO.txt.
This API is split into two pieces. Part I describes the API. Part II
describes the extensions to the API for supporting non-consistent
memory machines. Unless you know that your driver absolutely has to
support non-consistent platforms (this is usually only legacy
platforms) you should only use the API described in part I.
This API is split into two pieces. Part I describes the basic API.
Part II describes extensions for supporting non-consistent memory
machines. Unless you know that your driver absolutely has to support
non-consistent platforms (this is usually only legacy platforms) you
should only use the API described in part I.
Part I - dma_ API
-------------------------------------
To get the dma_ API, you must #include <linux/dma-mapping.h>
To get the dma_ API, you must #include <linux/dma-mapping.h>. This
provides dma_addr_t and the interfaces described below.
A dma_addr_t can hold any valid DMA or bus address for the platform. It
can be given to a device to use as a DMA source or target. A CPU cannot
reference a dma_addr_t directly because there may be translation between
its physical address space and the bus address space.
Part Ia - Using large dma-coherent buffers
Part Ia - Using large DMA-coherent buffers
------------------------------------------
void *
......@@ -33,20 +37,21 @@ to make sure to flush the processor's write buffers before telling
devices to read that memory.)
This routine allocates a region of <size> bytes of consistent memory.
It also returns a <dma_handle> which may be cast to an unsigned
integer the same width as the bus and used as the physical address
base of the region.
Returns: a pointer to the allocated region (in the processor's virtual
It returns a pointer to the allocated region (in the processor's virtual
address space) or NULL if the allocation failed.
It also returns a <dma_handle> which may be cast to an unsigned integer the
same width as the bus and given to the device as the bus address base of
the region.
Note: consistent memory can be expensive on some platforms, and the
minimum allocation length may be as big as a page, so you should
consolidate your requests for consistent memory as much as possible.
The simplest way to do that is to use the dma_pool calls (see below).
The flag parameter (dma_alloc_coherent only) allows the caller to
specify the GFP_ flags (see kmalloc) for the allocation (the
The flag parameter (dma_alloc_coherent() only) allows the caller to
specify the GFP_ flags (see kmalloc()) for the allocation (the
implementation may choose to ignore flags that affect the location of
the returned memory, like GFP_DMA).
......@@ -61,24 +66,24 @@ void
dma_free_coherent(struct device *dev, size_t size, void *cpu_addr,
dma_addr_t dma_handle)
Free the region of consistent memory you previously allocated. dev,
size and dma_handle must all be the same as those passed into the
consistent allocate. cpu_addr must be the virtual address returned by
the consistent allocate.
Free a region of consistent memory you previously allocated. dev,
size and dma_handle must all be the same as those passed into
dma_alloc_coherent(). cpu_addr must be the virtual address returned by
the dma_alloc_coherent().
Note that unlike their sibling allocation calls, these routines
may only be called with IRQs enabled.
Part Ib - Using small dma-coherent buffers
Part Ib - Using small DMA-coherent buffers
------------------------------------------
To get this part of the dma_ API, you must #include <linux/dmapool.h>
Many drivers need lots of small dma-coherent memory regions for DMA
Many drivers need lots of small DMA-coherent memory regions for DMA
descriptors or I/O buffers. Rather than allocating in units of a page
or more using dma_alloc_coherent(), you can use DMA pools. These work
much like a struct kmem_cache, except that they use the dma-coherent allocator,
much like a struct kmem_cache, except that they use the DMA-coherent allocator,
not __get_free_pages(). Also, they understand common hardware constraints
for alignment, like queue heads needing to be aligned on N-byte boundaries.
......@@ -87,7 +92,7 @@ for alignment, like queue heads needing to be aligned on N-byte boundaries.
dma_pool_create(const char *name, struct device *dev,
size_t size, size_t align, size_t alloc);
The pool create() routines initialize a pool of dma-coherent buffers
dma_pool_create() initializes a pool of DMA-coherent buffers
for use with a given device. It must be called in a context which
can sleep.
......@@ -102,25 +107,26 @@ from this pool must not cross 4KByte boundaries.
void *dma_pool_alloc(struct dma_pool *pool, gfp_t gfp_flags,
dma_addr_t *dma_handle);
This allocates memory from the pool; the returned memory will meet the size
and alignment requirements specified at creation time. Pass GFP_ATOMIC to
prevent blocking, or if it's permitted (not in_interrupt, not holding SMP locks),
pass GFP_KERNEL to allow blocking. Like dma_alloc_coherent(), this returns
two values: an address usable by the cpu, and the dma address usable by the
pool's device.
This allocates memory from the pool; the returned memory will meet the
size and alignment requirements specified at creation time. Pass
GFP_ATOMIC to prevent blocking, or if it's permitted (not
in_interrupt, not holding SMP locks), pass GFP_KERNEL to allow
blocking. Like dma_alloc_coherent(), this returns two values: an
address usable by the CPU, and the DMA address usable by the pool's
device.
void dma_pool_free(struct dma_pool *pool, void *vaddr,
dma_addr_t addr);
This puts memory back into the pool. The pool is what was passed to
the pool allocation routine; the cpu (vaddr) and dma addresses are what
dma_pool_alloc(); the CPU (vaddr) and DMA addresses are what
were returned when that routine allocated the memory being freed.
void dma_pool_destroy(struct dma_pool *pool);
The pool destroy() routines free the resources of the pool. They must be
dma_pool_destroy() frees the resources of the pool. It must be
called in a context which can sleep. Make sure you've freed all allocated
memory back to the pool before you destroy it.
......@@ -187,9 +193,9 @@ dma_map_single(struct device *dev, void *cpu_addr, size_t size,
enum dma_data_direction direction)
Maps a piece of processor virtual memory so it can be accessed by the
device and returns the physical handle of the memory.
device and returns the bus address of the memory.
The direction for both api's may be converted freely by casting.
The direction for both APIs may be converted freely by casting.
However the dma_ API uses a strongly typed enumerator for its
direction:
......@@ -198,31 +204,30 @@ DMA_TO_DEVICE data is going from the memory to the device
DMA_FROM_DEVICE data is coming from the device to the memory
DMA_BIDIRECTIONAL direction isn't known
Notes: Not all memory regions in a machine can be mapped by this
API. Further, regions that appear to be physically contiguous in
kernel virtual space may not be contiguous as physical memory. Since
this API does not provide any scatter/gather capability, it will fail
if the user tries to map a non-physically contiguous piece of memory.
For this reason, it is recommended that memory mapped by this API be
obtained only from sources which guarantee it to be physically contiguous
(like kmalloc).
Further, the physical address of the memory must be within the
dma_mask of the device (the dma_mask represents a bit mask of the
addressable region for the device. I.e., if the physical address of
the memory anded with the dma_mask is still equal to the physical
address, then the device can perform DMA to the memory). In order to
Notes: Not all memory regions in a machine can be mapped by this API.
Further, contiguous kernel virtual space may not be contiguous as
physical memory. Since this API does not provide any scatter/gather
capability, it will fail if the user tries to map a non-physically
contiguous piece of memory. For this reason, memory to be mapped by
this API should be obtained from sources which guarantee it to be
physically contiguous (like kmalloc).
Further, the bus address of the memory must be within the
dma_mask of the device (the dma_mask is a bit mask of the
addressable region for the device, i.e., if the bus address of
the memory ANDed with the dma_mask is still equal to the bus
address, then the device can perform DMA to the memory). To
ensure that the memory allocated by kmalloc is within the dma_mask,
the driver may specify various platform-dependent flags to restrict
the physical memory range of the allocation (e.g. on x86, GFP_DMA
guarantees to be within the first 16Mb of available physical memory,
the bus address range of the allocation (e.g., on x86, GFP_DMA
guarantees to be within the first 16MB of available bus addresses,
as required by ISA devices).
Note also that the above constraints on physical contiguity and
dma_mask may not apply if the platform has an IOMMU (a device which
supplies a physical to virtual mapping between the I/O memory bus and
the device). However, to be portable, device driver writers may *not*
assume that such an IOMMU exists.
maps an I/O bus address to a physical memory address). However, to be
portable, device driver writers may *not* assume that such an IOMMU
exists.
Warnings: Memory coherency operates at a granularity called the cache
line width. In order for memory mapped by this API to operate
......@@ -281,9 +286,9 @@ cache width is.
int
dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
In some circumstances dma_map_single and dma_map_page will fail to create
In some circumstances dma_map_single() and dma_map_page() will fail to create
a mapping. A driver can check for these errors by testing the returned
dma address with dma_mapping_error(). A non-zero return value means the mapping
DMA address with dma_mapping_error(). A non-zero return value means the mapping
could not be created and the driver should take appropriate action (e.g.
reduce current DMA mapping usage or delay and try again later).
......@@ -291,7 +296,7 @@ reduce current DMA mapping usage or delay and try again later).
dma_map_sg(struct device *dev, struct scatterlist *sg,
int nents, enum dma_data_direction direction)
Returns: the number of physical segments mapped (this may be shorter
Returns: the number of bus address segments mapped (this may be shorter
than <nents> passed in if some elements of the scatter/gather list are
physically or virtually adjacent and an IOMMU maps them with a single
entry).
......@@ -299,7 +304,7 @@ entry).
Please note that the sg cannot be mapped again if it has been mapped once.
The mapping process is allowed to destroy information in the sg.
As with the other mapping interfaces, dma_map_sg can fail. When it
As with the other mapping interfaces, dma_map_sg() can fail. When it
does, 0 is returned and a driver must take appropriate action. It is
critical that the driver do something, in the case of a block driver
aborting the request or even oopsing is better than doing nothing and
......@@ -335,7 +340,7 @@ must be the same as those and passed in to the scatter/gather mapping
API.
Note: <nents> must be the number you passed in, *not* the number of
physical entries returned.
bus address entries returned.
void
dma_sync_single_for_cpu(struct device *dev, dma_addr_t dma_handle, size_t size,
......@@ -350,7 +355,7 @@ void
dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, int nelems,
enum dma_data_direction direction)
Synchronise a single contiguous or scatter/gather mapping for the cpu
Synchronise a single contiguous or scatter/gather mapping for the CPU
and device. With the sync_sg API, all the parameters must be the same
as those passed into the single mapping API. With the sync_single API,
you can use dma_handle and size parameters that aren't identical to
......@@ -391,10 +396,10 @@ The four functions above are just like the counterpart functions
without the _attrs suffixes, except that they pass an optional
struct dma_attrs*.
struct dma_attrs encapsulates a set of "dma attributes". For the
struct dma_attrs encapsulates a set of "DMA attributes". For the
definition of struct dma_attrs see linux/dma-attrs.h.
The interpretation of dma attributes is architecture-specific, and
The interpretation of DMA attributes is architecture-specific, and
each attribute should be documented in Documentation/DMA-attributes.txt.
If struct dma_attrs* is NULL, the semantics of each of these
......@@ -458,7 +463,7 @@ Note: where the platform can return consistent memory, it will
guarantee that the sync points become nops.
Warning: Handling non-consistent memory is a real pain. You should
only ever use this API if you positively know your driver will be
only use this API if you positively know your driver will be
required to work on one of the rare (usually non-PCI) architectures
that simply cannot make consistent memory.
......@@ -492,30 +497,29 @@ continuing on for size. Again, you *must* observe the cache line
boundaries when doing this.
int
dma_declare_coherent_memory(struct device *dev, dma_addr_t bus_addr,
dma_declare_coherent_memory(struct device *dev, phys_addr_t phys_addr,
dma_addr_t device_addr, size_t size, int
flags)
Declare region of memory to be handed out by dma_alloc_coherent when
Declare region of memory to be handed out by dma_alloc_coherent() when
it's asked for coherent memory for this device.
bus_addr is the physical address to which the memory is currently
assigned in the bus responding region (this will be used by the
platform to perform the mapping).
phys_addr is the CPU physical address to which the memory is currently
assigned (this will be ioremapped so the CPU can access the region).
device_addr is the physical address the device needs to be programmed
with actually to address this memory (this will be handed out as the
device_addr is the bus address the device needs to be programmed
with to actually address this memory (this will be handed out as the
dma_addr_t in dma_alloc_coherent()).
size is the size of the area (must be multiples of PAGE_SIZE).
flags can be or'd together and are:
flags can be ORed together and are:
DMA_MEMORY_MAP - request that the memory returned from
dma_alloc_coherent() be directly writable.
DMA_MEMORY_IO - request that the memory returned from
dma_alloc_coherent() be addressable using read/write/memcpy_toio etc.
dma_alloc_coherent() be addressable using read()/write()/memcpy_toio() etc.
One or both of these flags must be present.
......@@ -572,7 +576,7 @@ region is occupied.
Part III - Debug drivers use of the DMA-API
-------------------------------------------
The DMA-API as described above as some constraints. DMA addresses must be
The DMA-API as described above has some constraints. DMA addresses must be
released with the corresponding function with the same size for example. With
the advent of hardware IOMMUs it becomes more and more important that drivers
do not violate those constraints. In the worst case such a violation can
......@@ -690,11 +694,11 @@ architectural default.
void debug_dmap_mapping_error(struct device *dev, dma_addr_t dma_addr);
dma-debug interface debug_dma_mapping_error() to debug drivers that fail
to check dma mapping errors on addresses returned by dma_map_single() and
to check DMA mapping errors on addresses returned by dma_map_single() and
dma_map_page() interfaces. This interface clears a flag set by
debug_dma_map_page() to indicate that dma_mapping_error() has been called by
the driver. When driver does unmap, debug_dma_unmap() checks the flag and if
this flag is still set, prints warning message that includes call trace that
leads up to the unmap. This interface can be called from dma_mapping_error()
routines to enable dma mapping error check debugging.
routines to enable DMA mapping error check debugging.
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment