- 20 Nov, 2012 1 commit
-
-
Frederic Weisbecker authored
System time accounting APIs such as vtime_account_system() and vtime_account_idle() need to be irqsafe. Current callers include irq entry, exit and kvm, all of which have been checked against that requirement. Now it's better to grow that with an automatic check in case we have further callers or we missed something. Suggested-by: Steven Rostedt <rostedt@goodmis.org> Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
- 19 Nov, 2012 4 commits
-
-
Frederic Weisbecker authored
vtime_account() is only called from irq entry. irqs are always disabled at this point so we can safely remove the irq disabling guards on that function. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
Frederic Weisbecker authored
On ia64 and powerpc, vtime context switch only consists in flushing system and user pending time, plus a few arch housekeeping. Consolidate that into a generic implementation. s390 is a special case because pending user and system time accounting there is hard to dissociate. So it's keeping its own implementation. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
Frederic Weisbecker authored
All vtime implementations just flush the user time on process tick. Consolidate that in generic code by calling a user time accounting helper. This avoids an indirect call in ia64 and prepare to also consolidate vtime context switch code. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
Frederic Weisbecker authored
Prepending irq-unsafe vtime APIs with underscores was actually a bad idea as the result is a big mess in the API namespace that is even waiting to be further extended. Also these helpers are always called from irq safe callers except kvm. Just provide a vtime_account_system_irqsafe() for this specific case so that we can remove the underscore prefix on other vtime functions. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Reviewed-by: Steven Rostedt <rostedt@goodmis.org> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
- 30 Oct, 2012 1 commit
-
-
Ingo Molnar authored
Merge tag 'cputime-cleanups-for-mingo' of git://git.kernel.org/pub/scm/linux/kernel/git/frederic/linux-dynticks into sched/core Pull cputime cleanups and optimizations from Frederic Weisbecker: * Gather vtime headers that were a bit scattered around * Separate irqtime and vtime namespaces that were colliding, resulting in useless calls to irqtime accounting. * Slightly optimize irq and guest vtime accounting. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Signed-off-by: Ingo Molnar <mingo@kernel.org>
-
- 29 Oct, 2012 5 commits
-
-
Frederic Weisbecker authored
vtime_account() doesn't have the same role in CONFIG_VIRT_CPU_ACCOUNTING and CONFIG_IRQ_TIME_ACCOUNTING. In the first case it handles time accounting in any context. In the second case it only handles irq time accounting. So when vtime_account() is called from outside vtime_account_irq_*() this call is pointless to CONFIG_IRQ_TIME_ACCOUNTING. To fix the confusion, change vtime_account() to irqtime_account_irq() in CONFIG_IRQ_TIME_ACCOUNTING. This way we ensure future account_vtime() calls won't waste useless cycles in the irqtime APIs. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
Frederic Weisbecker authored
With CONFIG_VIRT_CPU_ACCOUNTING, when vtime_account() is called in irq entry/exit, we perform a check on the context: if we are interrupting the idle task we account the pending cputime to idle, otherwise account to system time or its sub-areas: tsk->stime, hardirq time, softirq time, ... However this check for idle only concerns the hardirq entry and softirq entry: * Hardirq may directly interrupt the idle task, in which case we need to flush the pending CPU time to idle. * The idle task may be directly interrupted by a softirq if it calls local_bh_enable(). There is probably no such call in any idle task but we need to cover every case. Ksoftirqd is not concerned because the idle time is flushed on context switch and softirq in the end of hardirq have the idle time already flushed from the hardirq entry. In the other cases we always account to system/irq time: * On hardirq exit we account the time to hardirq time. * On softirq exit we account the time to softirq time. To optimize this and avoid the indirect call to vtime_account() and the checks it performs, specialize the vtime irq APIs and only perform the check on irq entry. Irq exit can directly call vtime_account_system(). CONFIG_IRQ_TIME_ACCOUNTING behaviour doesn't change and directly maps to its own vtime_account() implementation. One may want to take benefits from the new APIs to optimize irq time accounting as well in the future. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
Frederic Weisbecker authored
Switching to or from guest context is done on ioctl context. So by the time we call kvm_guest_enter() or kvm_guest_exit() we know we are not running the idle task. As a result, we can directly account the cputime using vtime_account_system(). There are two good reasons to do this: * We avoid some useless checks on guest switch. It optimizes a bit this fast path. * In the case of CONFIG_IRQ_TIME_ACCOUNTING, calling vtime_account() checks for irq time to account. This is pointless since we know we are not in an irq on guest switch. This is wasting cpu cycles for no good reason. vtime_account_system() OTOH is a no-op in this config option. * We can remove the irq disable/enable around kvm guest switch in s390. A further optimization may consist in introducing a vtime_account_guest() that directly calls account_guest_time(). Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Heiko Carstens <heiko.carstens@de.ibm.com> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Avi Kivity <avi@redhat.com> Cc: Marcelo Tosatti <mtosatti@redhat.com> Cc: Joerg Roedel <joerg.roedel@amd.com> Cc: Alexander Graf <agraf@suse.de> Cc: Xiantao Zhang <xiantao.zhang@intel.com> Cc: Christian Borntraeger <borntraeger@de.ibm.com> Cc: Cornelia Huck <cornelia.huck@de.ibm.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
Frederic Weisbecker authored
vtime_account_system() currently has only one caller with vtime_account() which is irq safe. Now we are going to call it from other places like kvm where irqs are not always disabled by the time we account the cputime. So let's make it irqsafe. The arch implementation part is now prefixed with "__". vtime_account_idle() arch implementation is prefixed accordingly to stay consistent. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com> Cc: Tony Luck <tony.luck@intel.com> Cc: Fenghua Yu <fenghua.yu@intel.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Paul Mackerras <paulus@samba.org> Cc: Martin Schwidefsky <schwidefsky@de.ibm.com> Cc: Heiko Carstens <heiko.carstens@de.ibm.com>
-
Frederic Weisbecker authored
These APIs are scattered around and are going to expand a bit. Let's create a dedicated header file for sanity. Signed-off-by: Frederic Weisbecker <fweisbec@gmail.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Ingo Molnar <mingo@kernel.org> Cc: Thomas Gleixner <tglx@linutronix.de> Cc: Steven Rostedt <rostedt@goodmis.org> Cc: Paul Gortmaker <paul.gortmaker@windriver.com>
-
- 24 Oct, 2012 24 commits
-
-
Peter Zijlstra authored
Add some scribbles on how and why the load-balancer works.. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/1341316406.23484.64.camel@twinsSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
While per-entity load-tracking is generally useful, beyond computing shares distribution, e.g. runnable based load-balance (in progress), governors, power-management, etc. These facilities are not yet consumers of this data. This may be trivially reverted when the information is required; but avoid paying the overhead for calculations we will not use until then. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141507.422162369@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
__update_entity_runnable_avg forms the core of maintaining an entity's runnable load average. In this function we charge the accumulated run-time since last update and handle appropriate decay. In some cases, e.g. a waking task, this time interval may be much larger than our period unit. Fortunately we can exploit some properties of our series to perform decay for a blocked update in constant time and account the contribution for a running update in essentially-constant* time. [*]: For any running entity they should be performing updates at the tick which gives us a soft limit of 1 jiffy between updates, and we can compute up to a 32 jiffy update in a single pass. C program to generate the magic constants in the arrays: #include <math.h> #include <stdio.h> #define N 32 #define WMULT_SHIFT 32 const long WMULT_CONST = ((1UL << N) - 1); double y; long runnable_avg_yN_inv[N]; void calc_mult_inv() { int i; double yn = 0; printf("inverses\n"); for (i = 0; i < N; i++) { yn = (double)WMULT_CONST * pow(y, i); runnable_avg_yN_inv[i] = yn; printf("%2d: 0x%8lx\n", i, runnable_avg_yN_inv[i]); } printf("\n"); } long mult_inv(long c, int n) { return (c * runnable_avg_yN_inv[n]) >> WMULT_SHIFT; } void calc_yn_sum(int n) { int i; double sum = 0, sum_fl = 0, diff = 0; /* * We take the floored sum to ensure the sum of partial sums is never * larger than the actual sum. */ printf("sum y^n\n"); printf(" %8s %8s %8s\n", "exact", "floor", "error"); for (i = 1; i <= n; i++) { sum = (y * sum + y * 1024); sum_fl = floor(y * sum_fl+ y * 1024); printf("%2d: %8.0f %8.0f %8.0f\n", i, sum, sum_fl, sum_fl - sum); } printf("\n"); } void calc_conv(long n) { long old_n; int i = -1; printf("convergence (LOAD_AVG_MAX, LOAD_AVG_MAX_N)\n"); do { old_n = n; n = mult_inv(n, 1) + 1024; i++; } while (n != old_n); printf("%d> %ld\n", i - 1, n); printf("\n"); } void main() { y = pow(0.5, 1/(double)N); calc_mult_inv(); calc_conv(1024); calc_yn_sum(N); } [ Compile with -lm ] Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141507.277808946@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
Now that our measurement intervals are small (~1ms) we can amortize the posting of update_shares() to be about each period overflow. This is a large cost saving for frequently switching tasks. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141507.200772172@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
Now that running entities maintain their own load-averages the work we must do in update_shares() is largely restricted to the periodic decay of blocked entities. This allows us to be a little less pessimistic regarding our occupancy on rq->lock and the associated rq->clock updates required. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141507.133999170@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
Now that the machinery in place is in place to compute contributed load in a bottom up fashion; replace the shares distribution code within update_shares() accordingly. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141507.061208672@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
With bandwidth control tracked entities may cease execution according to user specified bandwidth limits. Charging this time as either throttled or blocked however, is incorrect and would falsely skew in either direction. What we actually want is for any throttled periods to be "invisible" to load-tracking as they are removed from the system for that interval and contribute normally otherwise. Do this by moderating the progression of time to omit any periods in which the entity belonged to a throttled hierarchy. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.998912151@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
Entities of equal weight should receive equitable distribution of cpu time. This is challenging in the case of a task_group's shares as execution may be occurring on multiple cpus simultaneously. To handle this we divide up the shares into weights proportionate with the load on each cfs_rq. This does not however, account for the fact that the sum of the parts may be less than one cpu and so we need to normalize: load(tg) = min(runnable_avg(tg), 1) * tg->shares Where runnable_avg is the aggregate time in which the task_group had runnable children. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com>. Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.930124292@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
Unlike task entities who have a fixed weight, group entities instead own a fraction of their parenting task_group's shares as their contributed weight. Compute this fraction so that we can correctly account hierarchies and shared entity nodes. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.855074415@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
Maintain a global running sum of the average load seen on each cfs_rq belonging to each task group so that it may be used in calculating an appropriate shares:weight distribution. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.792901086@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
When a running entity blocks we migrate its tracked load to cfs_rq->blocked_runnable_avg. In the sleep case this occurs while holding rq->lock and so is a natural transition. Wake-ups however, are potentially asynchronous in the presence of migration and so special care must be taken. We use an atomic counter to track such migrated load, taking care to match this with the previously introduced decay counters so that we don't migrate too much load. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.726077467@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
Since we are now doing bottom up load accumulation we need explicit notification when a task has been re-parented so that the old hierarchy can be updated. Adds: migrate_task_rq(struct task_struct *p, int next_cpu) (The alternative is to do this out of __set_task_cpu, but it was suggested that this would be a cleaner encapsulation.) Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.660023400@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
We are currently maintaining: runnable_load(cfs_rq) = \Sum task_load(t) For all running children t of cfs_rq. While this can be naturally updated for tasks in a runnable state (as they are scheduled); this does not account for the load contributed by blocked task entities. This can be solved by introducing a separate accounting for blocked load: blocked_load(cfs_rq) = \Sum runnable(b) * weight(b) Obviously we do not want to iterate over all blocked entities to account for their decay, we instead observe that: runnable_load(t) = \Sum p_i*y^i and that to account for an additional idle period we only need to compute: y*runnable_load(t). This means that we can compute all blocked entities at once by evaluating: blocked_load(cfs_rq)` = y * blocked_load(cfs_rq) Finally we maintain a decay counter so that when a sleeping entity re-awakens we can determine how much of its load should be removed from the blocked sum. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.585389902@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
For a given task t, we can compute its contribution to load as: task_load(t) = runnable_avg(t) * weight(t) On a parenting cfs_rq we can then aggregate: runnable_load(cfs_rq) = \Sum task_load(t), for all runnable children t Maintain this bottom up, with task entities adding their contributed load to the parenting cfs_rq sum. When a task entity's load changes we add the same delta to the maintained sum. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.514678907@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Ben Segall authored
Since runqueues do not have a corresponding sched_entity we instead embed a sched_avg structure directly. Signed-off-by: Ben Segall <bsegall@google.com> Reviewed-by: Paul Turner <pjt@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.442637130@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Paul Turner authored
Instead of tracking averaging the load parented by a cfs_rq, we can track entity load directly. With the load for a given cfs_rq then being the sum of its children. To do this we represent the historical contribution to runnable average within each trailing 1024us of execution as the coefficients of a geometric series. We can express this for a given task t as: runnable_sum(t) = \Sum u_i * y^i, runnable_avg_period(t) = \Sum 1024 * y^i load(t) = weight_t * runnable_sum(t) / runnable_avg_period(t) Where: u_i is the usage in the last i`th 1024us period (approximately 1ms) ~ms and y is chosen such that y^k = 1/2. We currently choose k to be 32 which roughly translates to about a sched period. Signed-off-by: Paul Turner <pjt@google.com> Reviewed-by: Ben Segall <bsegall@google.com> Signed-off-by: Peter Zijlstra <a.p.zijlstra@chello.nl> Link: http://lkml.kernel.org/r/20120823141506.372695337@google.comSigned-off-by: Ingo Molnar <mingo@kernel.org>
-
Linus Torvalds authored
Merge tag 'stable/for-linus-3.7-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen Pull xen bug-fixes from Konrad Rzeszutek Wilk: - Fix mysterious SIGSEGV or SIGKILL in applications due to corrupting of the %eip when returning from a signal handler. - Fix various ARM compile issues after the merge fallout. - Continue on making more of the Xen generic code usable by ARM platform. - Fix SR-IOV passthrough to mirror multifunction PCI devices. - Fix various compile warnings. - Remove hypercalls that don't exist anymore. * tag 'stable/for-linus-3.7-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git/konrad/xen: xen: dbgp: Fix warning when CONFIG_PCI is not enabled. xen: arm: comment on why 64-bit xen_pfn_t is safe even on 32 bit xen: balloon: use correct type for frame_list xen/x86: don't corrupt %eip when returning from a signal handler xen: arm: make p2m operations NOPs xen: balloon: don't include e820.h xen: grant: use xen_pfn_t type for frame_list. xen: events: pirq_check_eoi_map is X86 specific xen: XENMEM_translate_gpfn_list was remove ages ago and is unused. xen: sysfs: fix build warning. xen: sysfs: include err.h for PTR_ERR etc xen: xenbus: quirk uses x86 specific cpuid xen PV passthru: assign SR-IOV virtual functions to separate virtual slots xen/xenbus: Fix compile warning. xen/x86: remove duplicated include from enlighten.c
-
Al Viro authored
... and fix the race in updating unaligned control ones Signed-off-by: Al Viro <viro@zeniv.linux.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
-
git://git.kernel.org/pub/scm/virt/kvm/kvmLinus Torvalds authored
Pull kvm fixes from Avi Kivity: "KVM updates for 3.7-rc2" * tag 'kvm-3.7-2' of git://git.kernel.org/pub/scm/virt/kvm/kvm: KVM guest: exit idleness when handling KVM_PV_REASON_PAGE_NOT_PRESENT KVM: apic: fix LDR calculation in x2apic mode KVM: MMU: fix release noslot pfn
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull perf fixes from Ingo Molnar: "Most of these are uprobes race fixes from Oleg, and their preparatory cleanups. (It's larger than what I'd normally send for an -rc kernel, but they looked significant enough to not delay them.) There's also an oprofile fix and an uncore PMU fix." * 'perf-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (22 commits) perf/x86: Disable uncore on virtualized CPUs oprofile, x86: Fix wrapping bug in op_x86_get_ctrl() ring-buffer: Check for uninitialized cpu buffer before resizing uprobes: Fix the racy uprobe->flags manipulation uprobes: Fix prepare_uprobe() race with itself uprobes: Introduce prepare_uprobe() uprobes: Fix handle_swbp() vs unregister() + register() race uprobes: Do not delete uprobe if uprobe_unregister() fails uprobes: Don't return success if alloc_uprobe() fails uprobes/x86: Only rep+nop can be emulated correctly uprobes: Simplify is_swbp_at_addr(), remove stale comments uprobes: Kill set_orig_insn()->is_swbp_at_addr() uprobes: Introduce copy_opcode(), kill read_opcode() uprobes: Kill set_swbp()->is_swbp_at_addr() uprobes: Restrict valid_vma(false) to skip VM_SHARED vmas uprobes: Change valid_vma() to demand VM_MAYEXEC rather than VM_EXEC uprobes: Change write_opcode() to use FOLL_FORCE uprobes: Move clear_thread_flag(TIF_UPROBE) to uprobe_notify_resume() uprobes: Kill UTASK_BP_HIT state uprobes: Fix UPROBE_SKIP_SSTEP checks in handle_swbp() ...
-
git://git.kernel.org/pub/scm/linux/kernel/git/tip/tipLinus Torvalds authored
Pull core kernel fixes from Ingo Molnar: "Two small fixes" * 'core-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: Documentation: Reflect the new location of the NMI watchdog info nohz: Fix idle ticks in cpu summary line of /proc/stat
-
git://git.kernel.org/pub/scm/linux/kernel/git/s390/linuxLinus Torvalds authored
Pull s390 fixes from Martin Schwidefsky: "Among the usual minor bug fixes the more interesting patches are the perf counters for the latest machine, the missing select to enable transparent huge pages and a build fix for the UAPI rework." * 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux: s390,uapi: do not use uapi/asm-generic/kvm_para.h s390/cache: fix data/instruction cache output s390: fix linker script for 31 bit builds s390/thp: select HAVE_ARCH_TRANSPARENT_HUGEPAGE s390/kdump: Use 64 bit mode for 0x10000 entry point perf_cpum_cf: Add support for counters available with IBM zEC12 s390/css: stop stsch loop after cc 3 s390/cio: use generic bitmap functions s390/chpid: make headers usable (again)
-
git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tileLinus Torvalds authored
Pull tile fixes from Chris Metcalf: "This fixes one issue with compiler flags that can cause modules not to load, and cleans up some warnings with ELF_R_xxx defines." * 'stable' of git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile: arch/tile: avoid build warnings from duplicate ELF_R_xxx #defines arch/tile: avoid generating .eh_frame information in modules
-
git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linuxLinus Torvalds authored
Pull ia64 fix from Tony Luck: "Fix from dhowells for UAPI fallout" * tag 'please-pull-uapi-fix' of git://git.kernel.org/pub/scm/linux/kernel/git/aegl/linux: UAPI: Make arch/ia64/include/asm/kvm_para.h generic
-
- 23 Oct, 2012 5 commits
-
-
Chris Metcalf authored
These are now provided in <asm-generic/module.h>, so clean up warnings by not re-defining them in module.c. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> Acked-by: Rusty Russell <rusty@rustcorp.com.au>
-
Chris Metcalf authored
The tile tool chain uses the .eh_frame information for backtracing. The vmlinux build drops any .eh_frame sections at link time, but when present in kernel modules, it causes a module load failure due to the presence of unsupported pc-relative relocations. When compiling to use compiler feedback support, the compiler by default omits .eh_frame information, so we don't see this problem. But when not using feedback, we need to explicitly suppress the .eh_frame. Signed-off-by: Chris Metcalf <cmetcalf@tilera.com> Cc: stable@vger.kernel.org
-
git://people.freedesktop.org/~airlied/linuxLinus Torvalds authored
Pull drm fixes from Dave Airlie: "Fixes for intel and nouveau mainly. - intel: disable HSW by default, sdvo fixes, link train regression fix - nouveau: acpi rom loading regression fix, with a few other fixes from the rework -core: just other minor fixes and race fixes for ttm." * 'drm-fixes' of git://people.freedesktop.org/~airlied/linux: (24 commits) drm/ttm: Fix a theoretical race in ttm_bo_cleanup_refs() drm/ttm: Fix a theoretical race drm: platform: Don't initialize driver-private data drm/debugfs: remove redundant info from gem_names drm: fb: cma: Fail gracefully on allocation failure drm: fb: cma: Fix typo in debug message drm/nouveau/clock: fix missing pll type/addr when matching default entry drm/nouveau/fb: fix reporting of memory type on GF8+ IGPs drm/nv41/vm: don't init hw pciegart on boards with agp bridge drm/nouveau/bios: fetch full 4KiB block to determine ACPI ROM image size drm/nouveau: validate vbios size drm/nouveau: warn when trying to free mm which is still in use drm/nouveau: fix nouveau_mm/nouveau_mm_node leak drm/nouveau/bios: improve error handling when reading the vbios from ACPI drm/nouveau: handle same-fb page flips drm/i915: Initialize obj->pages before use by i915_gem_object_do_bit17_swizzle() drm/i915: Add no-lvds quirk for Supermicro X7SPA-H drm/i915: Insert i915_preliminary_hw_support variable. drm/i915: shut up spurious WARN in the gtt fault handler Revert "drm/i915: Try harder to complete DP training pattern 1" ...
-
git://github.com/kleikamp/linux-shaggyLinus Torvalds authored
Pull jfs fix from Dave Kleikamp: "Bug fix: Fix FITRIM argument handling" * tag 'jfs-3.7-2' of git://github.com/kleikamp/linux-shaggy: jfs: Fix FITRIM argument handling
-
git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4Linus Torvalds authored
Pull ext4 fixes from Ted Ts'o: "Various bug fixes for ext4. The most serious of them fixes a security bug (CVE-2012-4508) which leads to stale data exposure when we have fallocate racing against writes to files undergoing delayed allocation. We also have two fixes for the metadata checksum feature, the most serious of which can cause the superblock to have a invalid checksum after a power failure." * tag 'ext4_for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/tytso/ext4: ext4: Avoid underflow in ext4_trim_fs() ext4: Checksum the block bitmap properly with bigalloc enabled ext4: fix undefined bit shift result in ext4_fill_flex_info ext4: fix metadata checksum calculation for the superblock ext4: race-condition protection for ext4_convert_unwritten_extents_endio ext4: serialize fallocate with ext4_convert_unwritten_extents
-