- 25 Jul, 2022 40 commits
-
-
Filipe Manana authored
After the patch "btrfs: send: fix sending link commands for existing file paths", we now have two infrastructures to detect and eliminate duplicated inode references (due to names that got removed and re-added between the send and parent snapshots): 1) One that works on a single inode ref/extref item; 2) A new one that works acrosss all ref/extref items for an inode, and it's also more efficient because even in the single ref/extref item case, it does not do a linear search for all the names encoded in the ref/extref item, it uses red black trees to speedup up the search. There's no good reason to keep both infrastructures, we can use the new one everywhere, and it's always more efficient. So remove the old infrastructure and change all sites that are using it to use the new one. Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
BingJing Chang authored
There is a bug sending link commands for existing file paths. When we're processing an inode, we go over all references. All the new file paths are added to the "new_refs" list. And all the deleted file paths are added to the "deleted_refs" list. In the end, when we finish processing the inode, we iterate over all the items in the "new_refs" list and send link commands for those file paths. After that, we go over all the items in the "deleted_refs" list and send unlink commands for them. If there are duplicated file paths in both lists, we will try to create them before we remove them. Then the receiver gets an -EEXIST error when trying the link operations. Example for having duplicated file paths in both list: $ btrfs subvolume create vol # create a file and 2000 hard links to the same inode $ touch vol/foo $ for i in {1..2000}; do link vol/foo vol/$i ; done # take a snapshot for a parent snapshot $ btrfs subvolume snapshot -r vol snap1 # remove 2000 hard links and re-create the last 1000 links $ for i in {1..2000}; do rm vol/$i; done; $ for i in {1001..2000}; do link vol/foo vol/$i; done # take another one for a send snapshot $ btrfs subvolume snapshot -r vol snap2 $ mkdir receive_dir $ btrfs send snap2 -p snap1 | btrfs receive receive_dir/ At subvol snap2 link 1238 -> foo ERROR: link 1238 -> foo failed: File exists In this case, we will have the same file paths added to both lists. In the parent snapshot, reference paths {1..1237} are stored in inode references, but reference paths {1238..2000} are stored in inode extended references. In the send snapshot, all reference paths {1001..2000} are stored in inode references. During the incremental send, we process their inode references first. In record_changed_ref(), we iterate all its inode references in the send/parent snapshot. For every inode reference, we also use find_iref() to check whether the same file path also appears in the parent/send snapshot or not. Inode references {1238..2000} which appear in the send snapshot but not in the parent snapshot are added to the "new_refs" list. On the other hand, Inode references {1..1000} which appear in the parent snapshot but not in the send snapshot are added to the "deleted_refs" list. Next, when we process their inode extended references, reference paths {1238..2000} are added to the "deleted_refs" list because all of them only appear in the parent snapshot. Now two lists contain items as below: "new_refs" list: {1238..2000} "deleted_refs" list: {1..1000}, {1238..2000} Reference paths {1238..2000} appear in both lists. And as the processing order mentioned about before, the receiver gets an -EEXIST error when trying the link operations. To fix the bug, the idea is to process the "deleted_refs" list before the "new_refs" list. However, it's not easy to reshuffle the processing order. For one reason, if we do so, we may unlink all the existing paths first, there's no valid path anymore for links. And it's inefficient because we do a bunch of unlinks followed by links for the same paths. Moreover, it makes less sense to have duplications in both lists. A reference path cannot not only be regarded as new but also has been seen in the past, or we won't call it a new path. However, it's also not a good idea to make find_iref() check a reference against all inode references and all inode extended references because it may result in large disk reads. So we introduce two rbtrees to make the references easier for lookups. And we also introduce record_new_ref_if_needed() and record_deleted_ref_if_needed() for changed_ref() to check and remove duplicated references early. Reviewed-by: Robbie Ko <robbieko@synology.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: BingJing Chang <bingjingc@synology.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
BingJing Chang authored
Introduce wrappers to allocate and free recorded_ref structures. Reviewed-by: Robbie Ko <robbieko@synology.com> Reviewed-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: BingJing Chang <bingjingc@synology.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
When the allocated position doesn't progress, we cannot submit IOs to finish a block group, but there should be ongoing IOs that will finish a block group. So, in that case, we wait for a zone to be finished and retry the allocation after that. Introduce a new flag BTRFS_FS_NEED_ZONE_FINISH for fs_info->flags to indicate we need a zone finish to have proceeded. The flag is set when the allocator detected it cannot activate a new block group. And, it is cleared once a zone is finished. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc0 ("btrfs: zoned: implement active zone tracking") Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
cow_file_range() works in an all-or-nothing way: if it fails to allocate an extent for a part of the given region, it gives up all the region including the successfully allocated parts. On cow_file_range(), run_delalloc_zoned() writes data for the region only when it successfully allocate all the region. This all-or-nothing allocation and write-out are problematic when available space in all the block groups are get tight with the active zone restriction. btrfs_reserve_extent() try hard to utilize the left space in the active block groups and gives up finally and fails with -ENOSPC. However, if we send IOs for the successfully allocated region, we can finish a zone and can continue on the rest of the allocation on a newly allocated block group. This patch implements the partial write-out for run_delalloc_zoned(). With this patch applied, cow_file_range() returns -EAGAIN to tell the caller to do something to progress the further allocation, and tells the successfully allocated region with done_offset. Furthermore, the zoned extent allocator returns -EAGAIN to tell cow_file_range() going back to the caller side. Actually, we still need to wait for an IO to complete to continue the allocation. The next patch implements that part. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc0 ("btrfs: zoned: implement active zone tracking") Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
There are two places where allocating a chunk is not enough. These two places are trying to ensure the space by allocating a chunk. To meet the condition for active_total_bytes, we also need to activate a block group there. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc0 ("btrfs: zoned: implement active zone tracking") Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
For metadata space on zoned filesystem, reaching ALLOC_CHUNK{,_FORCE} means we don't have enough space left in the active_total_bytes. Before allocating a new chunk, we can try to activate an existing block group in this case. Also, allocating a chunk is not enough to grant a ticket for metadata space on zoned filesystem we need to activate the block group to increase the active_total_bytes. btrfs_zoned_activate_one_bg() implements the activation feature. It will activate a block group by (maybe) finishing a block group. It will give up activating a block group if it cannot finish any block group. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc0 ("btrfs: zoned: implement active zone tracking") Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
The metadata overcommit makes the space reservation flexible but it is also harmful to active zone tracking. Since we cannot finish a block group from the metadata allocation context, we might not activate a new block group and might not be able to actually write out the overcommit reservations. So, disable metadata overcommit for zoned filesystems. We will ensure the reservations are under active_total_bytes in the following patches. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc0 ("btrfs: zoned: implement active zone tracking") Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
The active_total_bytes, like the total_bytes, accounts for the total bytes of active block groups in the space_info. With an introduction of active_total_bytes, we can check if the reserved bytes can be written to the block groups without activating a new block group. The check is necessary for metadata allocation on zoned filesystem. We cannot finish a block group, which may require waiting for the current transaction, from the metadata allocation context. Instead, we need to ensure the ongoing allocation (reserved bytes) fits in active block groups. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
When we run out of active zones and no sufficient space is left in any block groups, we need to finish one block group to make room to activate a new block group. However, we cannot do this for metadata block groups because we can cause a deadlock by waiting for a running transaction commit. So, do that only for a data block group. Furthermore, the block group to be finished has two requirements. First, the block group must not have reserved bytes left. Having reserved bytes means we have an allocated region but did not yet send bios for it. If that region is allocated by the thread calling btrfs_zone_finish(), it results in a deadlock. Second, the block group to be finished must not be a SYSTEM block group. Finishing a SYSTEM block group easily breaks further chunk allocation by nullifying the SYSTEM free space. In a certain case, we cannot find any zone finish candidate or btrfs_zone_finish() may fail. In that case, we fall back to split the allocation bytes and fill the last spaces left in the block groups. CC: stable@vger.kernel.org # 5.16+ Fixes: afba2bc0 ("btrfs: zoned: implement active zone tracking") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
For the later patch, convert the return type from bool to int and return errors. No functional changes. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
Use fs_info->max_extent_size also in get_extent_max_capacity() for the completeness. This is only used for defrag and not really necessary to fix the metadata reservation size. But, it still suppresses unnecessary defrag operations. Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
If count_max_extents() uses BTRFS_MAX_EXTENT_SIZE to calculate the number of extents needed, btrfs release the metadata reservation too much on its way to write out the data. Now that BTRFS_MAX_EXTENT_SIZE is replaced with fs_info->max_extent_size, convert count_max_extents() to use it instead, and fix the calculation of the metadata reservation. CC: stable@vger.kernel.org # 5.12+ Fixes: d8e3fb10 ("btrfs: zoned: use ZONE_APPEND write for zoned mode") Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
On zoned filesystem, data write out is limited by max_zone_append_size, and a large ordered extent is split according the size of a bio. OTOH, the number of extents to be written is calculated using BTRFS_MAX_EXTENT_SIZE, and that estimated number is used to reserve the metadata bytes to update and/or create the metadata items. The metadata reservation is done at e.g, btrfs_buffered_write() and then released according to the estimation changes. Thus, if the number of extent increases massively, the reserved metadata can run out. The increase of the number of extents easily occurs on zoned filesystem if BTRFS_MAX_EXTENT_SIZE > max_zone_append_size. And, it causes the following warning on a small RAM environment with disabling metadata over-commit (in the following patch). [75721.498492] ------------[ cut here ]------------ [75721.505624] BTRFS: block rsv 1 returned -28 [75721.512230] WARNING: CPU: 24 PID: 2327559 at fs/btrfs/block-rsv.c:537 btrfs_use_block_rsv+0x560/0x760 [btrfs] [75721.581854] CPU: 24 PID: 2327559 Comm: kworker/u64:10 Kdump: loaded Tainted: G W 5.18.0-rc2-BTRFS-ZNS+ #109 [75721.597200] Hardware name: Supermicro Super Server/H12SSL-NT, BIOS 2.0 02/22/2021 [75721.607310] Workqueue: btrfs-endio-write btrfs_work_helper [btrfs] [75721.616209] RIP: 0010:btrfs_use_block_rsv+0x560/0x760 [btrfs] [75721.646649] RSP: 0018:ffffc9000fbdf3e0 EFLAGS: 00010286 [75721.654126] RAX: 0000000000000000 RBX: 0000000000004000 RCX: 0000000000000000 [75721.663524] RDX: 0000000000000004 RSI: 0000000000000008 RDI: fffff52001f7be6e [75721.672921] RBP: ffffc9000fbdf420 R08: 0000000000000001 R09: ffff889f8d1fc6c7 [75721.682493] R10: ffffed13f1a3f8d8 R11: 0000000000000001 R12: ffff88980a3c0e28 [75721.692284] R13: ffff889b66590000 R14: ffff88980a3c0e40 R15: ffff88980a3c0e8a [75721.701878] FS: 0000000000000000(0000) GS:ffff889f8d000000(0000) knlGS:0000000000000000 [75721.712601] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [75721.720726] CR2: 000055d12e05c018 CR3: 0000800193594000 CR4: 0000000000350ee0 [75721.730499] Call Trace: [75721.735166] <TASK> [75721.739886] btrfs_alloc_tree_block+0x1e1/0x1100 [btrfs] [75721.747545] ? btrfs_alloc_logged_file_extent+0x550/0x550 [btrfs] [75721.756145] ? btrfs_get_32+0xea/0x2d0 [btrfs] [75721.762852] ? btrfs_get_32+0xea/0x2d0 [btrfs] [75721.769520] ? push_leaf_left+0x420/0x620 [btrfs] [75721.776431] ? memcpy+0x4e/0x60 [75721.781931] split_leaf+0x433/0x12d0 [btrfs] [75721.788392] ? btrfs_get_token_32+0x580/0x580 [btrfs] [75721.795636] ? push_for_double_split.isra.0+0x420/0x420 [btrfs] [75721.803759] ? leaf_space_used+0x15d/0x1a0 [btrfs] [75721.811156] btrfs_search_slot+0x1bc3/0x2790 [btrfs] [75721.818300] ? lock_downgrade+0x7c0/0x7c0 [75721.824411] ? free_extent_buffer.part.0+0x107/0x200 [btrfs] [75721.832456] ? split_leaf+0x12d0/0x12d0 [btrfs] [75721.839149] ? free_extent_buffer.part.0+0x14f/0x200 [btrfs] [75721.846945] ? free_extent_buffer+0x13/0x20 [btrfs] [75721.853960] ? btrfs_release_path+0x4b/0x190 [btrfs] [75721.861429] btrfs_csum_file_blocks+0x85c/0x1500 [btrfs] [75721.869313] ? rcu_read_lock_sched_held+0x16/0x80 [75721.876085] ? lock_release+0x552/0xf80 [75721.881957] ? btrfs_del_csums+0x8c0/0x8c0 [btrfs] [75721.888886] ? __kasan_check_write+0x14/0x20 [75721.895152] ? do_raw_read_unlock+0x44/0x80 [75721.901323] ? _raw_write_lock_irq+0x60/0x80 [75721.907983] ? btrfs_global_root+0xb9/0xe0 [btrfs] [75721.915166] ? btrfs_csum_root+0x12b/0x180 [btrfs] [75721.921918] ? btrfs_get_global_root+0x820/0x820 [btrfs] [75721.929166] ? _raw_write_unlock+0x23/0x40 [75721.935116] ? unpin_extent_cache+0x1e3/0x390 [btrfs] [75721.942041] btrfs_finish_ordered_io.isra.0+0xa0c/0x1dc0 [btrfs] [75721.949906] ? try_to_wake_up+0x30/0x14a0 [75721.955700] ? btrfs_unlink_subvol+0xda0/0xda0 [btrfs] [75721.962661] ? rcu_read_lock_sched_held+0x16/0x80 [75721.969111] ? lock_acquire+0x41b/0x4c0 [75721.974982] finish_ordered_fn+0x15/0x20 [btrfs] [75721.981639] btrfs_work_helper+0x1af/0xa80 [btrfs] [75721.988184] ? _raw_spin_unlock_irq+0x28/0x50 [75721.994643] process_one_work+0x815/0x1460 [75722.000444] ? pwq_dec_nr_in_flight+0x250/0x250 [75722.006643] ? do_raw_spin_trylock+0xbb/0x190 [75722.013086] worker_thread+0x59a/0xeb0 [75722.018511] kthread+0x2ac/0x360 [75722.023428] ? process_one_work+0x1460/0x1460 [75722.029431] ? kthread_complete_and_exit+0x30/0x30 [75722.036044] ret_from_fork+0x22/0x30 [75722.041255] </TASK> [75722.045047] irq event stamp: 0 [75722.049703] hardirqs last enabled at (0): [<0000000000000000>] 0x0 [75722.057610] hardirqs last disabled at (0): [<ffffffff8118a94a>] copy_process+0x1c1a/0x66b0 [75722.067533] softirqs last enabled at (0): [<ffffffff8118a989>] copy_process+0x1c59/0x66b0 [75722.077423] softirqs last disabled at (0): [<0000000000000000>] 0x0 [75722.085335] ---[ end trace 0000000000000000 ]--- To fix the estimation, we need to introduce fs_info->max_extent_size to replace BTRFS_MAX_EXTENT_SIZE, which allow setting the different size for regular vs zoned filesystem. Set fs_info->max_extent_size to BTRFS_MAX_EXTENT_SIZE by default. On zoned filesystem, it is set to fs_info->max_zone_append_size. CC: stable@vger.kernel.org # 5.12+ Fixes: d8e3fb10 ("btrfs: zoned: use ZONE_APPEND write for zoned mode") Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
This patch is basically a revert of commit 5a80d1c6 ("btrfs: zoned: remove max_zone_append_size logic"), but without unnecessary ASSERT and check. The max_zone_append_size will be used as a hint to estimate the number of extents to cover delalloc/writeback region in the later commits. The size of a ZONE APPEND bio is also limited by queue_max_segments(), so this commit considers it to calculate max_zone_append_size. Technically, a bio can be larger than queue_max_segments() * PAGE_SIZE if the pages are contiguous. But, it is safe to consider "queue_max_segments() * PAGE_SIZE" as an upper limit of an extent size to calculate the number of extents needed to write data. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Naohiro Aota authored
Add bdev_max_segments() like other queue parameters. Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Jens Axboe <axboe@kernel.dk> Reviewed-by: Christoph Hellwig <hch@lst.de> Signed-off-by: Naohiro Aota <naohiro.aota@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Currently btrfs_ino() tries to use first the objectid of the inode's location key. This is to avoid truncation of the inode number on 32 bits platforms because the i_ino field of struct inode has the unsigned long type, while the objectid is a 64 bits unsigned type (u64) on every system. This logic was added in commit 33345d01 ("Btrfs: Always use 64bit inode number"). However if we are running on a 64 bits system, we can always directly return the i_ino value from struct inode, which eliminates the need for he special if statement that tests for a location key type of BTRFS_ROOT_ITEM_KEY - in which case i_ino may not have the same value as the objectid in the inode's location objectid, it may have a value of BTRFS_EMPTY_SUBVOL_DIR_OBJECTID, for the case of snapshots of trees with subvolumes/snapshots inside them. So add a special version for 64 bits system that directly returns i_ino of struct inode. This eliminates one branch and reduces the overall code size, since btrfs_ino() is an inline function that is extensively used. Before: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko After: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1612028 189180 29032 1830240 1bed60 fs/btrfs/btrfs.ko Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
We currently don't use the location key of the btree inode, its content is set to zeroes, as it's a special inode that is not persisted (it has no inode item stored in any btree). At btrfs_ino(), an inline function used extensively in btrfs, we have this special check if the given inode's location objectid is 0, and if it is, we return the value stored in the VFS' inode i_ino field instead (which is BTRFS_BTREE_INODE_OBJECTID for the btree inode). To reduce the code at btrfs_ino(), we can simply set the objectid of the btree inode to the value BTRFS_BTREE_INODE_OBJECTID. This eliminates the need to check for the special case of the objectid being zero, with the side effect of reducing the overall code size and having less code to execute, as btrfs_ino() is an inline function. Before: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1620502 189240 29032 1838774 1c0eb6 fs/btrfs/btrfs.ko After: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1617487 189240 29032 1835759 1c02ef fs/btrfs/btrfs.ko Reviewed-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Filipe Manana <fdmanana@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Fabio M. De Francesco authored
kmap_atomic() is being deprecated in favor of kmap_local_page() where it is feasible. With kmap_local_page() mappings are per thread, CPU local, and not globally visible. The last use of kmap_atomic is in inode.c where the context is atomic [1] and can be safely replaced by kmap_local_page. Tested with xfstests on a QEMU + KVM 32-bits VM with 4GB RAM and booting a kernel with HIGHMEM64GB enabled. [1] https://lore.kernel.org/linux-btrfs/20220601132545.GM20633@twin.jikos.cz/Suggested-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Fabio M. De Francesco authored
The use of kmap() is being deprecated in favor of kmap_local_page(). With kmap_local_page(), the mapping is per thread, CPU local and not globally visible. Therefore, use kmap_local_page() / kunmap_local() in zlib_decompress_bio() because in this function the mappings are per thread and are not visible in other contexts. Tested with xfstests on QEMU + KVM 32-bits VM with 4GB of RAM and HIGHMEM64G enabled. This patch passes 26/26 tests of group "compress". Suggested-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Fabio M. De Francesco authored
The use of kmap() is being deprecated in favor of kmap_local_page(). With kmap_local_page(), the mapping is per thread, CPU local and not globally visible. Therefore, use kmap_local_page() / kunmap_local() in zlib_compress_pages() because in this function the mappings are per thread and are not visible in other contexts. Furthermore, drop the mappings of "out_page" which is allocated within zlib_compress_pages() with alloc_page(GFP_NOFS) and use page_address(). Tested with xfstests on a QEMU + KVM 32-bits VM with 4GB of RAM booting a kernel with HIGHMEM64G enabled. This patch passes 26/26 tests of group "compress". CC: Qu Wenruo <wqu@suse.com> Suggested-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Fabio M. De Francesco authored
The use of kmap() is being deprecated in favor of kmap_local_page(). With kmap_local_page(), the mapping is per thread, CPU local and not globally visible. Therefore, use kmap_local_page() / kunmap_local() in zstd.c because in this file the mappings are per thread and are not visible in other contexts. In the meanwhile use plain page_address() on output pages allocated with the GFP_NOFS flag instead of calling kmap*() on them (since they are always allocated from ZONE_NORMAL). Tested with xfstests on QEMU + KVM 32 bits VM with 4GB of RAM, booting a kernel with HIGHMEM64G enabled. Suggested-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Fabio M. De Francesco authored
__kunmap_ {local,atomic}() currently take pointers to void. However, this is semantically incorrect, since these functions do not change the memory their arguments point to. Therefore, make this semantics explicit by modifying the __kunmap_{local,atomic}() prototypes to take pointers to const void. As a side effect, compilers may produce more efficient code. Acked-by: Andrew Morton <akpm@linux-foundation.org> Acked-by: Helge Deller <deller@gmx.de> # parisc Suggested-by: David Sterba <dsterba@suse.cz> Suggested-by: Ira Weiny <ira.weiny@intel.com> Reviewed-by: Ira Weiny <ira.weiny@intel.com> Signed-off-by: Fabio M. De Francesco <fmdefrancesco@gmail.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
Currently, for a direct IO write, if we need to fallback to buffered IO, either to satisfy the whole write operation or just a part of it, we do it in the current context even if it's a NOWAIT context. This is not ideal because we currently don't have support for NOWAIT semantics in the buffered IO path (we can block for several reasons), so we should instead return -EAGAIN to the caller, so that it knows it should retry (the whole operation or what's left of it) in a context where blocking is acceptable. Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
The number of block group reserve types BTRFS_BLOCK_RSV_* is small and fits to u8 and there's enough left in case we want to add more. For type safety use the enum but make it 8 bits in the structure to save space. The structure size is now 48 on release build, making a slight improvement in structures where it's embedded, like btrfs_fs_info or btrfs_inode. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Use simple bool type for the block reserve failfast status, there's short to save space as there used to be int but there's no reason for that. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
David Sterba authored
Use simple bool type for the block reserve full status, there's short to save space as there used to be int but there's no reason for that. Reviewed-by: Anand Jain <anand.jain@oracle.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
Always consume the bio and call the end_io handler on error instead of returning an error and letting the caller handle it. This matches what the block layer submission and the other btrfs bio submission handlers do and avoids any confusion on who needs to handle errors. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
btrfs_wq_submit_bio is used for writeback under memory pressure. Instead of failing the I/O when we can't allocate the async_submit_bio, just punt back to the synchronous submission path. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
btrfs_submit_data_write_bio special cases the reloc root because the checksums are preloaded, but only does so for the !sync case. The sync case can't happen for data relocation, but just handling it more generally significantly simplifies the logic. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
Transfer the bio counter reference acquired by btrfs_submit_bio to raid56_parity_write and raid56_parity_recovery together with the bio that the reference was acquired for instead of acquiring another reference in those helpers and dropping the original one in btrfs_submit_bio. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
Always consume the bio and call the end_io handler on error instead of returning an error and letting the caller handle it. This matches what the block layer submission does and avoids any confusion on who needs to handle errors. Also use the proper bool type for the generic_io argument. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
Always consume the bio and call the end_io handler on error instead of returning an error and letting the caller handle it. This matches what the block layer submission does and avoids any confusion on who needs to handle errors. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
Always consume the bio and call the end_io handler on error instead of returning an error and letting the caller handle it. This matches what the block layer submission does and avoids any confusion on who needs to handle errors. As this requires touching all the callers, rename the function to btrfs_submit_bio, which describes the functionality much better. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
Qu Wenruo authored
For profiles other than RAID56, __btrfs_map_block() returns @map_length as min(stripe_end, logical + *length), which is also the same result from btrfs_get_io_geometry(). But for RAID56, __btrfs_map_block() returns @map_length as stripe_len. This strange behavior is going to hurt incoming bio split at btrfs_map_bio() time, as we will use @map_length as bio split size. Fix this behavior by returning @map_length by the same calculation as for other profiles. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> Signed-off-by: David Sterba <dsterba@suse.com>
-
Christoph Hellwig authored
The raid56 code assumes a fixed stripe length BTRFS_STRIPE_LEN but there are functions passing it as arguments, this is not necessary. The fixed value has been used for a long time and though the stripe length should be configurable by super block member stripesize, this hasn't been implemented and would require more changes so we don't need to keep this code around until then. Partially based on a patch from Qu Wenruo. Reviewed-by: Nikolay Borisov <nborisov@suse.com> Tested-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: Johannes Thumshirn <johannes.thumshirn@wdc.com> Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Christoph Hellwig <hch@lst.de> [ update changelog ] Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Filipe Manana authored
The inode cache feature was removed in kernel 5.11, and we no longer have any code that reads from or writes to inode caches. We may still mount a filesystem that has inode caches, but they are ignored. Remove the check for an inode cache from btrfs_is_free_space_inode(), since we no longer have code to trigger reads from an inode cache or writes to an inode cache. The check at send.c is still needed, because in case we find a filesystem with an inode cache, we must ignore it. Also leave the checks at tree-checker.c, as they are sanity checks. This eliminates a dead branch and reduces the amount of code since it's in an inline function. Before: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1620662 189240 29032 1838934 1c0f56 fs/btrfs/btrfs.ko After: $ size fs/btrfs/btrfs.ko text data bss dec hex filename 1620502 189240 29032 1838774 1c0eb6 fs/btrfs/btrfs.ko Reviewed-by: Boris Burkov <boris@bur.io> Signed-off-by: Filipe Manana <fdmanana@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
This flag has been merged in 3.10 and is effectively always-on. Its status depends on the host page size so there's another way to guarantee compatibility with old kernels. Due to a bug introduced in 6f93e834 ("btrfs: fix upper limit for max_inline for page size 64K") the flag is not persisted among features in the superblock so it's not reliable. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> [ update changelog ] Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
This feature has been the default for about 13 year. At this point it's safe to consider it an indispensable feature of BTRFS as such there's no need to advertise it in sysfs. Remove the global sysfs feature file, the per-filesystem feature file has never been there. Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-
Nikolay Borisov authored
Skinny extents have been a default mkfs feature since version 3.18 i (introduced in btrfs-progs commit 6715de04d9a7 ("btrfs-progs: mkfs: make skinny-metadata default") ). It really doesn't bring any value to users to simply remove it. Reviewed-by: Qu Wenruo <wqu@suse.com> Signed-off-by: Nikolay Borisov <nborisov@suse.com> Reviewed-by: David Sterba <dsterba@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
-