Commit f9a61eb4 authored by Jan Kara's avatar Jan Kara Committed by Theodore Ts'o

mbcache2: reimplement mbcache

Original mbcache was designed to have more features than what ext?
filesystems ended up using. It supported entry being in more hashes, it
had a home-grown rwlocking of each entry, and one cache could cache
entries from multiple filesystems. This genericity also resulted in more
complex locking, larger cache entries, and generally more code
complexity.

This is reimplementation of the mbcache functionality to exactly fit the
purpose ext? filesystems use it for. Cache entries are now considerably
smaller (7 instead of 13 longs), the code is considerably smaller as
well (414 vs 913 lines of code), and IMO also simpler. The new code is
also much more lightweight.

I have measured the speed using artificial xattr-bench benchmark, which
spawns P processes, each process sets xattr for F different files, and
the value of xattr is randomly chosen from a pool of V values. Averages
of runtimes for 5 runs for various combinations of parameters are below.
The first value in each cell is old mbache, the second value is the new
mbcache.

V=10
F\P	1		2		4		8		16		32		64
10	0.158,0.157	0.208,0.196	0.500,0.277	0.798,0.400	3.258,0.584	13.807,1.047	61.339,2.803
100	0.172,0.167	0.279,0.222	0.520,0.275	0.825,0.341	2.981,0.505	12.022,1.202	44.641,2.943
1000	0.185,0.174	0.297,0.239	0.445,0.283	0.767,0.340	2.329,0.480	6.342,1.198	16.440,3.888

V=100
F\P	1		2		4		8		16		32		64
10	0.162,0.153	0.200,0.186	0.362,0.257	0.671,0.496	1.433,0.943	3.801,1.345	7.938,2.501
100	0.153,0.160	0.221,0.199	0.404,0.264	0.945,0.379	1.556,0.485	3.761,1.156	7.901,2.484
1000	0.215,0.191	0.303,0.246	0.471,0.288	0.960,0.347	1.647,0.479	3.916,1.176	8.058,3.160

V=1000
F\P	1		2		4		8		16		32		64
10	0.151,0.129	0.210,0.163	0.326,0.245	0.685,0.521	1.284,0.859	3.087,2.251	6.451,4.801
100	0.154,0.153	0.211,0.191	0.276,0.282	0.687,0.506	1.202,0.877	3.259,1.954	8.738,2.887
1000	0.145,0.179	0.202,0.222	0.449,0.319	0.899,0.333	1.577,0.524	4.221,1.240	9.782,3.579

V=10000
F\P	1		2		4		8		16		32		64
10	0.161,0.154	0.198,0.190	0.296,0.256	0.662,0.480	1.192,0.818	2.989,2.200	6.362,4.746
100	0.176,0.174	0.236,0.203	0.326,0.255	0.696,0.511	1.183,0.855	4.205,3.444	19.510,17.760
1000	0.199,0.183	0.240,0.227	1.159,1.014	2.286,2.154	6.023,6.039	---,10.933	---,36.620

V=100000
F\P	1		2		4		8		16		32		64
10	0.171,0.162	0.204,0.198	0.285,0.230	0.692,0.500	1.225,0.881	2.990,2.243	6.379,4.771
100	0.151,0.171	0.220,0.210	0.295,0.255	0.720,0.518	1.226,0.844	3.423,2.831	19.234,17.544
1000	0.192,0.189	0.249,0.225	1.162,1.043	2.257,2.093	5.853,4.997	---,10.399	---,32.198

We see that the new code is faster in pretty much all the cases and
starting from 4 processes there are significant gains with the new code
resulting in upto 20-times shorter runtimes. Also for large numbers of
cached entries all values for the old code could not be measured as the
kernel started hitting softlockups and died before the test completed.
Signed-off-by: default avatarJan Kara <jack@suse.cz>
Signed-off-by: default avatarTheodore Ts'o <tytso@mit.edu>
parent 87f9a031
......@@ -41,7 +41,7 @@ obj-$(CONFIG_COMPAT_BINFMT_ELF) += compat_binfmt_elf.o
obj-$(CONFIG_BINFMT_ELF_FDPIC) += binfmt_elf_fdpic.o
obj-$(CONFIG_BINFMT_FLAT) += binfmt_flat.o
obj-$(CONFIG_FS_MBCACHE) += mbcache.o
obj-$(CONFIG_FS_MBCACHE) += mbcache.o mbcache2.o
obj-$(CONFIG_FS_POSIX_ACL) += posix_acl.o
obj-$(CONFIG_NFS_COMMON) += nfs_common/
obj-$(CONFIG_COREDUMP) += coredump.o
......
This diff is collapsed.
#ifndef _LINUX_MB2CACHE_H
#define _LINUX_MB2CACHE_H
#include <linux/hash.h>
#include <linux/list_bl.h>
#include <linux/list.h>
#include <linux/atomic.h>
#include <linux/fs.h>
struct mb2_cache;
struct mb2_cache_entry {
/* LRU list - protected by cache->c_lru_list_lock */
struct list_head e_lru_list;
/* Hash table list - protected by bitlock in e_hash_list_head */
struct hlist_bl_node e_hash_list;
atomic_t e_refcnt;
/* Key in hash - stable during lifetime of the entry */
u32 e_key;
/* Block number of hashed block - stable during lifetime of the entry */
sector_t e_block;
/* Head of hash list (for list bit lock) - stable */
struct hlist_bl_head *e_hash_list_head;
};
struct mb2_cache *mb2_cache_create(int bucket_bits);
void mb2_cache_destroy(struct mb2_cache *cache);
int mb2_cache_entry_create(struct mb2_cache *cache, gfp_t mask, u32 key,
sector_t block);
void __mb2_cache_entry_free(struct mb2_cache_entry *entry);
static inline int mb2_cache_entry_put(struct mb2_cache *cache,
struct mb2_cache_entry *entry)
{
if (!atomic_dec_and_test(&entry->e_refcnt))
return 0;
__mb2_cache_entry_free(entry);
return 1;
}
void mb2_cache_entry_delete_block(struct mb2_cache *cache, u32 key,
sector_t block);
struct mb2_cache_entry *mb2_cache_entry_find_first(struct mb2_cache *cache,
u32 key);
struct mb2_cache_entry *mb2_cache_entry_find_next(struct mb2_cache *cache,
struct mb2_cache_entry *entry);
void mb2_cache_entry_touch(struct mb2_cache *cache,
struct mb2_cache_entry *entry);
#endif /* _LINUX_MB2CACHE_H */
Markdown is supported
0%
or
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment