- 19 Oct, 2009 40 commits
-
-
Inaky Perez-Gonzalez authored
The SDIO subdriver of the i2400m requires certain steps to be done before we do any acces to the device, even for doing firmware upload. This lead to a few ugly hacks, which basically involve doing those steps in probe() before calling i2400m_setup() and undoing them in disconnect() after claling i2400m_release(); but then, much of those steps have to be repeated when resetting the device, suspending, etc (in upcoming pre/post reset support). Thus, a new pair of optional, bus-specific calls i2400m->bus_{setup/release} are introduced. These are used to setup basic infrastructure needed to load firmware onto the device. This commit also updates the SDIO subdriver to use said calls. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
The i2400m driver uses two different bits to distinguish how much the driver is up. i2400m->ready is used to denote that the infrastructure to communicate with the device is up and running. i2400m->updown is used to indicate if 'ready' and the device is up and running, ready to take control and data traffic. However, all this was pretty dirty and not clear, with many open spots where race conditions were present. This commit cleans up the situation by: - documenting the usage of both bits - setting them only in specific, well controlled places (i2400m_dev_start, i2400m_dev_stop) - ensuring the i2400m workqueue can't get in the middle of the setting by flushing it when i2400m->ready is set to zero. This allows the report hook not having to check again for the bit to be set [rx.c:i2400m_report_hook_work()]. - using i2400m->updown to determine if the device is up and running instead of the wimax state in i2400m_dev_reset_handle(). - not loosing missed messages sent by the hardware before i2400m->ready is set. In rx.c, whatever the device sends can be sent to user space over the message pipes as soon as the wimax device is registered, so don't wait for i2400m->ready to be set. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
Currently the i2400m driver was starting in a weird way: registering a network device, setting the device up and then registering a WiMAX device. This is an historic artifact, and was causing issues, a some early reports the device sends were getting lost by issue of the wimax_dev not being registered. Fix said situation by doing the wimax device registration in i2400m_setup() after network device registration and before starting thed device. As well, removed spurious setting of the state to UNINITIALIZED; i2400m.dev_start() does that already. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
When the i2400m device needs to wake up an idle WiMAX connection, it schedules a workqueue job to do it. Currently, only when the network stack called the _stop() method this work struct was being cancelled. This has to be done every time the device is stopped. So add a call in i2400m_dev_stop() to take care of such cleanup, which is now wrapped in i2400m_net_wake_stop(). Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
Make sure that i2400m_dev_bootstrap() doesn't overwrite the last known error code with -ENOENT; when a firmware fails to load, we want to know the cause and not a generic error code. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
Current driver didn't implement the .reset_resume method. The i2400m normally always reset on a comeback from system standby/hibernation. This requires previously applied commits to cache the firmware image file. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
In preparation for a reset_resume implementation, have the firmware image be cached in memory when the system goes to suspend and released when out. This is needed in case the device resets during suspend; the driver can't load firmware until resume is completed or bad deadlocks happen. The modus operandi for this was copied from the Orinoco USB driver. The caching is done with a kobject to avoid race conditions when releasing it. The fw loader path is altered only to first check for a cached image before trying to load from disk. A Power Management event notifier is register to call i2400m_fw_cache() or i2400m_fw_uncache() which take care of the actual cache management. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
In preparation for reset_resume support, in which the same code path is going to be used, add a diagnostic message to dev_reset_handle() that can be used to distinguish how the device got there. This uses the new payload argument added to i2400m_schedule_work() by the previous commit. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
Forthcoming commits use having a payload argument added to i2400m_schedule_work(), which then becomes nearly identical to i2400m_queue_work(). This patch thus cleans up both's implementation, making it share common helpers and adding the payload argument to i2400m_schedule_work(). Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Dirk Brandewie authored
Add support for the WiMAX device in the Intel WiFi/WiMAX Link 6050 Series; this involves: - adding the device ID to bind to and an endpoint mapping for the driver to use. - at probe() time, some things are set depending on the device id: + the list of firmware names to try + mapping of endpoints Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Cindy H Kao authored
Different sdio device IDs are designated to support different intel wimax silicon sku. The new macro SDIO_DEVICE_ID_IWMC3200_WIMAX_2G5(0x1407) is added to support iwmc3200 2.5GHz sku. The existing SDIO_DEVICE_ID_IWMC3200_WIMAX(0x1402) is for iwmc3200 general sku. Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
Devices based on the i2400m emit a "barker" (32 bit unsigned) when they boot. This barker is used to select, in the firmware file image, which header should be used to process the rest of the file. This commit implements said support, completing the series started by previous commits. We modify the i2400m_fw_dnload() firmware loading path by adding a call to i2400m_bcf_hdr_find() [new function], in which the right BCF header [as listed in i2400m->fw_hdrs by i2400m_fw_check()] is located. Then this header is fed to i2400m_dnload_init() and i2400m_dnload_finalize(). The changes to i2400m_dnload_finalize() are smaller than they look; they add the bcf_hdr argument and use that instead of bcf. Likewise in i2400m_dnload_init(). Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
The SBCF firmware format has been extended to support extra headers after the main payload. These extra headers are used to sign the firmware code with more than one certificate. This eases up distributing single code images that work in more than one SKU of the device. The changes to support this feature will be spread in a series of commits. This one just adds the support to parse the extra headers and store them in i2400m->fw_hdrs. Coming changes to the loader code will use that to determine which header to upload to the device. The i2400m_fw_check() function now iterates over all the headers and for each, calls i2400m_fw_hdr_check(), which does some basic checks on each header. It then stores the headers for the bootloader code to use. The i2400m_dev_bootstrap() function has been modified to cleanup i2400m->fw_hdrs when done. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
Make sure the bootloading code checks that the format of the file is understood (major version match). This also fixes a dumb typo in extracting the major version field. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
The i2400m based devices can get in a sort of a deadlock some times; when they boot, they send a reboot "barker" (a magic number) and then the driver has to echo that same barker to ack reception (echo/ack). Then the device does a final ack by sending an ACK barker. The first time this happens, we don't know ahead of time with barker the device is going to send, as different device models and SKUs will send different barker depending on the EEPROM programming. If the device has sent the barker before the driver has been able to read it, the driver looses, as it doesn't know which barker it has to echo/ack back. With older devices, we tried a couple of combinations and that always worked; but now, with adding support for more, in which we have an unlimited number of new barkers, that is not an option. So we rework said case so that when the device gets stuck, we just cycle through all the known types until one forces the device to send an ack. Otherwise, the driver gives up and aborts. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
The i2400m firmware loader is given a list of firmware files to try to load by the probe() function (which can be different based on the device's model / generation). Current code didn't attempt to load, check and try to boot with each file, but just to try to load if off disk. This is limiting in some cases, where we might want to try to load a firmware and if it fails to load onto the device, just fall back to another one. This changes the behaviour so all files are tried for being loaded from disk, checked and uploaded to the device until one suceeds in bringing the device up. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
This modifies the bootrom initialization code of the i2400m driver so it can more easily support upcoming hardware. Currently, the code detects two types of barkers (magic numbers) sent by the device to indicate the types of firmware it would take (signed vs non-signed). This schema is extended so that multiple reboot barkers are recognized; upcoming hw will expose more types barkers which will have to match a header in the firmware image before we can load it. For that, a barker database is introduced; the first time the device sends a barker, it is matched in the database. That gives the driver the information needed to decide how to upload the firmware and which types of firmware to use. The database can be populated from module parameters. The execution flow is not altered; a new function (i2400m_is_boot_barker) is introduced to determine in the RX path if the device has sent a boot barker. This function is becoming heavier, so it is put away from the hot reception path [this is why there is some reorganization in sdio-rx.c:i2400ms_rx and usb-notifc.c:i2400mu_notification_grok()]. The documentation on the process has also been updated. All these modifications are heavily based on previous work by Dirk Brandewie <dirk.brandewie@intel.com>. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
The i2400m based devices can boot two main types of firmware images: signed and non-signed. Signed images have signature data included that must match that of a certificate stored in the device. Currently the code is making the decission on what type of firmware load (signed vs non-signed) is going to be loaded based on a hardcoded decission in __i2400m_ack_verify(), based on the barker the device sent upon boot. This is not flexible enough as future hardware will emit more barkers; thus the bit has to be set in a place where there is better knowledge of what is going on. This will be done in follow-up commits -- however this patch paves the way for it. So the querying of the mode is packed into i2400m_boot_is_signed(); the main changes are just using i2400m_boot_is_signed() to determine the method to follow and setting i2400m->sboot in i2400m_is_boot_barker(). The modifications in i2400m_dnload_init() and i2400m_dnload_finalize() are just reorganizing the order of the if blocks and thus look larger than they really are. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
The kernel's %zd modifier does not really work. Use %ld (has to cast ssize_t to long). Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
Add "debug" module options to all the wimax modules (including drivers) so that the debug levels can be set upon kernel boot or module load time. This is needed as currently there was a limitation where the debug levels could only be set when a device was succesfully enumerated. This made it difficult to debug issues that made a device not probe properly. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
The i2400m driver was missing the definition for the sysfs debug level, which is declared in debug-levels.h. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
In the Intel Wireless Multicomm 3200, the initialization is orchestrated by a component called Top. This component also monitors how many times a function is reset (via sdio_disable) to detect possible issues and will reset the whole multifunction device if any function triggers a maximum reset level. During WiMAX's probe, the driver needs to wait for Top to come up before it can enable the WiMAX function. If it cannot, it will return -ENODEV and the Top driver will rescan the SDIO bus once done loading. Currently, the WiMAX SDIO probe routine was trying a few times before returning -ENODEV, and this was triggering Top's too-many-resets detector. This is, in any case, unnecessary because the Top driver will force the bus rescan when the functions can be probed successfully. Added then a maxtries argument to i2400ms_enable_func() and set it to 1 when calling from probe. We want to reuse this function instead of flat calling out sdio_enable_func() to take advantage of hardware quirk workarounds. Reported-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Cindy H Kao authored
In kernel 2.6.31, the firmware requested to ram could be marked with read only attribute, and we can't write any thing directly to the memory when setting up the last JUMP brh cmd. Changed so that the scratch buffer is used. Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
Because some underlying bus APIs (like USB) don't like data buffers in the stack or vmalloced areas, the i2400m driver provides a scratch buffer (i2400m->bm_cmd_buf) for said low-level drivers to copy command data to before passing it to said API. This is only used during boot mode. However, at some the code was copying the buffer even when the command was already specified in said buffer. This is ok, but it needs to be more careful. As thus, change so that: (a) the copy happens only if command buffer is not the scratch buffer (b) use memmove() in case there is overlapping Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Cindy H Kao authored
In order to avoid issues during high-load traffic, the interrupt status register has to be cleared ONLY after the RX size is read. Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Dirk Brandewie authored
Newer generations of the i2400m USB WiMAX device use a different endpoint map; in order to make it easy to support it, we make the endpoint-to-function mapeable instead of static. Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Cindy H Kao authored
When trying to enable the iwmc3200 WiMAX SDIO function, we loop waiting for the top controller to be up and running (at which point we can succesfully enable the function). Between each try we wait for I2400MS_INIT_SLEEP_INTERVAL ms. Integration tests have found the current value of 10ms to be too short; it was upped to 100ms to give more time to the top controller to be ready. Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Cindy H Kao authored
In the iwmc3200, disabling the WiMAX SDIO function when enable fails would possibly result in a device reset triggered by the iwmc3200's top controller since it monitors the bus reset activities from each SDIO function. In any case, the disable makes no sense; if the enable fails, it should not be disabled. Thus we remove the unecessary sdio_disable_func() in i2400ms_enable_function(). Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Cindy H Kao authored
The default SDIO IOE wait timeout returned from iwmc3200-wimax's CCCR is not efficient. This inefficiency will actually cause problems on Moorestown platforms (system hang). This is a sillicon bug that requires a software patch to by overwritting func->enable_timeout. The new value I2400MS_IOR_TIMEOUT is recommended and verified from the system integration results. Future sillicon releases will have this default value corrected in the future. Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Dirk Brandewie authored
In i2400m-based devices, the driver's bootloader will retry to load the firmware when things go wrong. The driver currently has a constant (I2400M_BOOT_RETRIES) which governs the max number of tries. However, different SKUs of the same hardware may admit or require different numbers of retries due to it's particulars, so it is made a BUS specific parameter and different values are assigned for 5x50 devices versus the 3200 ones. Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com> Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Dirk Brandewie authored
The change to the SDIO boot mode RX chain could try to use the cmd and ack buffers befor they were allocated. USB does not have the problem but both were changed for consistency's sake. Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Dirk Brandewie authored
Fixing comments from original cut and paste error Signed-off-by: Dirk Brandewie <dirk.j.brandewie@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Dan Williams authored
Add minimal ethtool support for carrier detection. Signed-off-by: Dan Williams <dcbw@redhat.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Roel Kluin authored
Fix misplaced parenthesis Signed-off-by: Roel Kluin <roel.kluin@gmail.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Roel Kluin authored
Ensure that index `status' remains within ms_to_errno[] Signed-off-by: Roel Kluin <roel.kluin@gmail.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Inaky Perez-Gonzalez authored
The WiMAX stack assumes that all WiMAX devices are SW OFF when they are initialized. The recent changes in the RFKILL stack thus cause an initial call after rfkill_register(), because by default, rfkill considers devices to be SW ON upon registration. So call rfkill_init_sw_state() to set it to SW OFF so rfkill_register() doesn't do that unnecessary step. Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Cindy H Kao authored
i2400ms_bus_bm_wait_for_ack() causes a race condition. It happens because this function clears i2400ms->bm_ack_size before waiting for an interrupt, which is set by the interrupt service routine i2400ms_rx() to indicate reception and size of received data; thus, if the interrupt came right before the clearing/waiting, it is lost. The fix is clear the bm_ack_size to -EINPROGRESS before we are enabling the RX interrupt configuration in i2400ms_rx_setup(). Then everytime when the interrupt service routine i2400ms_rx() is invoked during bootmode, bm_ack_size is updated with the actual rx_size and it is cleared to -EINPROGRESS again after the RX data is handled. Signed-off-by: Cindy H Kao <cindy.h.kao@intel.com> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Oliver Neukum authored
This patch removes an unneeded power management primitive. Power management is automatically enabled as probe ends. Signed-off-by: Oliver Neukum <oliver@neukum.org> Signed-off-by: Inaky Perez-Gonzalez <inaky@linux.intel.com>
-
Steffen Klassert authored
The last users of skb_icv_walk are converted to ahash now, so skb_icv_walk is unused and can be removed. Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-
Steffen Klassert authored
ah4 and ah6 are converted to ahash now, so we can remove the code for the obsolete hash algorithm. Signed-off-by: Steffen Klassert <steffen.klassert@secunet.com> Signed-off-by: David S. Miller <davem@davemloft.net>
-